
Nikolai Valerievich Bradis et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3289 - 3296

3289


ABSTRACT

Video distribution systems require for protection of content
against unauthorized access and copying. At present some
approaches are available based on DRM (Digital Rights
Management) which provide acceptable level of content
protection against malicious users but do not protect content
against copying by rightful users. The problem of video
content protection against rightful users is essentially
nontrivial, since video playback assumes possibility to read
data and actually enables copying. Complete protection
against rightful users is possible only in the case of complete
control over their playback units and this is impossible at
present. Commercial solutions to protection of 360 video are
unavailable due to numerous types of playback units which do
not provide such protection at their side. This work is aimed
at development of protection of 360 and 360 3D video content
on units supplied by content producers to final users.

Key words : Virtual reality, DRM, 360 video, AES128,
H.264, HEVC, OpenGL, FFMPEG, GPU, Shader program,
Analog hole, Madgwick filter.

1. INTRODUCTION

Presently modern video streaming services apply various
protocols of content distribution in combination with DRM
(Digital rights management) [1]. DRM is supported by such
video streaming protocols such as RTMP (Real Time
Messaging Protocol) [2] and MPEG-DASH [3]. The essence
of DRM is that a customer receives the link to encryption key
together with video stream from media server and then
requests the key by this link. DRM server checks connection
with the customer (HTTPS protocol) and decides whether to
transfer the key for decryption of the stream. The main
problem of such mechanism is that after transfer of the
encryption key to the customer, this key can be compromised
and the content can be captured. In addition, HTTPS
vulnerabilities are also an issue.

When a customer receives not the stream but, instead, total
encrypted video file, the flowchart generally remains the same
and the customer receives a key for content decryption. The
main issue not only of DRM but of any protection
mechanisms of audio and video content is the necessity to
transfer encryption key to customer, which requires for
пprotection of this key.

Modern DRM systems use strong algorithms (AES, RSA,
and others), however, these methods do not provide
comprehensive protection, since a secret key is required to get
access to protected content. Therefore, rightful owners of
access to contents can bypass the protection, since they have
both encrypted data and the key. Due to this reason the DRM
systems attempt to hide the used encryption keys from
customers, which is rather difficult because modern playback
units (PC and mobile devices) are sufficiently versatile and
are controlled by users.

Permission to playback content and at the same to protect it
against copying is a very difficult problem, since playback, in
fact, is data reading, processing, and recording to output
device. This differs from storage only by the fact that
recording is carried out not on storage device but on output
device. Thus, the problem appears known as analog hole [4].
Therefore, efficient protection against copying can be
achieved only in the case when playback unit is under
complete control of right holder or content distributor.

Due to low reliability of DRM protection and to problems
preventing content playback by rightful customers, many
companies presently do not apply such type of protection. For
instance, Apple Inc. completely removed DRM protection in
its iTunes service, German service Musicload also refused to
apply DRM, since about three quarters of requests to support
service were related with the customer problems due to DRM.

In the case of 360 and 360 3D video formats, no valid DRM
solutions were presented, since the main playback units for
360 video are VR glasses [5] both together with either PC or
smartphone and with standalone device. Video playback in
such devices is performed using specialized players
accounting for spatial position of customer head by means of
various tracking mechanisms. Copying of 360 video via
analog hole is complicated by the fact that it is required to

360 Video Protection and Streaming

Nikolai Valerievich Bradis1, Sergei Sergeevich Smirnov1, Dmitrii Aleksandrovich Sytnik1, Andrei
Ivanovich Kardakov2, Alexey Yuryevich Lebedev3

1Complex Systems LLC, Tver, Russia
2 Intelligent Solutions LLC, Tver, Russia

3 Tver State Technical University, Tver, Russia

 ISSN 2278-3091
Volume 8, No.6, November – December 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse99862019.pdf

https://doi.org/10.30534/ijatcse/2019/99862019

Nikolai Valerievich Bradis et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3289 - 3296

3290

capture video in two positions (to obtain two hemispheres), to
project spherical video onto plane, and to stitch the two
videos.

