
Ali Jaafar Meera Al-arkawazi1 et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2192 – 2198

2192


ABSTRACT

The primary purpose is to create a hybrid recommendation
system approach to improve the performance of such systems.
This recommendation system would typically be used to
assign or suggest a small number of developers suitable for
troubleshooting a bug report. For example, managing
collections inside bug repositories is software developers' task
to fix any bugs that have been identified. Unfortunately, bugs
are often created, so the number of developers needed is high,
so it's hard to decide how many to assign to specific tasks.

This better aims better to understand the outcomes of the
latest scientific methods. We also addressed developer
prioritization and how it can be used to determine the
assignment of a problem to a developer. We have studied two
aspects: first, selecting bug reports using hybrid machine
learning methods, modeling prioritization in the bug
repository, and supporting developer assignment tasks with
our model. Second, we modeled the relevant objectives
suggested by the developers' backgrounds based on proven
knowledge and experience. The study focuses on two topers'
experience with fixing bugs and developer rankings in the
App Store. We've tried to take better assignments using
developer prioritization in bug repositories, e.g., bug triage,
severity identification, and re-opened bug prediction. We
examine the output of the model in a representative sample of
bug repositories. The results show that the prioritization of
developers' prioritization triage worker and allow the
program to solve the bugs more effectively in support of the
software support has been clarified. The introduction article,
section 2 on the literature and context, section 3 on the work
contribution that will be made, section 4 on the methodology
analysis and the expected outcomes will be explained, section
5 on the conclusion, and finally, on the potential aspects of
this work.

Key words: Artificial neural networks; bug reports;
developer prioritization; recommendation systems genetic
algorithm; hybrid Intelligent optimization; naive Bayes;
open-source repositories; random trees; simple logistic.

1. INTRODUCTION

In software development cycles, open-source bug reports are
used in the software development system as many as 60
percent of all bugs. The '10x Rule' – outlier bugs are often
much more complicated for locating and repair than other
bugs. Still, some bugs can't be detected or patched at all – or at
least not with the knowledge we have about recognizing and
fixing bugs. Moreover, the number of software bugs has
significantly increased. Additionally, more than 180 bugs
were identified in Eclipse's bug tracking system in the
development period.

Moreover, Debian created nearly 140 outstanding bug reports
[25]. Bug reporting tools help developers identify bugs and
work to fix them. In addition, for bug reports to be assigned as
correctly as possible is a challenge for the software
development industry.

Open-source project developers also use an open bug
repository for all bugs. The error report must be delegated to
team members who are taking responsibility for fixing the
bug. When a new report comes in, there's a small group of
developers who are expected to fix the bug. Therefore, this
will help bug triage staff make decisions about how to
prioritize fixing the bug study. Bug repositories are a form of
issue tracking system that includes a database of any
hardware, software, and programming issues. The
open-source bug repositories, as opposed to the closed-source
commercial ones, they are open to all for free access. These
repositories play an important role in the collaboration
between programmers and the project that enables it to work.
We used datasets from the same open sourcing project as
Eclipse, and we will apply a hybrid classifier recommendation
engine with optimization using several machine learning
algorithms such as J48, Neural Networks, and genetic
algorithms. Some Scholars employed various Support Vector
Machines (SVM) and tried using unsupervised learning
methods. Besides, they used details from Firefox as an
open-source project.

