
 Nakhoon Baek, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1551 – 1555

1551


ABSTRACT

In modern computer graphics architecture, the graphics
processing unit (GPU) has a major role. Since GPU
instructions and memory managements are hard to be directly
controlled by application programmers, three-dimensional
graphics application libraries, including OpenGL and
DirectX, are widely used. In the Linux-family operating
systems, they provide a set of kernel-level supporting
modules. In this paper, we use those modules, such as the
direct rendering manager (DRM) module, the kernel mode
setting (KMS) module, and the graphics execution manager
(GEM) module, to implement a fixed-function graphics
pipeline. Our prototype system shows that those DRM
modules can provide the full 3D graphics features without 3D
graphics libraries and graphics window systems. Our detailed
design and implementation schemes are presented.

Key words : 3D graphics output, direct rendering manager,
fixed-function graphics pipeline, kernel support

1. INTRODUCTION *

In these days, there are so many three-dimensional graphics
application programs and user interfaces. Since the graphics
output devices are widely available, they developed large
amounts of graphics applications. Their areas covered various
fields including computer animations, computer games, user
experiences, human-computer interfaces, and so on [1]–[3].

Historically, we have many kinds of graphics libraries,
including OpenGL [4]–[7], X window systems [8],
OpenInventor [9], Display PostScript [10], DirectX [11],
Cairo [12], Qt [13], and others. Nowadays, we use these 3D
graphics libraries very widely for both graphics applications
and non-graphics applications.

* This work has supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (Grand No.NRF-2019R1I1A3A01061310).

To produce desired two-dimensional (2D) and/or
three-dimensional (3D) images on the screen, they
necessarily need the graphics system, and the graphics API
(application programming interface) libraries [14], [15]. In
general, 3D graphics API libraries and their derived 3D
graphics engines are so widely used for developing 3D
graphics applications [16]–[18]. Currently, they use OpenGL
[4], [5] or DirectX [11] for the underlying 3D graphics API
for the graphics engines, and also 3D graphics applications.

Since the graphics libraries developed in a step-wise manner,
the current graphics architecture is a kind of library stacks, as
shown in Figure 1. In the case of modern OpenGL library
implementation, it works over the operating system kernels,
X window system, and GLX extensions. Even the
two-dimensional graphics output support with the X window
system simultaneously work on the same system [6]–[8].

Figure 1: A typical graphics stack on Linux systems.

In this paper, we start from analyzing graphics supports in the
Linux kernel, and accelerate the 3D rendering with these
features. In this case, we have no need to integrate the

A Simplified Implementation of the Fixed-Function Graphics Pipeline:
DRM Approach

Nakhoon Baek
School of Computer Science and Engineering, Kyungpook National University,

Republic of Korea, oceancru@gmail.com

 ISSN 2278-3091
Volume 9 No.2, March -April 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse98922020.pdf

https://doi.org/10.30534/ijatcse/2020/98922020

 Nakhoon Baek, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1551 – 1555

1552

accelerated 3D rendering features with graphics window
systems and/or graphics acceleration extensions. We
represent a prototype implementation of our fixed-function
graphics pipeline, in the following sections.
2. DESIGN STRATEGY

The start point of our idea is that one of the heaviest overheads
for the modern windowing systems is the graphical window
handling [8], [19] – [22]. It includes the user interfaces and
interactions, the event handling, and more additional
technical aspects of the overall user interactions. In contrast,
some computer graphics architectures adopt direct managing
systems, which accesses the frame-buffer directly, as shown
in Figure 2.

Figure 2: Window systems and direct management of
frame-buffers.

2.1 Theoretical Background

From some historical reasons and also some technical
reasons, most of the modern 3D graphics library
implementations, including OpenGL [4], [5] or DirectX [11],
use the normalized device coordinate (NDC) system for its
internal reference coordinate system. In this configuration,
the NDC coordinates of (xd, yd, zd) are distributed in the
interior of the 3D unit cube of [–1, +1]  [–1, +1]  [–1, +1],
in its NDC system [1], [4], [21].

Assuming that we have an on-screen target viewport, the final
device coordinate (xw, yw, zw) of that normalized device
coordinate (xd, yd, zd) as follows:

2

2

2 2

x
d x

w
y

w d y

w

d

p
x o

x
p

y y o
z f n f nz

  
  
      

        
  ,

(1)

where (ox, oy) is the center point of the viewport, and px and py
are the width and the height of the viewport, respectively.
Two additional programmer-specifiable values of n and f,

which are applied to the depth value zd, are the near and the
far depth value in the device coordinate system [6], [21].