A critical issue for 360 video is the playback speed.
Playback of dynamic content at the speed of 60 frames per
second (FPS) can be inconvenient for a spectator. In addition,
high resolution (UltraHD, 4K and higher) is important for
360 video.

Several problems are solved upon playback of 360 video:
1. Decoding of video packets by H.264 [6] or H.265 [7]

decoders,
2. Subdivision of frames for right and left eyes (for 3D),
3. Projection of the obtained frame onto internal sphere

surface,
4. Sphere rotation according to readings of tracking

systems,
5. Visualization of the obtained spheres for each spectator's

eye.
Upon playback of protected by encryption content, this list

is supplement by data decryption, which can additionally
impair performances of playback system.

Presently various players are available for playback of 360
video. Most of these players are supplied with VR headsets
and allow to playback video in combination with these
headsets. There are ready SDK and libraries allowing to
playback 360 video (for instance, Oculus Platform SDK [8]),
however, these tools are mainly intended for operation with
specific positioning devices and do not provide access to
reading and processing of video file or stream at the level
sufficient for content protection. In this regard it became
necessary to develop proprietary low-level player for playback
of 360 and 360 3D video.

2. METHODS

A. Content encryption methods
The existing DRM systems usually operate with symmetric

encryption algorithms, such as AES, GOST, Blowfish, and
others. RSA and Elgamal asymmetric encryption algorithms
are also used. These algorithms are tested by time and
cryptographic experts, therefore, it would be unreasonable to
develop new encryption algorithms since verification of their
strength could be time consuming. The most popular
encryption algorithm is AES (Advanced Encryption
Standard) [9]. This algorithm was approved in 2001 by
National Institute of Standards and Technology after five
years of testing. In addition to confirmed encryption strength,
this algorithm is characterized by high efficiency which
provides rapid data encryption and decryption, and upon its
application for video content protection, this is the main
factor following reliability.

Application of asymmetric encryption has no sense for
content encryption, since the content is encrypted by public
key and decrypted by private key. Provided that video should

be played on client devices, the private key should be
transferred to them (or to be generated on these devices). In
fact, this provides possibility to protect server against user
content decryption which has not sense since the server stores
content encrypted with secret server key.

Encryption of video file is reduced to encryption of
constituent video packets. Encryption of audio packets is
reasonable only when they have commercial value without
appropriate video data. Herewith, only data compressed by
codec (H265, H264) should be encrypted, this can be
substantiated by two reasons.

The first reason is that after encryption of the initial image,
we obtain disconnected data set and the quality of
compression of these data by codec will be impaired.
Herewith, after compression the data can be modified
depending on codec settings and compression quality, and not
the initially encrypted data will be obtained after unpacking
which can lead to problems upon decryption.

The second reason is that after compression there are less
data in video packet in comparison with initial image, which
is accompanied by less amount of work for encryption
algorithm and, as a consequence, higher efficiency.

Upon testing encryption algorithms using OpenSSL library
[10], the best performances were obtained with AES
algorithm. Decryption of one 3880×1440 video packet
encrypted by AES algorithm with 128-bit key requires in
average 7 ms using Core i5, 9th generation. Therefore, per
one second of using this equipment it is possible to decrypt
142 frames. If it is required to playback 4K video at the speed
of 60 fps, these performances cannot be acceptable, since in
addition to decryption, it is required to unpack video packet by
decoder and to present the obtained image to the screen. In
this regard it is sufficient to encrypt only key video packets,
since all other packets contain only variations in respective
frames with regard to the key packet. This is the principle of
video file compression.

The number of key packets in video file does not generally
exceed 3% of total number of packets, and most often it is
below 1%.

While encrypting only key packets, it can be safely
assumed that complete image recovery without key frames is
so difficult that the respective labor consumptions are
comparable with those for complete redoing of this video.
That is, reasonability of such breach is completely zeroed.
Upon encryption of only key packets, it is possible to
reallocate resources for solution of the problems directly
related with video playback.