Hybrid Optimization of Multiple Intelligent Recommendation

Engines for Software Development Cycles
Ali Jaafar Meera Al-arkawazi1, Abdullahi Abdu Ibrahim2

1Department of Computer and Electronics Engineering, Altinbaş University, Istanbul, Turkey,
ali.alarkawazi@ogr.altinbas.edu.tr

2 Department of Computer and Electronics Engineering, Altinbaş University, Istanbul, Turkey,
abdullahi.ibrahim@altinbas.edu.tr

ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse981032021.pdf

https://doi.org/10.30534/ijatcse/2021/991032021

Ali Jaafar Meera Al-arkawazi1 et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2192 – 2198

2193

2. BACKGROUND
In this paragraph, we briefly discuss various strategies for
fixing bugs suggested by multiple scholars. Numerous
approaches have been suggested for discovering the best bug
framework that recommends the most bug-fixing apps. Xuan
addressed a social network approach to prioritization of bug
reports in work on the Eclipse and Mozilla bug repositories.
Shokripour et al. used a time-dependent bug detection
algorithm. We looked at time metadata for each word in the
database. The syntactic variation of words in documents is
observed using the statistical technique TF-IDF. Using an
improved Linear Discriminant Analysis model, Xia et al.
classify bugs automatically. They defined the bug reports that
would be acceptable based on the bug problem distribution
and the similarities between the bug fix creator and the bug
fix distribution. Our proposed algorithm would use developer
demographics to suggest a community of potential developers
who are involved in bug fixes and also have technical
expertise. We studied the two different ways that these studies
were performed (i.e., social network metrics and machine
learning algorithms). Based on the parameters, we then
describe the ways (number of programs, consider variables,
and methods) for summarizing the comparisons. A summary
of the current literature on problem triaging. Bug repositories
are a form of issue tracking system that includes a database of
any hardware, software, and programming issues. The
open-source bug repositories, as opposed to the closed-source
commercial ones, are open to all for free access. These
repositories are essential to software development as they
enable programmers to share progress during development.

3. DATA ANALYSIS
The dataset was collected from the error tracker on
eclipse.org. The kit consists of the 7700 data points of the
result of the Eclipse platform bug measures dataset. In the
first column of the table, the bug ID is mentioned. Last, the
given columns contain the 48 team labels from 1 to 7. Each
team of the dataset represents a group of developers according
to their companies that assigned before to fix bugs in certain
components of the software project. For these features, we
tested several machine learning algorithms by using Matlab
and Weka to classify features according to team labels and
rely on features. It has been achieved based on the 10-fold
cross-validation. The dataset is multidimensional. The next
graph displays the number of developers involved, along with
the number of bugs. Each group of developers is defined by an
organization and the number of bugs fixed by each team.

Figure 1: Instances of bugs in each class

The teams of the dataset represent the different companies
that are developing the app, as well as their total number.
The Eclipse bug dataset can be found at
https://github.com/logpai/bugrepo/tree/master/EclipsePlatfor
m. The Features of the Eclipse dataset are:
bugID; component; assigneeEmail;os; platform; milestone;
nrKeywords; nrDependentBugs;
peopleCC;openedhoursOpenedBeforeNextRelease;lastModif
ied;priority;severity;resolution;firstFix;lastFix;hoursLastFix
BeforeNextRelease;hoursLastFixAfterPreviousRelease;status
;firstActivity;nrActivities;lastResolution;nrComments;hours
ToLastFix;hoursToLastResolution;monthOpened;yearOpene
d;monthYearOpened;monthYearLastFixed

These features represent the details and contents of each bug
report. Below is a sample of a bug report file.

Figure 2: Eclipse Bug Report Sample

4. OPTIMIZATION

The data set is used to train classifiers that can result in wrong
classifications and may also take longer to train. The
explanatory and clarifying features are redundant and
contradictory and do not contribute to the classification. To
boost classification accuracy, redundant and inconsistent
features must be removed [1]. Use feature selection methods
to classify combinations of features that maximize the amount
of information that is collected. We omitted the final twenty
features with the lowest correlation that could unduly
influence our data set performance. Figure 2 displays the
effects of the different features' correlations. These algorithms
are constructed using natural selection dynamics and natural
genetic mechanics. Genetic algorithms are used to solve
string structures like biological structures, which develop in
time by survival filtering using a randomized yet coordinated
exchange of information. Thus, a new set of strings is created
in each generation, with only the fittest individuals passing on
from generation to generation. The Genetic Algorithm's
fundamental characteristics are:

Ali Jaafar Meera Al-arkawazi1 et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2192 – 2198

2194

• The genetic algorithm operates with parameter set coding,
not parameters themselves.
• The genetic algorithm begins looking from a point
population, not a single point.
• The genetic algorithm uses payoff, not derivatives.
• Genetic algorithms use probabilistic, not deterministic,
transformation laws.