With the device coordinates, we still have some technical
issues on the rasterization of the graphics primitives. For
more advanced applications including anti-aliasing and
texture mapping, we precisely calculate the per-fragment
coordinate of (xp, yp), where xp and yp varies from 0 to 1 in the
x-direction and y-direction, respectively. The per-fragment
coordinate value (xp, yp) are calculated as follows:

1
1 2
2 size

1
1 2
2 size

f w

p x

p
f w

y

x x

x

y y y

   
 

       
    

  
  ,

(2)

where sizex and sizey are the fragment size, horizontally and
vertically, respectively. The parameters xf and yf are the
integer coordinate values of the given fragment. The device
coordinate value (xw, yw) is the unrounded window coordinate
of the input vertex.

For more precise calculations, including texture mapping and
level-of-detail operations, they need to calculate the detail
levels of graphics primitives. As an example, in the case of
edges, the edge length s can be calculated as:

1 1 2

1 2
cosrs

f
  

   
 

v v
v v

,
(3)

where the resolution r is specified in pixels, and f is the field
of view. The vectors v1 and v2 are measured from the camera
positon to the vertices of the given edge. After its calculation,
we can choose the suitable level-of-detail factors, with respect
to the edge length s [24].

2.2 Kernel-level Graphics Support

For the Linux-family operating systems, kernel-level modules
are developed to support modern graphics features, along to
its development. Although they call those set of modules as
device drivers, the modern 3D graphics drivers are
complicated and large-size, in comparison with other device
drivers. The core modules of direct rendering manager
(DRM) [25], [26], kernel mode setting (KMS) [27], and
graphics execution manager (GEM) [28] will be explained.

Historically, the direct rendering manager (DRM) module
was introduced to access the frame-buffers directly. With the
legacy graphics architectures, this direct access capability is
enough to support the simple graphics features, such as 2D
graphics and graphics window handling. Later, they need to
support 3D graphics pipeline, and finally, they found that
those 3D graphics features need isolated processors, in
addition to the central processing unit (CPU).

 Nakhoon Baek, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1551 – 1555

1553

Thus, in modern computer graphics architecture, they
introduce the new processing unit, named the
graphics-processing unit (GPU). The modern GPU is actually
a specialized parallel-processing unit, with independent
graphics memory and the frame-buffer memory. The DRM
module now manages the whole set of GPU, its graphics
memory, and the whole frame-buffer [25].

In the Linux programming, the DRM is realized as an
application program interface (API) [26]. The upper layer
API’s, which typically support the high-level 3D graphics
API functions, use this low-level API, to transfer the GPU
instructions and graphics data to the GPU. Figure 3 shows the
typical uses of the DRM in Linux systems, especially with the
OpenGL graphics library.

Kernel API

libdrm (API)

DRM
(direct rendering manager)

Graphics Card

Linux Kernel Space

Graphics Memory GPU

3D Graphics API

OpenGL (API)

application program

Figure 3: The DRM module in the Linux kernel.

In these days, the widely used GPUs typically have a few
mode setting command to allow the selection of their
important internal features. Typical examples include the
screen resolution changing, depth-bit configuration,
stencil-bit configuration, screen refresh-rate changing,
color-buffer configuration, and more technical settings. For a
3D graphics applications, they will send these mode setting
commands first, and then, typical 3D drawing commands,
sequentially to the GPU.

As already mentioned, the Linux and its derived systems
provide their kernel features typically with a set of
specific-purpose modules. Among them, the kernel mode
setting module (or shortly, KMS) is designed to provide the
GPU mode setting commands [19] – [24]. For 3D graphics
application programs, they can use these KMS features to
manage the GPU and screen configurations directly, or can
use other 3D libraries and 3D rendering engines to indirectly
use these features.

From the GPU point of view, the graphics memory is one of
the most important resources, and they should be controlled
carefully. Even for a single GPU, it should support a set of 3D
graphics applications simultaneously. It means that the GPU
should control its own graphics memory against several 3D
graphics applications. In modern graphics applications, the
term of the graphics context is widely used to refer the current
3D graphics settings, and the graphics memory handling
information for a specific 3D graphics application [27].

