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ABSTRACT 

Simulators have drawbacks due to the total time taken for the 
simulation. Therefore, two simulators should be integrated to 
produce a robust simulator to overcome this hurdle. The main 
aim of this research which is to integrate two open-source 
simulators to study the simulation of DDR4 is achieved. GEM5 
and DRAMSim2 are integrated for DDR4 simulation using ISA 
x86. DRAM Controller codes and codes to access the bank or 
bank groups in DDR4 are modified for DDR4. The parameters 
of DDR4 – 24000 passed into the simulation. Based on the 
simulation results, GEM5 DRAMSim2 has verified its 
correctness and legal to be used for DDR4 simulations. The 
modified DRAM Controller codes for DDR4 from DDR3 is 
proven working when 100% pass. GEM5 DRAMSim2 is 
99.2% faster than previous work done with GEM5 – NVMain. 
Moreover, GEM5 DRAMSim2 used only 23% power from the 
overall power to perform ACT/PRE activities during the 
execution of 20 000 instructions. Furthermore, simulation of 
DDR4 using GEM5 DRAMSim2 used 40% less background 
power compared to previous GEM5 – NVMain work. The 
performance of DDR4 using GEM5 DRAMSim2 is fast 
because the correlation between the average bandwidth and 
average latency is 0.9975. This research proved that the 
integrated GEM5 DRAMSim2 is an effective and efficient 
simulator for DRAM simulations.  

Key words: computer system simulator, DRAMSim2, DDR4, 
Gem5, memory system simulator 

1.INTRODUCTION 

The need for larger data storage is growing rapidly. Therefore, 
advancing in-memory performance is very crucial in these 
days. To serve this purpose DDR is being improved in terms of 
performance and execution time from one generation to another 
[1]. However, DDR research in real life would cost a large 
amount of money and would be tedious, hence open-source 
simulator would be a better alternative. 

 
Nevertheless, memory system simulators are encountering 
some drawbacks due to the expanded memory trend. For 
instance, exploring memory system performance by  

 
simulations consumes ample time compared to the execution in 
a real system due to the complexity of memory architecture. 

  
 This is a great disadvantage for memory technology to be 
advanced in the fast-moving world. To overcome this hurdle, 
two simulators must be combined to achieve better efficiency 
thus reducing the time taken for memory simulation.  

 
Therefore, in this research, two open-source simulators have 
been integrated to explore DDR behavior and performance. 
Hence, the ultimate goal of this research is to integrate GEM5 
and DRAMSim2 for DDR4 simulation. GEM5 is a simulator 
used for evaluating performance and analysis for computer 
architecture [2] whereas DRAMSim2 is a simulator dedicated 
to memory system simulator. Up-to-date, there is no integration 
of the GEM5 DRAMSim2 simulation for DDR4. Since DDR4 
is the latest and widely used high-speed memory in many 
applications [3], it would be reasonable to explore its 
architecture for betterment in this research.   
 
2. METHODOLOGY  
 

In this research, the methodology is divided into four 
main phases. Figure 1 summarizes the research flow 
implemented in a flowchart form for better understanding. The 
first phase focuses on building GEM5 and running the source 
code for computer system architecture. In parallel, building and 
running DRAMSim2 for the memory system model is also 
done. The second phase is the integration of GEM5 and 
DRAMSim2 to be one powerful simulator. The third phase is 
divided into two parts. The first part focuses on modifying 
DRAM Controller codes. It is done by modifying the existing 
codes of the DDR3 controller in DRAMSim2 such that it is 
valid for the DDR4 controller. Then DDR4 parameters are 
taken from the vendor’s datasheet to create a new device.ini 
file. The second part of the third phase is DDR4 simulation. In 
the final phase, the evaluation of the simulator performance and 
DDR4 performance is done. The evaluation is compared with 
other simulators from previous work to benchmark this 
research. 
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Figure 1: Summary of research flow. 