A genetic algorithm is a type of stochastic algorithm that
looks at probabilities. By applying a random search strategy to
a step-by-step superstructure model, the search mechanism is
determined. The optimum global solution can be reached at a
chance of x% certainty. The search process is triggered by the
selection of initial stochastic solutions called 'population.'
These are called 'chromosomes.' 'Chromosomes' are made up
of 'genes.' 'Gene' stands for the optimal variables in the heat
exchanger network, such as the mass flow of cold streams and
hot streams. For us, we used the GE algorithm to reduce the
features used for classification by deleting those that don't
have an impact on the result.

Figure 3: Attribute Correlation ranker

5. METHODOLOGY

Many machine learning algorithms, such as Naive Bayes,
Decision Trees, and Support Vector Machines, will be used
for implementing the recommendation method, along with
some unsupervised machine learning algorithms, such as
Expectation Maximization. First, we explored various
machine learning algorithms such as J48, Random Trees, and
artificial neural networks as recommendation systems. Then,
feature selection algorithms with genetic algorithms have
helped decide the best features and train the model. We have
tried a bi-direction selection algorithm to choose the best
features and applied the Naive Bayes algorithm [2]; we have
utilized the machine learning algorithms for classification of
the data set by using Matlab [3] and Weka [4].

Figure 4: Methodology flowchart

• J48 with optimization

The functions used to classify the dataset in J48 for the 7

classes [2]. The J48 configuration is as follows:

Input/Data
Acquisition

Engine

Team relations

Output/Best Team

Output/Best Team

Ali Jaafar Meera Al-arkawazi1 et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2192 – 2198

2195

• Random Trees with optimization

The new instance of something is gathered from all the trees
that are grown in the forest. Each node generates a
classification of new instances, which are reported as votes.
Using majority vote, all the trees' votes are combined, and the
class that receives the most votes is declared as the new case.
As suggested by Breiman [4], in Random Forests, the
majority voting mechanism acts as a voting mechanism for
classification. Experiments are done related to how people
vote.

The parameters that we will utilize of the Random Forest are:
• maxDepth = 0; The maximum depth of the trees, 0 for
unlimited.
• numFeatures = 0; The number of attributes to be used in
random selection; If < 1 (the default) will use logM+1, where
M is the number of inputs. I tried different numbers of
features like 10 or 20, but that did not have a real effect on
accuracy results.
• numTrees = 150; The number of trees to be generated.

The random forest with thirty-five trees, each built using five
features with a coefficient of variation of 0.3347. After
creating the classifiers for each method, for each (Xi,Yi) in
the original training set "T", pick all "Tk" which does not
include "Tk" (Xi,Yi). It is a subset of a dataset in which no
original record is present. These are the out-of-bag cases.
There are N such subsets for the data described in "T". OOB
classifier is the aggregation of votes only over the popular
terms "Tk". It does not include any part of the input (Xi,Yi).
The out-of-bag error rate of the classifier on the training set,
compared to the known error of the classifier on the training
set.
The analysis of error estimation for bagged classifiers shows
that the out-of-bag calculation is as reliable as using a test
sample of the same size as the training set. Therefore, using
the OOB error calculation eliminates the need for a separate
test cycle.

• Simple Logistic with optimization

The logistic analysis is the sufficient regression analysis for

an outcome that is binary (binary). The logistic regression
model is a statistical analysis. Logistic regression is a
statistical method that offers insight into the relationship
between one dependent variable and one or more independent
variables.

