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 
ABSTRACT 
 
In modern computer graphics architecture, the graphics 
processing unit (GPU) has a major role. Since GPU 
instructions and memory managements are hard to be directly 
controlled by application programmers, three-dimensional 
graphics application libraries, including OpenGL and 
DirectX, are widely used. In the Linux-family operating 
systems, they provide a set of kernel-level supporting 
modules. In this paper, we use those modules, such as the 
direct rendering manager (DRM) module, the kernel mode 
setting (KMS) module, and the graphics execution manager 
(GEM) module, to implement a fixed-function graphics 
pipeline. Our prototype system shows that those DRM 
modules can provide the full 3D graphics features without 3D 
graphics libraries and graphics window systems. Our detailed 
design and implementation schemes are presented. 
 
Key words : 3D graphics output, direct rendering manager, 
fixed-function graphics pipeline, kernel support  
 
 
1. INTRODUCTION * 
 
In these days, there are so many three-dimensional graphics 
application programs and user interfaces. Since the graphics 
output devices are widely available, they developed large 
amounts of graphics applications. Their areas covered various 
fields including computer animations, computer games, user 
experiences, human-computer interfaces, and so on [1]–[3]. 
 
Historically, we have many kinds of graphics libraries, 
including OpenGL [4]–[7], X window systems [8], 
OpenInventor [9], Display PostScript [10], DirectX [11], 
Cairo [12], Qt [13], and others. Nowadays, we use these 3D 
graphics libraries very widely for both graphics applications 
and non-graphics applications. 
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To produce desired two-dimensional (2D) and/or 
three-dimensional (3D) images on the screen, they 
necessarily need the graphics system, and the graphics API 
(application programming interface) libraries [14], [15]. In 
general, 3D graphics API libraries and their derived 3D 
graphics engines are so widely used for developing 3D 
graphics applications [16]–[18]. Currently, they use OpenGL 
[4], [5] or DirectX [11] for the underlying 3D graphics API 
for the graphics engines, and also 3D graphics applications. 
 
Since the graphics libraries developed in a step-wise manner, 
the current graphics architecture is a kind of library stacks, as 
shown in Figure 1. In the case of modern OpenGL library 
implementation, it works over the operating system kernels, 
X window system, and GLX extensions. Even the 
two-dimensional graphics output support with the X window 
system simultaneously work on the same system [6]–[8]. 
 

 
Figure 1: A typical graphics stack on Linux systems. 

 
In this paper, we start from analyzing graphics supports in the 
Linux kernel, and accelerate the 3D rendering with these 
features. In this case, we have no need to integrate the 
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accelerated 3D rendering features with graphics window 
systems and/or graphics acceleration extensions. We 
represent a prototype implementation of our fixed-function 
graphics pipeline, in the following sections. 
2. DESIGN STRATEGY 
 
The start point of our idea is that one of the heaviest overheads 
for the modern windowing systems is the graphical window 
handling [8], [19] – [22]. It includes the user interfaces and 
interactions, the event handling, and more additional 
technical aspects of the overall user interactions. In contrast, 
some computer graphics architectures adopt direct managing 
systems, which accesses the frame-buffer directly, as shown 
in Figure 2. 

 
 

Figure 2: Window systems and direct management of 
frame-buffers. 

 
 

2.1 Theoretical Background 
 
From some historical reasons and also some technical 
reasons, most of the modern 3D graphics library 
implementations, including OpenGL [4], [5] or DirectX [11], 
use the normalized device coordinate (NDC) system for its 
internal reference coordinate system. In this configuration, 
the NDC coordinates of (xd, yd, zd) are distributed in the 
interior of the 3D unit cube of [–1, +1]  [–1, +1]  [–1, +1], 
in its NDC system [1], [4], [21]. 
 
Assuming that we have an on-screen target viewport, the final 
device coordinate (xw, yw, zw) of that normalized device 
coordinate (xd, yd, zd) as follows: 
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where (ox, oy) is the center point of the viewport, and px and py 
are the width and the height of the viewport, respectively. 
Two additional programmer-specifiable values of n and f, 

which are applied to the depth value zd, are the near and the 
far depth value in the device coordinate system [6], [21]. 
 