 
The dependencies of GEM5 are downloaded and installed in 
Ubuntu using the Sudo command, sudo apt install build-
essential git m4 scons zlib1g zlib1g-dev libprotobuf-dev 
protobuf-compiler libprotoc-dev libgoogle-perftools-dev 
python-dev python 

 
The main source code of GEM5 is downloaded from the active 
support group, https://gem5.googlesource.com/public/gem5 
using git command. Next, the GEM5 source code is 
downloaded and installed. Finally, the GEM5 is compiled using  
x86 ISA. The command line to build GEM5 using SCons is 
scons build/X86/gem5.opt -j3. GEM5 build is a success when a 
directory called build is automatically created after the Scons 
command.  

 
Once the GEM5 is built, a configuration file is created to run 
the GEM5. The configuration file is a python script in which a 
system to simulate is created along with the system’s 
components and all the parameters are specified. The script is 
user-defined and almost all options on the command lines are 
allowed to be defined by the user. The script is used to execute 
the simulation by the following command build/X86/gem5.opt 
configs/example/se.py.  

 
The DRAMSim2 source is downloaded from 
https://github.com/umd-memsys/DRAMSim2 using git clone. 
DRAMSim2 is built by using the command make. Then, on the 
gzipped traces, the preprocessor is executed, ./traceParse.py 
k6_aoe_02_short.trc.gz. This is ensured that the DRAMSim2 
can be simulated successfully as a standalone simulator.  

 
Next, the trace-based simulator is executed in the main 
DRAMSim2 directory using ./DRAMSim -t 
traces/k6_aoe_02_short.trc -s system.ini -d 

ini/DDR3_micron_64M_8B_x4_sg15.ini -c 1000.  This 
command will run 1 000 simulations of the existing 
k6_aoe_02_short trace using the DDR3 part. Since 
DRAMSim2 supports up to DDR3 up-to-date, any DDR3.ini 
file in the /ini folder can be used to ensure the DRAMSim2 
built successfully.  

 
The second phase of methodology in this dissertation is to 
integrate DRAMSim2 into GEM5 and to ensure the integration 
is a success. The entire DRAMSim2 is copied in 
/gem5/ext/dramsim folder. Command-line build/X86/gem5.opt 
configs/example/se.py --mem-type=DRAMSim2 is used to 
integrate both the simulators. By executing this command, the 
DRAMSim2 memory controller model replaces the redundant 
functions in GEM5 memory controller files. Thus, leaving a 
lightweight yet sophisticated and powerful memory controller 
interface. Hence, requests from and to the GEM5 directory 
memory controller forwarded to DRAMSim2. This creates an 
organized simulation environment.  

 
The first part of the third phase in this methodology is to 
develop controller codes.  In GEM5 DRAMSim2, the existing 
DRAM controller supports up to DDR3 controller only. Any 
newer controller, such as DDR4 is not openly available. The 
main difference in DDR3 and DDR4 is that DDR3 has no bank 
groups, only banks whereas DDR4 has bank groups that consist 
of banks. Hence, the flow to access banks in DDR3 and DDR4 
is different. 

 
Figure 2 is a flowchart that simplifies the controller code to 
differentiate DDR3 and DDR4. To differentiate DDR3 and 
DDR4 the bank selection is done. The codes in DRAM 
Controller to identify the bank is edited for this. Since DDR3 
has only banks, the banks’ addresses (BA) are three bits, BA0, 
BA1, and BA2. For instance, BA2BA1BA0: 101 chooses bank 
6. Whereas in DDR4, the banks’ addresses are four bits BG0, 
BG1, BA0, and BA1. BG0BG1 denotes the bank group (BG) 
and, BA0and BA1 denote the bank address (BA). For instance, 
BG1BG0BA1BA0 0110 chooses bank 7 from bank group 1. 

 
Figure 2: DRAM Controller code flowchart to identify 

bank. 
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In DDR3, banks will be accessed individually whilst in DDR4, 
the bank groups will be accessed first before accessing the 
banks. Therefore, DRAM Controller codes in GEM5 is edited 
such that the read/write or any other commands queue up and 
executed accordingly either in the same bank group or in other 
bank groups in DDR4. The DRAM Controller codes in GEM5 
can be found in /gem5/src/mem/dram_ctrl.cc. Figure 3 
simplifies the DRAM controller codes flow for DDR4 bank 
access timings. 
 

 
Figure 3: DRAM controller codes flow for DDR4 bank access 

timings. 
 