• Artificial Neural Networks with optimization

This approach was influenced by how brain cells interact and
how brains function. This method was designed to learn how
to perform various tasks by considering only samples of

training data. In image recognition, the method learns to
recognize images that have been identified as "keyboard" or
"not keyboard" and is used to identify keyboards in other
images. It does not require any prior knowledge or skills as it
automatically produces and distinguishes characteristics from
the samples entered.

The Neural Networks are built off the biological brain in the
way that neurons are the connecting part. Like the neurons in
a biological brain, each connected node can transmit a signal
to other neurons. By way of similar (artificial) neurons, a
signal is transmitted between neurons or nodes connected to
them.

An implementation for neural networks uses real numbers to
represent the signal and uses functions to represent the output
of each node. The links, called edges, are called nodes. Nodes
and edges are given weight. Weight adjustment during
learning. Weight affects the strength of a connection, but the
strength of that connection is dependent on how much weight
a node can carry. Normally, a Node has a number of layers.
Each layer contains many different nodes which perform
operations on various inputs. Signals convoy from the first
layer, which is known as the input layer, to the last layer,
which is known as the output layer after visiting the
in-between layers several times depending on the threshold
and the precision of obtaining the best results for the training
model. We also examined the model of neural networks as a
training model and the hybrid method of decision tree and
naïve Bayes in the study of the best results for the assignment
of bug reports of open-source systems to the suitable
developer.

6. METHODOLOGY

We computed the required time for each programmer in the
training and testing sets and determine the demand of each
programmer in bug's class by utilizing the following:

• Determine the time required for each programmer in the
group.
• Find the differences in time.
• Arrange the programmers: the faster programmer have the
highest rank.

7. FINDINGS

We achieved precision rates higher than 50 percent, and we
assumed that the precision rates they registered are adequate
to enable the bug triager to determine which developers are
good enough to be assigned to a particular bug report [3]. We
have used 10-fold cross-validation and attribute correlation to
apply features and interpret data. In developing our bug
measures, we utilized Naive Bayes, J48, Simplelogstic,

Ali Jaafar Meera Al-arkawazi1 et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2192 – 2198

2196

random tree, and artificial neural networks. By using an
Intrinsic Network, we've obtained the best outcomes.

We also found that there are features not appropriate for the
classification and made the results even worse, and others
gave a higher rate to the classification accuracy. Therefore,
we have optimized for accuracy by taking the best thirty
features which have high attribute correlation values. Table 1
displays the model output of various machine learning
algorithms like Naïve Bayes, random trees, Simple Logistics,
and Artificial Neural Networks with a Learning rate: 0.2,
momentum: 0.5, batch size: 100, and 500 iterations.

Regarding the number of trees in the random forest, the
results obtained suggest that a more significant number of
trees in a forest just raises its computational cost and has no
meaningful output advantage, which is what happened in the
dataset. When we utilized more than 150 trees. We tried 400
and 600 trees, but no significant changes are observed. We
have tried to find a way to boost the classification accuracy
and the efficiency of the algorithms, which is why we used
optimization. The modification of class labels in the
Regarding the number of trees in the random forest, the
results obtained suggest that a more significant number of
trees in a forest just raises its computational cost and has no
meaningful output advantage, which is what happened in the
dataset. When we utilized more than 150 trees. We tried 400
and 600 trees, but no significant changes are observed. We
have tried to find a way to boost the classification accuracy
and the efficiency of the algorithms, which is why we used
optimization. The modification of class labels in the
clustering algorithm created better outcomes. Meanwhile, the
demand of each programmer in the same class is determined
by the utilization of the last hours' features, and the results are
shown in Table 3. Table 1 shows the effects of optimization
and hybrid use of Naïve Bayes algorithm and ANN together
in the training set and the utilization of J48 with Simple
logistic (50 percent -50 percent) in the training set, and we
can declare it has shown better results than the usage of each
one alone approximately 7.42 percent improved results in
optimization, 8.21 percent for hybrid optimization
performance.