Therefore, content protection can be based on AES128
algorithm with encryption and decryption of only key video
packets irrespective of method of video transfer to client.

The main problem of this method and any other DRM
system is that it is required to transfer secret key to client and
to reliably protect it both on server side and client side. Under
ideal conditions, the content integrity should be provided

Nikolai Valerievich Bradis et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3289 - 3296

3291

even in the case of unauthorized access to distribution server.
That is, illegal intruder obtaining access to distribution server
should not have possibility to obtain video materials in
unprotected form.

B. Server-side video protection
It is required to protect encryption key at all levels,

otherwise, irrespective of the method used by illegal user to
obtain the secret key, all content encrypted with this key will
be lost. Rightful client of distribution server should also be
considered by the system as a potential illegal user. Server
administrator and any person having direct access to it should
be considered by the system as potential illegal users. Hence,
video materials and encryption keys should be protected not
only on client side but on server side as well. In order to
eliminate possibility to capture encryption key during its
transmission over the network, it is required to provide key
generation and transmission only once over protected
communication line, or when playback unit is not transferred
to client. The latter is possible only with B2B distribution
system, that is, the clients of distribution server are auctions
or VR streaming services and not final users' devices.

First of all, all video materials should be stored on the
server in encrypted form. That is, upon uploading any video to
distribution server, it should be automatically encrypted and
stored only in encrypted form. Then, the content on the server
should be encrypted only in separate subsystem based on
compiled programming language using obfuscation,
anti-debugging, and protection against code injection. It is
prohibited to store user encryption keys in open form in the
server database. In addition, upon calling encryption
subsystem, it is prohibited to transmit to it encryption keys in
open form. The encryption subsystem of the server should not
have external interfaces of access to video decryption
methods. Access to content encryption key and users' secret
key should be provided only to encryption subsystem without
possibility to withdraw it.

Encryption subsystem for protection of video materials
upon their uploading is illustrated in Figure 1.

Encryption subsystem is aimed at creation of binary file
which will operate in two modes. The first mode is to obtain
open data from distribution server, their encryption with
secret key, and storage of encrypted data according to server
specified path. The second mode is intended for user secret
key importation from distribution server, location of data to be
re-encrypted and path to store the data encrypted with user
key. In this mode the encryption subsystem should decrypt
data in portions, encrypt them with user encryption key after
its preliminary decryption, and save the data encrypted with
user key at server specified path. Herewith, the user key
should be decrypted every time dynamically immediately
before re-encryption of next data portion and stored during
minimum time required for decryption only in process
dynamic memory. Herewith, the key for decryption of user
secret keys should not be mentioned in explicit form in initial
code of encryption subsystem, it should be dynamically
assembled according to predefined algorithm using

obfuscation immediately before decryption of user secret key.
The same is applied to content encryption key for storage on
the server. Data portions should be decrypted in random order
with subsequent (after encryption with user key) recording
into the required file segments. Decrypted data portions
should be stored in process memory only during the time
required for their encryption.

Figure 1: File encryption upon uploading

Nikolai Valerievich Bradis et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3289 - 3296

3292

C. Client-side protection of encryption key
Protection of encryption key content against rightful owner

is the most complicated task. Upon content distribution to
business clients, it is possible to organize efficient protection
by providing them with hardware key, for instance, USB-key,
Guardant line [11]. In this case the distribution system
operates via media streaming server which is equipped with
the required software to control VR simulator and content.
User sets are connected to this server, whether these are
stand-alone sets (Oculus Go, Oculus Quest), or sets operating
in combination with smartphones (Samsung Gear VR), or
sets connecting to external PC (Total Vision, Samsung
Odyssey, Oculus Rift). The process of simulator activation
and video streaming to user sets is controlled from media
streaming server. Therefore, it is possible to write encryption
key into protected memory cell of hardware key and to use it
for content decryption. Data from the key will be read by the
server software and transmitted to the player of certain set
over encrypted channel of local network.