To support the graphics memory handling with respect to the
graphics contexts of the 3D graphics applications, the Linux
family operating systems also have the graphics execution
manager module (shortly, GEM), in their kernel
configurations. The GEM module also has the features to
share the graphics memory areas between different 3D
graphics programs. With the modern GPU features, the GEM
module is emphasized to focus on the graphics context
management, in addition to its original low-level graphics
memory controls [28].

In modern 3D graphics applications, they consume more and
more graphics memory, for their texture images, modeling
features, and other graphics-related information. Those
graphics data, including texture images and also
photo-scanned images, should be delivered to the
GPU-controlled graphics memory, from the hard disk or main
memory area, for each start time of every graphics context. To
improve the 3D graphics application performances, those
graphics data has better to be persistently managed, even for
the context switching, if possible. This persistent data
handling will improve the performance of graphics
applications.

As other modern operating systems, the Linux-family
operating systems also provide the plentiful 3D rendering
features, to be used as the basic, and additionally, the
advanced tools for graphics and image-processing related
applications. Typical 2D and 3D graphics and
image-processing applications process their data into the
off-screen buffers (or back-buffers), and the final image will
be mapped onto the screen (or front-buffers). As previous
mentioned, the KMS module and GEM module provides all
the managing operations and graphics data handling
operations for these applications, in the case of Linux-family
operating systems [28].

Based on these Linux kernel-level modules, we found the
possibility that a 3D graphics application program can avoid
the use of graphics window systems such as the X window
system, and also avoid the 3D graphics application-level
libraries, such as OpenGL. We have designed the overall
layout for our 3D direct rendering system, based on the DRM
approach [19]. In this paper, we also present the
implementation result of our prototype system, in the
following sections.

 Nakhoon Baek, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1551 – 1555

1554

3. IMPLEMENTATON RESULTS

Based on our intuitive idea, we implemented a prototype
graphics rendering system. For simplicity, we focused on the
rendering pipeline itself, rather than any programmable
features. Therefore, we selected the OpenGL fixed function
graphics pipelines, as shown in Figure 4.

Figure 4: An example fixed-function graphics pipeline of the
OpenGL family.

Our system has the kernel of 3D graphics-transformations
and rendering features. To derive modern GPU core
instructions, we use the fixed GPU instruction sequences
extracted from the existing implementations of OpenGL [4],
[6].

Figures 5 and 6 shows the results of our DRM-based direct 3D
graphics rendering system. As shown here, existing 3D
graphics-output routines successfully works with our system.
Animation sequences are also successfully working with our
systems. Texture mapping and alpha blending also work well.

Figure 5: An example output from our DRM-based 3D graphics
system.

Figure 6: Another example from our DRM-based 3D graphics
system.

4. CONCLUSION

In these days, almost all 3D graphics applications use the
commercial implementation of 3D graphics libraries and/or
3D graphics engines. Due to historical reasons and other
factors, those commercial 3D graphics implementations
typically works on the full-scale graphics stacks, which
includes the graphics window system and other managing
features.

In this paper, we represent a simplified 3D rendering system,
which directly uses some Linux operating system kernel
modules, including KMS and DRM modules. Since the Linux
DRM module provides the low-level graphics features as the
kernel services of the Linux operating system, it was difficult
to get the full features of high-level graphics application
requirements. As the first step, we focused on the simple and
intuitive fixed-function graphics operations. Our prototype
system finally provides the whole features of simplified fixed
function 3D graphics rendering functions.

We expect that our current implementation is a possible
solution for time-critical big-size 3D data visualization
applications, especially in the big-data visualization area.
Extending this system toward standardized implementations,
such as OpenGL ES 1.1 or OpenGL SC 1.1, may be our next
steps.