With the device coordinates, we still have some technical 
issues on the rasterization of the graphics primitives. For 
more advanced applications including anti-aliasing and 
texture mapping, we precisely calculate the per-fragment 
coordinate of (xp, yp), where xp and yp varies from 0 to 1 in the 
x-direction and y-direction, respectively. The per-fragment 
coordinate value (xp, yp) are calculated as follows: 
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where sizex and sizey are the fragment size, horizontally and 
vertically, respectively. The parameters xf and yf are the 
integer coordinate values of the given fragment. The device 
coordinate value (xw, yw) is the unrounded window coordinate 
of the input vertex. 
 
For more precise calculations, including texture mapping and 
level-of-detail operations, they need to calculate the detail 
levels of graphics primitives. As an example, in the case of 
edges, the edge length s can be calculated as: 
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where the resolution r is specified in pixels, and f is the field 
of view. The vectors v1 and v2 are measured from the camera 
positon to the vertices of the given edge. After its calculation, 
we can choose the suitable level-of-detail factors, with respect 
to the edge length s [24]. 
 
2.2 Kernel-level Graphics Support 
 
For the Linux-family operating systems, kernel-level modules 
are developed to support modern graphics features, along to 
its development. Although they call those set of modules as 
device drivers, the modern 3D graphics drivers are 
complicated and large-size, in comparison with other device 
drivers. The core modules of direct rendering manager 
(DRM) [25], [26], kernel mode setting (KMS) [27], and 
graphics execution manager (GEM) [28] will be explained. 
 
Historically, the direct rendering manager (DRM) module 
was introduced to access the frame-buffers directly. With the 
legacy graphics architectures, this direct access capability is 
enough to support the simple graphics features, such as 2D 
graphics and graphics window handling. Later, they need to 
support 3D graphics pipeline, and finally, they found that 
those 3D graphics features need isolated processors, in 
addition to the central processing unit (CPU). 
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Thus, in modern computer graphics architecture, they 
introduce the new processing unit, named the 
graphics-processing unit (GPU). The modern GPU is actually 
a specialized parallel-processing unit, with independent 
graphics memory and the frame-buffer memory. The DRM 
module now manages the whole set of GPU, its graphics 
memory, and the whole frame-buffer [25]. 
 
In the Linux programming, the DRM is realized as an 
application program interface (API) [26]. The upper layer 
API’s, which typically support the high-level 3D graphics 
API functions, use this low-level API, to transfer the GPU 
instructions and graphics data to the GPU. Figure 3 shows the 
typical uses of the DRM in Linux systems, especially with the 
OpenGL graphics library. 

Kernel API

libdrm (API)

DRM
(direct rendering manager)

Graphics Card

Linux Kernel Space

Graphics Memory GPU

3D Graphics API

OpenGL (API)

application program

 

Figure 3: The DRM module in the Linux kernel. 
 
In these days, the widely used GPUs typically have a few 
mode setting command to allow the selection of their 
important internal features. Typical examples include the 
screen resolution changing, depth-bit configuration, 
stencil-bit configuration, screen refresh-rate changing, 
color-buffer configuration, and more technical settings. For a 
3D graphics applications, they will send these mode setting 
commands first, and then, typical 3D drawing commands, 
sequentially to the GPU. 
 
As already mentioned, the Linux and its derived systems 
provide their kernel features typically with a set of 
specific-purpose modules. Among them, the kernel mode 
setting module (or shortly, KMS) is designed to provide the 
GPU mode setting commands [19] – [24]. For 3D graphics 
application programs, they can use these KMS features to 
manage the GPU and screen configurations directly, or can 
use other 3D libraries and 3D rendering engines to indirectly 
use these features. 
 
 

From the GPU point of view, the graphics memory is one of 
the most important resources, and they should be controlled 
carefully. Even for a single GPU, it should support a set of 3D 
graphics applications simultaneously. It means that the GPU 
should control its own graphics memory against several 3D 
graphics applications. In modern graphics applications, the 
term of the graphics context is widely used to refer the current 
3D graphics settings, and the graphics memory handling 
information for a specific 3D graphics application [27].  
 