Two serious vulnerabilities exist in such key scheme. The
first is that the data from protected memory cell of hardware
key are read using API methods of manufacturer library of
this hardware key. Such inquiry can be captured by illegal
user provided that debugging measures are cracked.
Therefore, it is prohibited to store encryption key in open
form even in hardware key, that is, secret user key should be
written into hardware key only in encrypted form. Herewith,
the encryption key of user secret key, similarly to encryption
subsystem of distribution system, should not be written in
initial code in explicit form but be assembled according to
specified algorithm using obfuscation immediately before
decryption of user secret key. The second vulnerability occurs
due to transmission of user secret key via local network of
media streaming service or simulator. This problem can be
solved by two methods: the first is to use network protection
keys, the second is to use SSL sockets for data transmission
via TCP/IP for channel protection by asymmetric encryption.
It should be mentioned that the key is transmitted to devices in
encrypted form, since it is stored in hardware key and is
decrypted immediately before video decryption.

Obviously, the same requirements to protection of
encryption ley are applied to software player. Herewith, Java
language should not be used for Android, since the
mechanism of its disassembling and debugging is widely
known and allows to obtain higher level code (in comparison
with assembler code), thus strongly simplifying application
cracking. It would be more reasonable to use C++ with the
same anti-debugging mechanisms as in encryption subsystem
of distribution server.

D. Video packet decryption
All key video packets in video file are preliminary

encrypted by distribution server with user secret key.
Encryption of key video packets by AES128 is illustrated in
Figure 2.

Figure 2: Playback of video file without encryption (at the
top) and with AES128 encrypted key packets (below).

Therefore, receiving of video packets before their

decryption without customer secret key is impossible.
For further video playback it is required to decrypt only key

packets. The decryption can be performed by CPU and not
involve GPU which is used for video decoding and
presentation. Since the key packets in video are large, it would
be reasonable to decrypt packet by several CPU cores, each
would decrypt certain packet portion. Packet reading and
decryption are the initial steps to playback 360 video.

E. Video decoding
Video decoding is the most complicated and resource

consuming stage. H264 and H265(HEVC) are the main video
codecs used for compression of 360 video. Numerous variants
of coders and decoders are available for these codecs,
including those supporting hardware acceleration comprised
of video decoding by GPU, completely or partially.

In general case, the player to be developed for 360 video
should unpack video on any device where it could be installed.
Herewith, if such device has hardware tools for video
decoding, they should be used at full scale in order to achieve
the required efficiency for playback of high-resolution video.
The most popular solution for operations with video is Libav
library [12] in FFMPEG packet [13], distributed under LGPL
2.1 license. This packet allows to operate with all popular
video coders and decoders, including hardware. In terms of
playback, we are more interested in decoders, however, the
distribution server also should be equipped with coders, since
video compression after watermark embedding should be
performed by the server.

Hardware acceleration of decoding in most cases allows to
obtain image in GPU memory with pixels in various formats
(depending on the used decoder). Conversion of pixels into

Nikolai Valerievich Bradis et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3289 - 3296

3293

suitable format by means of OpenGL library [14] can be
carried out using sws_scale method of FFMPEG packet,
however, only when the obtained image is in random access
memory. In order to transfer the obtained image from GPU
memory to RAM, it is required to apply also
av_hwframe_transfer_data method of FFMPEG packet.
Scaling and conversion of pixel formats by sws_scale
methods are carried out at CPU. As a consequence, excessive
work is performed which wastes all advantages of hardware
decoding. Data transfer from GPU memory to RAM occupies
CPU resources and consumes much time, moreover,
displaying finally is performed by GPU, that is, upon
visualization, the data should be retransferred to GPU
memory. FFMPEG packet has no embedded mechanism to
bypass this problem, hence, at this stage (after image
decoding) it is required to apply methods and libraries
supplied by developers of hardware acceleration, namely:
CUDA for hardware acceleration on NVidia cards, Android
Media SDK for hardware acceleration in Android, DirectX
for hardware acceleration in AMD video cards in Windows.
In addition, pixel format can be converted using fragment
shaders. Fragment shader for image conversion from
YUV420P to RGBA is exemplified in Figure 3. Application
of shaders reduces processing time by using GPU cores.