REFERENCES
1. J. F. Hughes, et al., Computer Graphics: Principles and

Practice, 3rd Edition, Addison-Wesley, 2013.
2. N. Baek and K. Ryu, Emulating OpenGL ES 2.0 over

the desktop OpenGL, Cluster Computing, Vol. 18, pp.
165–175, 2015.
https://doi.org/10.1007/s10586-014-0351-6

3. N. Baek, An emulation scheme for OpenGL SC 2.0
over OpenGL, The Journal of Supercomputing,
(online-first), 2020.

 Nakhoon Baek, International Journal of Advanced Trends in Computer Science and Engineering, 9(2), March - April 2020, 1551 – 1555

1555

4. M. Segal and K. Akeley, The OpenGL Graphics System:
A Specification, Version 4.5 (Core Profile), Khronos
Group, 2016.

5. J. Kessenich, The OpenGL Shading Language,
Language Version: 4.50, Khronos Group, 2016.

6. A. Munshi and J. Leech, OpenGL ES Common Profile
Specification, Version 2.0.25 (Full Specification), 2010.

7. R. J. Simpson, The OpenGL ES Shading Language,
Language Version: 1.00, 2013.

8. D. Young, The X Window System: Programming and
Applications with Xt, OSF/Motif, 2nd Edition, Prentice
Hall, 1994.

9. J. Wernecke, The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor,
Addison-Wesley, 1994.

10. Adobe Systems, Programming the Display Postscript
System With X, Addison-Wesley, 1993.

11. F. Luna, Introduction to 3D Game Programming with
DirectX 12, Mercury Learning & Information, 2016.

12. cario website, http://www.cairographics.org/, 2020.
13. G. Lazar, Mastering Qt 5, Packt Publishing, 2017.
14. A. Malizia, Mobile 3D Graphics, Springer-Verlag New

York, 2006.
15. K. Pulli, et al., Mobile 3D Graphics: with OpenGL ES

and M3G, Morgan Kaufmann Publishers Inc., 2007.
16. M. Kumar, S. Inthiyaz, J. Dhamini, A. Sanjay and U.

Srinivas, Delay Estimation of Different Approximate
Adders using Mentor Graphics, International Journal
of Advanced Trends in Computer Science and
Engineering, Vol. 8, pp. 3584–3587, 2019.
https://doi.org/10.30534/ijatcse/2019/141862019

17. A. Africa, C. Alcantara, M. Lagula, A. Latina, Jr., and C.
Te, Mobile Phone Graphical User Interface (GUI) for
Appliance Remote Control: An SMS-based
Electronic Appliance Monitoring and Control
System, International Journal of Advanced Trends in
Computer Science and Engineering, Vol. 8, pp.
487–494, 2019.
https://doi.org/10.30534/ijatcse/2019/23832019

18. N. Hussin and W. Li, A modified Particle Swarm
Optimization algorithm linking dynamic
neighborhood topology to parallel computation,
International Journal of Advanced Trends in Computer
Science and Engineering, Vol. 8, pp. 112–118, 2019.
https://doi.org/10.30534/ijatcse/2019/03822019

19. N. Baek, A Fixed-Function Rendering Pipeline with
Direct Rendering Manager Support, in Proc. ICITCS
2017, pp. 106-109, 2017.

20. N. Baek and K. Kim, Design and Implementation of
OpenGL SC 2.0 Rendering Pipeline, Cluster
Computing, Vol. 22, sup.1, pp. 931–936, 2019.
https://doi.org/10.1007/s10586-017-1111-1

21. K. Kim and N. Baek, Providing Profiling Information
for OpenGL ES Application Programs, Cluster
Computing, Vol. 22, sup.1, pp. 937–941, 2019.

22. N. Baek and K. Kim, Prototype Implementation of the
OpenGL ES 2.0 Shading Language Off-line

Compiler, Cluster Computing, Vol. 22, sup.1, pp.
943–948, 2019.

23. H. Guo, Modern Mathematics and Applications in
Computer Graphics and Vision, World Scientific Pub,
2014.
https://doi.org/10.1142/8703

24. J. Mueller et al., Shading Atlas Streaming, in Proc.
ACM Siggraph Asia 2018, 2018.

25. R. E. Faith, The Direct Rendering Manager: Kernel
Support for the Direct Rendering Infrastructure,
http://dri.sourceforge.net/doc/drm_low_level.html,
2020.

26. J. Fonseca, Direct Rendering Infrastructure:
Architecture,
https://paginas.fe.up.pt/~mei04010/dri-architecture.pdf,
2005.

27. kernel mode setting,
https://wiki.archlinux.org/index.php/kernel mode
setting, 2018.

28. K. Packard and E. Anholt, The Graphics Execution
Manager: Part of the Direct Rendering Manager,
https://lwn.net/Articles/283798/, 2008.