To support the graphics memory handling with respect to the 
graphics contexts of the 3D graphics applications, the Linux 
family operating systems also have the graphics execution 
manager module (shortly, GEM), in their kernel 
configurations. The GEM module also has the features to 
share the graphics memory areas between different 3D 
graphics programs. With the modern GPU features, the GEM 
module is emphasized to focus on the graphics context 
management, in addition to its original low-level graphics 
memory controls [28]. 
 
In modern 3D graphics applications, they consume more and 
more graphics memory, for their texture images, modeling 
features, and other graphics-related information. Those 
graphics data, including texture images and also 
photo-scanned images, should be delivered to the 
GPU-controlled graphics memory, from the hard disk or main 
memory area, for each start time of every graphics context. To 
improve the 3D graphics application performances, those 
graphics data has better to be persistently managed, even for 
the context switching, if possible. This persistent data 
handling will improve the performance of graphics 
applications. 
 
As other modern operating systems, the Linux-family 
operating systems also provide the plentiful 3D rendering 
features, to be used as the basic, and additionally, the 
advanced tools for graphics and image-processing related 
applications. Typical 2D and 3D graphics and 
image-processing applications process their data into the 
off-screen buffers (or back-buffers), and the final image will 
be mapped onto the screen (or front-buffers). As previous 
mentioned, the KMS module and GEM module provides all 
the managing operations and graphics data handling 
operations for these applications, in the case of Linux-family 
operating systems [28]. 
 
Based on these Linux kernel-level modules, we found the 
possibility that a 3D graphics application program can avoid 
the use of graphics window systems such as the X window 
system, and also avoid the 3D graphics application-level 
libraries, such as OpenGL. We have designed the overall 
layout for our 3D direct rendering system, based on the DRM 
approach [19]. In this paper, we also present the 
implementation result of our prototype system, in the 
following sections. 
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3. IMPLEMENTATON RESULTS  
 
Based on our intuitive idea, we implemented a prototype 
graphics rendering system. For simplicity, we focused on the 
rendering pipeline itself, rather than any programmable 
features. Therefore, we selected the OpenGL fixed function 
graphics pipelines, as shown in Figure 4. 
 

 
 

Figure 4: An example fixed-function graphics pipeline of the 
OpenGL family. 

 
Our system has the kernel of 3D graphics-transformations 
and rendering features. To derive modern GPU core 
instructions, we use the fixed GPU instruction sequences 
extracted from the existing implementations of OpenGL [4], 
[6]. 
 
Figures 5 and 6 shows the results of our DRM-based direct 3D 
graphics rendering system. As shown here, existing 3D 
graphics-output routines successfully works with our system. 
Animation sequences are also successfully working with our 
systems. Texture mapping and alpha blending also work well. 
 

 
 

Figure 5: An example output from our DRM-based 3D graphics 
system. 

 
 

Figure 6: Another example from our DRM-based 3D graphics 
system. 

4. CONCLUSION 
 
In these days, almost all 3D graphics applications use the 
commercial implementation of 3D graphics libraries and/or 
3D graphics engines. Due to historical reasons and other 
factors, those commercial 3D graphics implementations 
typically works on the full-scale graphics stacks, which 
includes the graphics window system and other managing 
features. 
 
In this paper, we represent a simplified 3D rendering system, 
which directly uses some Linux operating system kernel 
modules, including KMS and DRM modules. Since the Linux 
DRM module provides the low-level graphics features as the 
kernel services of the Linux operating system, it was difficult 
to get the full features of high-level graphics application 
requirements. As the first step, we focused on the simple and 
intuitive fixed-function graphics operations. Our prototype 
system finally provides the whole features of simplified fixed 
function 3D graphics rendering functions. 
 
We expect that our current implementation is a possible 
solution for time-critical big-size 3D data visualization 
applications, especially in the big-data visualization area. 
Extending this system toward standardized implementations, 
such as OpenGL ES 1.1 or OpenGL SC 1.1, may be our next 
steps. 
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