Figure 3: Code of fragment shader intended for conversion

of image pixels from YUV420P to RGBA.
Image scaling for resolution of playback unit is not

required at this stage. It is possible to combine this process
with displaying and to consider the scale upon imposition of
texture with image onto the sphere.

Finally, at the stage of reading and decoding video packets,
it is possible to use only FFMPEG, and further data
processing and visualization will depend completely on
hardware acceleration.

Efficiency is also an issue at this stage, since the decryption
time of key packets can lead to delays upon visualization. The
thread of reading and decryption should transfer not a single
packet for unpacking but to fill packet buffer in advance with
the thread of decoding and visualization, thus smoothing rate
irregularities of packet preparation for decoding.

F. Visualization and positioning (tracking)
In order to visualize 360 and 360 3D video in VR glasses, it

is required to superimpose consecutively video frames onto
internal surface of sphere for each eye. Herewith, viewing
position should be in the center of this sphere to allow viewing
of a half of internal surface of sphere at any specific time.
Herewith, upon frame visualization of panoramic 360 video,
it is sufficient to project one and the same image onto both
spheres, and upon 3D visualization of 360 video, each frame
has its image. Processing in virtual reality is generally
supported by “over and under” format where images for each
eye are positioned one over the other. Such 360 3D frame is
exemplified in Figure 4.

The same video upon playback in player for VR glasses is
illustrated in Figure 5.

Figure 4: A sample of 360 3D video frame.

Figure 5: A sample of 360 3D video upon playback in

player for VR glasses.

The sphere itself is a set of vertex coordinates. The step
between the points determines the sphere resolution. The
higher is the step, the lower is the sphere resolution and vice
versa. The higher is the sphere resolution, the smoother is the
image imposition onto the sphere. For high quality, visual
perception without loss of efficiency, the step of 2° is
sufficient.

In order to visualize sphere at required angle, it is possible
to use vertex shader which allows to predict screen position
for each sphere vertex with accounting for transformation

Nikolai Valerievich Bradis et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3289 - 3296

3294

matrix determined by spatial position of VR glasses. The
texture based on image frame can be superimposed onto
sphere using fragment shader [15]. Shader software makes it
possible to increase visualization rate by performing the same
procedures for different vertices in parallel using cores of
GPU.

G. Tracking
Most VR headsets are equipped with proprietary developer

kits. For instance, Samsung Gear VR and Oculus Go are
supported by Oculus Mobile SDK. This developer kit includes
VrApi library containing all methods required for
positioning.

The issue of positioning for available in market VR glasses
is solved by presented API methods. For Total Vision headset
this software (SDK) is presently unavailable. In order to
interact with this headset, it was required to develop
positioning software and to arrange it in the form of library in
order to provide possibility of interaction between third party
developers and this headset.

The Total Vision headset is equipped with ICN-20602 chip
including three-axial gyroscope and accelerometers for three
axes. This chip is integrated into micro-USB unit based on
STM32 microcontroller. It is connected to PC using USB 3.0.

Positioning system is based on calibration of these
accelerometers and gyroscope as well as on Madgwick filter
[16] to filter noses and to adjust accelerometer readings by
gyroscope readings.

Upon playback, positioning can be performed by two
methods. The first one is that variations of VR headset
positions are applied only to next visualized image. That is,
after displaying image in glasses, its position is not varied any
more. This allows to decrease load on graphical adapter and
to increase total efficiency of the system, though, this method
can be applied only at the playback speed higher than 60 fps,
at lower speed tracking delays will be noticeable. The second
method is to vary position of the sphere with superimposed
texture (image) upon each variant of VR headset position. In
this variant, positioning is smooth and without delays,
however, load on graphical adapter increases. Both variants
of positioning can be applied together. It is possible to apply
the first variant at high playback speed, and the second
variant – at low speed.