Table 1: Accuracy findings

Algorithm Classification
accuracy (%)

J48 Trees 61.24
Random Trees 51.39
SimpleLogistic 61.27
Naïve Bayes 49.08
Artificial Neural Networks 63.12
J48 Trees with Optimization 65.59
Random Trees with Optimization 55.21
SimpleLogistic with Optimization 65.82
Naïve Bayes with Optimization 52.72
Artificial Neural Networks with Optimization 67.81
Hybrid O-J48 with-SimpleLogistic 66.59
Hybrid O-ANN with O-J48 67.59
Hybrid O-Naïve Bayes with O-ANN 60.98
Hybrid O-ANN with Random Trees 62.24

8. CLUSTERING FINDINGS

The system efficiency can be enhanced by modifying the
programmer's classes or sets using a K-means algorithm with
K=1000. We will have seven clusters (classes) with the closest
class for each programmer, the programmer with the closest
mean value will belong to that class. In table 2, the examples
of programmers and the clusters they belong to are shown.

Table 2: Instances in each new cluster

Cluster Instances
1 1572
2 1223
3 1180
4 1089
5 949
6 902
7 855

Table 3: Accuracy findings with clustering
Algorithm Classification

accuracy (%)
J48 Trees 67.45
Random Trees 58.81
SimpleLogistic 67.21
Naïve Bayes 56.72
Artificial Neural Networks 71.06
J48 Trees with Optimization 72.27
Random Trees with Optimization 63.17
SimpleLogistic with Optimization 72.19
Naïve Bayes with Optimization 60.93
Artificial Neural Networks with Optimization 75.87
Hybrid O-J48 withO-SimpleLogistic 74.77
Hybrid O-ANN with O-J48 74.97
Hybrid O-Naïve Bayes with O-ANN 68.51
Hybrid O-ANN with Random Trees 62.24

After applying the new classes, we have utilized the same
algorithms with 10-fold cross-validation, and we have made
better results (approx. 12.1% improvement).

9. CONLUSION

The proposed framework methodology would assist the bug
triage programmers in administering and selecting a
functioning utility to fix a particular form of bug reports using
the open-source bugs repository to assign bug reports. We
used machine learning statistical approaches such as Naïve
Bayes, J48, random forests, and Simple logistic.

For the feature collection, we have used information benefit
values to decide which features make decisions, and we have
excluded the 20 least insightful ones. Then, based on the most
important 30 features, we will use one function for each of the
classes.

Results obtained show that we have chosen to identify bug
reports using algorithms such as random forest and neural

Ali Jaafar Meera Al-arkawazi1 et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2192 – 2198

2197

networks. To support my conclusion, several research papers
seem to indicate [7]. It is more accurate than both
conventional decision trees and helps vector machines for
most classifications. Two advantages that should inspire us to
choose random forest. One major benefit of using this model
is that it does not require interactive features. Tree Ensembles
combine the strength of Decision Trees, which function well
for large datasets. The other key benefit of deep learning is
that they are well-suited for solving high-dimensional
problems and manage vast quantities of data well.

For the parameters of the random forest, we can discover that
the good number of trees for the random forest is 150 trees;
the accuracy for a random forest depends on the strength of
the individual tree classifiers and a measure of the
dependency between them. The trees are categorized by the
rating system that earns the most votes. Increasing the
number of trees in the random forest could only increase the
computational processing time while has no fair change in
per- second output earnings.

Utilizing hybrid and optimization approaches, these machine
learning algorithms provided an efficient bug assignment
framework that meets the requirements.

10. FUTURE ASPECTS

For future studies, using certain selection filtering algorithms
can be considered to choose the key words to define bug
reports. Chi-square selection is best suited for the
computational needs of the experiment. We should develop a
new optimization algorithm. We should try other means for
prediction instead of this one. The time efficiency factor
defines the efficiency of the framework. Our methodology
explores the link between selecting the ideal developer and
the bug report's severity levels. Current developers should be
able to improve the prediction without having to train the
parameters on each new update. This approach increases the
reliability of how long it takes to upgrade the system. But it
should be done electronically for each time to preserve the
system's awareness.