The first part of the third phase is to give the DDR4 parameters 
into DRAMSim2. The parameters of DDR4 can be found in 
any DRAM vendors specification data. The DRAM used in this 
dissertation is Micron MT40A2G4, a single DDR4 – 2400 (16 
x 4 configuration). The existing device.ini of DDR3 is edited 
with the DDR4 parameter. Then the device.ini is declared 
in /gem5/src/mem/Dramsim2.py.  

 
Before the DDR4 simulation is done, the command scons 
build/X86/gem5.opt -j3 is executed again to build GEM5 again. 
This is to ensure there is no coding error in GEM5 DRAMSim2 
after developing the DRAM Controller codes for DDR4. If the 
GEM5 build is not successful, the modified codes must be 
corrected referring to the output error.  

 
Next, the simulation is done by using 
command, build/X86/gem5.opt configs/example/se.py --mem-
type=DRAMSim2 --cmd=/home/pk/gem5/tests/test-
progs/hello/bin/x86/linux/hello -I 1000000 -n 2. In general, 
this command is using memory simulator DRAMSim2 into 
ISA x86 to execute the test file for 1 000 000 instructions. 
Figure 3.7 illustrates the codes for DDR4 simulation flowchart 
in GEM5 DRAMSim2. 

 
The method to evaluate the performance of GEM5 
DRAMSim2 is divided into four parts. The first part is to 
validate the correctness of GEM5 DRAMSim2 for the DDR4 
simulation. For this purpose, the simulator is stress-tested with 
10M random requests in the ratio of 4:4:2, 
read:write:ACT/Prefetch/Refreshes. The timestamped log is 
collected for every half an hour to check on any warning or 
error during the execution of 10M requests. 

 

The next part is to evaluate the performance of GEM5 
DRAMSim2 for DDR4 simulation. To calculate the 
performance of the GEM5 DRAMSim2 in this part, the total 
number of instructions simulated (ints) in a random simulation 
is divided by the total time taken (s). The performance of 
GEM5 DRAMSim2 will be in terms of inst/s.  

 
To make a benchmark for this research, this research is 
compared to previous research of DDR4 using GEM5 – 
NVMain (Farrell, Tsulaia, Dotti, Calafiura and Leggett, 2017). 
For apple-to-apple comparison with previous work, the same 
amount and type of instructions, which is random 20 000 
instructions in the ratio of 4:4:2 
(read:write:ACT/Prefetch/Refreshes) is used. The computer 
specifications and platform are the same in this research and 
previous research. This information can be found in Chapter 
1.4: Research Scope of this dissertation. The performance of 
GEM5 DRAMSim2 for 20 000 is calculated and compared to 
previous work, GEM5 – NVMain. 

 
The third part is to compare the power consumed during the 
execution of 20 000 instructions in DDR4 using GEM5 
DRAMSim2 with GEM5 – NVMain. The simulator power 
consumption information in this research can be found in the 
simulation results log. Mainly, three power is given focus, they 
are background power, burst power, and ACT/PRE power.  

 
Background power indicates the power consumed by the 
simulator to do overall simulation. Burst power specifies the 
power used to send the address to the memory and ACT/PRE 
power is a power used to initiate and perform read and write 
accesses. Only background power is compared with the 
previous research. This is because background power consumes 
the majority power during the simulation. 

 
The fourth and final part is to evaluate DDR4 timing in GEM5 
DRAMSim2. This is done by running simulation three times to 
calculate the average latencies and bandwidth. The latency and 
bandwidth information can be obtained from the simulation 
results log. Simple linear regression and correlation are done to 
study the trend of average latency and average bandwidth of 
DDR4. Pearson tool is used for this purpose. 

 
The average latency is an independent variable while the 
average bandwidth depends on the average latency. Average 
latency influences the trend of bandwidth. The numerical 
measure of the degree of connection between the two 
parameters is associated with the correlation coefficient (r). 
Therefore, the Pearson correlation is used to evaluate the linear 
relationships between these two parameters. The formula to 
obtain the coefficient correlation, r [4]; 

 

  (1) 
 

From equation (1), x being the latency while y being the 
bandwidth. Theoretically, the average bandwidth must be 
directly proportional to the average latency for better 
efficiency. A scatter graph is plotted with a best fit line to 
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observe the overall direction of the average bandwidth. The 
more linear the plot is, the faster the timing parameter of DDR4 
in simulator. Additionally, the coefficient of determination or 
R-squared, R2 value will be discussed.       
 