H. Video playback with encrypted key packets
The algorithm of protected playback is nonlinear and

contains forks depending on video decoding method,
playback speed, applied VR headset, and other factors. The
algorithm should provide multithreading. Reading and
decryption, packet decoding and visualization should be
performed in separate threads so that to prepare subsequent
video packets during decoding of a next frame, and to decode
subsequent packets during visualization of next frame. In
addition, at low playback speed positioning should be carried
out in separate thread so that to avoid delays upon

visualization of motions of VR glasses. Playback algorithm of
protected 360 video is illustrated in Figure 6.

Figure 6: Algorithm of video playback with encrypted key

packets.

2. RESULTS

In this work video distribution system has been
implemented which allows to upload video to server which
protects it and serves to users after encryption with secret
keys.

On the client's side, the player has been developed
operating according to the algorithm illustrated in Figure 6.
Video decryption and decoding rates are summarized in
Tables 1 and 2, respectively. Final playback speed using
various GPU is summarized in Table 3.
Decryption rate of AES128 video packet has been analyzed
using 3840×3840 video compressed by H265(HEVC) codec,
and 3840×1920 video compressed by H264 codec. The tests
were performed using Intel Core i5-9600K CPU 3.70GHz.
The obtained decryption rates are summarized in Table 1.

Nikolai Valerievich Bradis et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3289 - 3296

3295

Table 1: Decryption rate of key packets

Parameter 3840×3840 HEVC
(FPS)

3840×1920
H264 (FPS)

Video packets 5700 3716
Key packets 11 149
Nonkey packets 5689 3567
Average key packet
size (KB)

656.348 632.196

Max key packet size
(KB)

2392.39 918.042

Average decrypt key
packet time (ms)

6.97784 6.72538

Max decrypt key
packet time (ms)

26.1215 10.4042

It follows from Table 1 that in the case of 3840×3840 video,

the worst decryption rate of key packet is 26 ms. Hence, it can
be concluded that reading and decryption of packets should be
carried out in separate flow with decryption by at least 10
frames in advance.
Various hardware decoders were compared using 3840×3840
video compressed by H265(HEVC) codec and 3840×1920
video compressed by H264 and H265(HEVC) codecs. The
comparisons of decoding rates are summarized in Table 2.

Table 2: Hardware decoding rate

Hardware
acceleratio
n method

Equipment

3840×38
40

HEVC
(FPS)

3840×19
20

HEVC
(FPS)

3840×192
0 H264
(FPS)

CUVID NVidia
GeForce GTX
1080Ti

136 295 219

NVidia
GeForce GTX
1060

125 265 187

DXVA2 Radeon RX
Vega 64

28 108 106

NVidia
GeForce GTX
1080Ti

70 184 173

 NVidia
GeForce GTX
1060

34 138 136

D3D11 Radeon RX
Vega 64

30 97 94

NVidia
GeForce GTX
1080Ti

72 189 168

NVidia
GeForce GTX
1060

34 126 124

QSV QSV Intel
Core I7 7700

66 192 180

QSV Intel
Core I5 7400

38 122 106

It follows from Table 2 that the highest video decoding rate
is achieved using hardware acceleration on NVidia GeForce.
Herewith, hardware decoding is not supported by older
NVidia GPU, it is available starting from GeForce GTX 1050.
The essence of hardware acceleration of decoding is not only
in increased unpacking rate but also in decreased power
consumption and deallocation of CPU resources for other
tasks (for instance, decryption of key frames).

The data in Table 2 characterize only the rate of reading
and decoding of video packets without their preliminary and
subsequent decryption. Generally, upon subsequent
conversion of pixel format of the obtained image into suitable
for visualization form and scaling of the obtained picture with
superimposition onto sphere, the processing rate will be
significantly lower than the data in Table 2.

In order to develop Windows version of the player,
dynamic detection of hardware acceleration was applied
depending on the installed equipment. Table 3 summarizes
the rates of complete cycle of video playback for NVIDIA
GPU using CUVID hardware decoding. GeForce GTX
1080Ti and GTX 1060 GPU were selected to estimate the
difference between the worst and the best video cards in this
product line.

Table 3: Hardware decoding rate

GPU
3840×3840

HEVC
(FPS)

3840×1920
HEVC
(FPS)

3840×1920
H264
(FPS)

NVidia GeForce
GTX 1080Ti

94 156 127

NVidia GeForce
GTX 1060

79 128 104

It follows from Table 3 that both GPU allow to playback

Ultra HD 4K 3D video at the speed higher than 60 FPS, and
Ultra HD 4K panoramic video – at the speed higher than 120
FPS, provided that HEVC codec is used.

3. DISCUSSION

The obtained results demonstrate that encryption decreases
rates insignificantly when only key packets are encrypted.
This work does not describe methods and algorithms of
watermark embedding since they should be discussed
independently. Finally, video encryption does not guarantee
its protection against copying by rightful users due to analog
hole, however, it allows to significantly complicate
unauthorized copying of video content. In addition, it is
recommended to test the rates on Android using Android
Media Codec for hardware video decoding.

5. CONCLUSION
By means of low-level implementation of proprietary

player for 360 and 360 3D video, it was possible to embed
encryption mechanisms of key packets and to obtain

Nikolai Valerievich Bradis et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3289 - 3296

3296

sufficiently high rate for commercial application of protection
system.

The developed mechanisms of video protection in
combination with watermark embedding system are
successfully used for VR simulators and 360 cinemas.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Science and
Higher Education of the Russian Federation (project no.
14.576.21.0102; Unique identifier RFMEFI57617X0102).

REFERENCES
1. Digital rights management. Wikipedia, the free

encyclopedia
https://en.wikipedia.org/wiki/Digital_rights_manageme
nt Accessed on 03.09.2019.

2. Real-Time Messaging Protocol. Wikipedia, the free
encyclopedia.
https://en.wikipedia.org/wiki/Real-Time_Messaging_Pr
otocol. Accessed on: 10.09.2019.

3. Dynamic Adaptive Streaming over HTTP. Wikipedia,
the free encyclopedia
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Strea
ming_over_HTTP Accessed on: 10.09.2019.

4. S. Haber, B. Horne, J. Pato, T. Sander & R.E. Tarjan. If
Piracy Is the Problem, Is DRM the Answer?. In:
Becker E., Buhse W., Günnewig D., Rump N. (eds)
Digital Rights Management. Lecture Notes in Computer
Science, vol 2770. Springer, Berlin, Heidelberg, 2003.
https://doi.org/10.1007/10941270_15

5. J.P. Rolland & H. Hua. Head-Mounted Display
Systems. Encyclopedia of Optical Engineering, 2005.
doi: 10.1081/E-EOE-120009801

6. Advanced Video Coding. Wikipedia, the free
encyclopedia.
https://en.wikipedia.org/wiki/Advanced_Video_Coding
Accessed on: 25.09.2019.

7. High Efficiency Video Coding. Wikipedia, the free
encyclopedia
https://en.wikipedia.org/wiki/High_Efficiency_Video_C
oding. Accessed on: 25.09.2019.

8. Oculus/developers. https://developer.oculus.com/
Accessed on: 01.10.2019.

9. J. Daor, J. Daemen & V. Rijmen. AES proposal:
rijndael, 1999.

10. OpenSSL Cryptography and SSL/TLS Toolkit
https://www.openssl.org/ Accessed on: 07.10.2019.

11. All products. Guardant.
https://www.guardant.ru/products/all/ Accessed on:
09.10.2019.

12. Libav Open source audio and video processing tools.
https://www.libav.org/ Accessed on: 09.10.2019.

13. FFmpeg. A complete, cross-platform solution to
record, convert and stream audio and video.
http://ffmpeg.org/ Accessed on: 09.10.2019.

14. OpenGL. The Industry's Foundation for High
Performance Graphics. https://www.opengl.org/
Accessed on: 11.10.2019.

15. Shader. Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Shader Accessed on:
11.10.2019.

16. O.H. Sebastian. Madgwick. An efficient orientation
filter for inertial and inertial/magnetic sensor arrays.
Report x-io and University of Bristol (UK), vol. 25,
113–118, 30.04.2010.