3.RESULTS AND DISCUSSIONS 

 
To validate the correctness of GEM5 DRAMSim2 as one 
simulator, the simulator must simulate a stream of memory 
requests using a valid sequence of DRAM commands. It has to 
be with respect to the status transitions and the timing 
parameters of a standard, DDR4 in this dissertation. To fulfill 
that, the GEM5 DRAMSim2 simulator is stress-tested with a 
trace that contains 10M of memory requests. Those requests are 
mainly made of reads and writes and a combination of 
sequential and random addresses and the minority of the 
request consists of refreshes, power-downs, and self-refreshes.  

 
Without overflowing the controller’s request buffer, this 10M 
of memory requests are fed into GEM5 DRAMSim2 as quickly 
as possible. This simulation took about seven hours and no 
violations were reported in the collected timestamped log of 
every command issued by GEM5 DRAMSim2. This is an 
indication that the simulation of DDR4 using GEM5 
DRAMSim2 is legal. In spite of this, the simulator gained 
confidence in its correctness. 

 
The performance of GEM5 DRAMSim2 as a simulator for 
DDR4 is crucial to be noted in order to find out the efficiency 
of the simulator. The total time taken for a complete simulation 
is 6µs for 5 954 total number of instructions (read and write. 
Hence, the performance of GEM5 DRAMSim2 for DDR4 
simulation is 992 333 333.3 inst/s. 

 
Comparing with the previous research for DDR4 simulation 
using GEM5 – NVMain [5], DDR4 simulation takes about 
0.006s for almost 20 000 instructions of read and write. On the 
other hand, the simulated time in this dissertation is 6µs for 5 
954 instructions of read and write. An unbiased comparison is 
made by multiplying the simulated instructions by 3.36 times 
so that 20 000 instructions are fed into GEM5 DRAMSim2 to 
find out the total time taken for a complete simulation. The 
GEM5 DRAMSim2 took about 0.00005s to execute 20 000 
instructions.  

 
All the comparison information of GEM5 DRAMSim2 versus 
GEM5 – NVMain are tabulated in Table 1 for a clearer picture. 
From Table 1, it is clearly seen that the performance of GEM5 
DRAMSim2 is better than GEM5 – NVMain because GEM5 
DRAMSim2 takes lesser time to execute 20 000 instructions. 
Simply put, the performance of GEM5 DRAMSim2 is better 
than GEM5 – NVMain. 

 
Table 1: GEM DRAMSim2 versus GEM5 – NVMain for total 

time taken for execution and performance of simulator.  

 GEM5 
DRAMSim2 

GEM5 – 
NVMain 

Instructions fed 
(read: write, 9:1) (inst) 20 000 20 000 

Total time taken to 0.00005 0.006 

execute (s) 
Performance of 

simulator (inst/s) (x 10 ^ 
6)  

400 3  

 
 

From the simulation results, the rate at which works are 
performed by the GEM5 DRAMSim2 is tabulated in Table 2. 
The background power consumed by GEM5 DRAMSim2 to 
simulate DDR4 is 0.03W, the burst power is 0.004W and the 
Active/Precharge (ACT/PRE) power is 0.01W. A pie – chart, 
Figure 2, is plotted to have a clearer picture of the power 
consumed by GEM5 DRAMSim2 for DDR4 simulation. 

  
Table 2: Power consumption by GEM5 DRAMSim2 for DDR4 

simulation. 
Power W % 

Background  0.03  68 

Burst  0.004 9 

ACT/PRE  0.01 23 

 

 
Figure 4: A pie – chart to display the energies consumed by GEM5 

DRAMSim2 for DDR4 simulation activity. 
 

From Figure 4, it is seen that most of power consumption is 
majorly used in the background whereas least power is used for 
burst and ACT/PRE activities. This shows GEM5 DRAMSim2 
does not require much power to perform ACT/PRE activities.  
Hence, the read access and write access in GEM5 DRAMSim2 
needs lesser power to be performed.  

 
Due to majority power is consumed in background and 
background power determines the performance of simulator, 
only the background power consumption is compared with 
previous research.  By using GEM5 DRAMSim2 for DDR4 
simulation, the total background power consumed is only 
0.03W whereas GEM5 – NVMain used about 0.05W. Figure 5 
depicts a power graph to differentiate the power consumption 
by GEM5 DRAM and GEM5 – NVMain. Simply put, 
simulation of DDR4 using GEM5 DRAMSim2 uses 40% less 
background power compared to using GEM5 – NVMain. This 
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means DDR4 simulation using GEM5 DRAMSim2 is more 
efficient than using GEM5 – NVMain. 
 

 
Figure 5: Background power consumption by GEM5 DRAMSim2 
versus GEM5 – NVMain. 
 
Table 3 explains the correlation between the average latency 
and average bandwidth of DDR4 simulated is a positive 0.9975 
coefficient. As the average latency increases, the average 
bandwidth increases proportionally. A scattered graph, Figure 
6, of average bandwidth versus average latency is plotted with 
best fit line to observe the trend of average bandwidth 
depending on average latency.  

 
The best fit line (orange-dashed line) is plotted using the least-
square method to find the best fit for a line though data points. 
R2 value, 0.9951 closer to the value of 1, indicates that the best 
fit is 99.51% and it is a good fit of the regression analysis 
model. This conveys that appropriate time is used in GEM5 
DRAMSim2 for DDR4 simulation to initiate a request for a 
byte in memory until it retrieved by processor and the rate to 
process it is very quick. 
 

Table 3: Average latency and average bandwidth correlation table. 

  Average 
Latency (ns) 

Average 
Bandwidth 
(MB/s) 

Average Latency 
(ns) 1   

Average Bandwidth 
(MB/s) 0.9975 1 

 
The summary of the regression output is tabulated in 

Table 4. The standard error of 0.2364 (23.64%), shows the 
precision of the regression analysis – the smaller the number, 
the more certain is the regression equation. The larger value of 
F statistics, 2 839, explains the significant relationship between 
the average latency and average bandwidth. The Significance F 

or p-value of 1.4356 x 10^-17 which is less than 0.05 (5%) 
suggests that the results are very reliable. 

 
Table 4: Regression summary output 

Regression Statistics 

Coefficient correlation, r 0.9975 

Coefficient of determination, R2 0.9951 

Standard Error 0.2364 

F statistics 2839.7513 

Significance F, p-value 1.4356 x 10^-17 

 

 
Figure 6:: Graph of average latency versus average bandwidth. 

 
4.CONCLUSIONS AND DISCUSSIONS 
 
In conclusion, the main aim of this research which is to 
integrate two open-source simulators to study the simulation of 
DDR4 is achieved. The three objectives of this research are 
also achieved. First and foremost, the integration of GEM5 and 
DRAMSim2 as one simulator is accomplished without any 
violations reported in the collected timestamped log after 
sending 10M requests. This proves that there is 0% error in the 
integration of these two simulators and simulation for DDR4 is 
legal. Secondly, the existing DRAM Controller codes for 
DDR3 in DRAMSim2 is modified for DDR4 is also 
accomplished in this research. This is proven when 100% pass 
was seen when DDR4 parameters are taken into the simulation. 
Finally, the third objective which is to identify the performance 
of the GEM5 DRAMSim2 simulator for DDR4 and 
simultaneously to analyze DDR4 timing in GEM5 DRAMSim2 
is also achieved. GEM5 DRAMSim2 executed 20 000 
instructions in 0.00005s only, which translates to the 
performance of GEM5 DRAMSim2 is 99.2% faster than 
previous work done with GEM5 – NVMain. Moreover, GEM5 
DRAMSim2 used only 23% power from the overall power to 
perform ACT/PRE activities during the execution of 20 000 
instructions. Furthermore, simulation of DDR4 using GEM5 
DRAMSim2 used 40% less background power compared to 
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previous GEM5 – NVMain work. The performance of DDR4 
using GEM5 DRAMSim2 is fast because the correlation 
between the average bandwidth and average latency is 0.9975. 
This research proved that the integrated GEM5 DRAMSim2 is 
an effective and efficient simulator for DRAM simulations. 
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