Many possible improvements and successful system
possibilities can be considered, considering that is always
necessary that the system should act automatically for
analyzing, recognizing, and fine feature selection, for
instance deep learning libraries could be used with some
modifications to get some good outcomes for the same
application or other applications [27]. Also, code testing and
time should be considered while executing different tasks for
adaption and resolving incoming new different tasks
automatically.

ACKNOWLEDGEMENT

This research was scientifically supported by Professor
Abdullahi Abdu Ibrahim. We thank our colleagues from
Altinbas University who provided insight and expertise that
greatly assisted the research.

REFERENCES
1. B.Azhagusundari, Antony Selvadoss

Thanamani,Feature Selection based on Information
Gain, IJITEE, vol.2, PP. 2278-3075, 2013.

2. Ethem Alpaydin, Introduction to Machine Learning.
Published by MIT press, London, England, 2010.

3. John Anvik, Lyndon Hiewand, and Gail Murphy, Who
Should Fix this Bug, ICSE, Shanghai, China, May
20-28, 2006.

4. Leo Breiman, "Random Forests", Springer Machine
Learning, vol. 45, Issue 1, PP. 5-32, 2001.

5. MATLAB Documentation, available at
http://www.mathworks.com/help/matlab/

6. Miao Liua,c, Mingjun Wangb, Jun Wanga, and Duo Lic ,
Comparison of random forest, support vector
machine and back propagation neural network for
electronic tongue data classification: Application to
the recognition of orange beverage and Chinese
vinegar, Sensors and Actuators, Vol. 177, PP. 970–980,
2013.

7. Leo Breiman, Out-Of-Bag Estimation, Published by
Statistics Department University of California,1996.

8. Thais Mayumi Oshiro, Pedro Santoro Perez, and Jos ́e
Augusto Baranauskas, How Many Trees in a Random
Forest, sDepartment of Computer Science and
Mathematics, University of Sao Paulo, Lecture Notes in
Computer Science 7376, 2012.

9. Vrushali Y Kulkarni and Pradeep K Sinha, Random
Forest Classifiers: A Survey and Future Research
Directions, International Journal of Advanced
Computing, Vol. 36, Issue.1, 2013.

10. WEKA Manual, Version 3.6.2, University of Waikato,
New Zealand, 2010.

11. Xavier Amatriain Articles, Pompeu Fabra University.
Associate Professor in Computer Science, VP of
Engineering at Quora.

12. Yan Ma, Lan Guo and Bojan Cukic; A Statistical
Framework for the Prediction of Fault-Proneness,
West Virginia University, Morgantown, WV 26506.

13. Yongheng Zhao and Yanxia Zhang, Comparison of
decision tree methods for finding active objects,
National Astronomical Observatories, 2007.

14. Hikai Guo, Shifei Chen, Siwen Wang, Decheng Zhang,
Yaqing Liu, Chen Guo, Hui Li, and Tingting Li, A
Multi-Factor Approach for Selection of Developers to
Fix Bugs in a Program, Applied sciences, vol.9,
pp.3327, 2019.

Ali Jaafar Meera Al-arkawazi1 et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2192 – 2198

2198

15. Jifeng Xuan, He Jiang, Zhilei Ren, and Weiqin Zou,
Developer Prioritization in Bug Repositories, IEEE,
2012.

16. Ibrahim Aljarah, Shadi Banitaan, Sameer Abufardeh,
Wei Jin and Saeed Salem, Selecting Discriminating
Terms for Bug Assignment: A Formal Analysis,
PROMISE '11, September 20–21, Banff, Canada, 2011.

17. Anjali Goyal and Neetu Sardana, Empirical Analysis of
Ensemble Machine Learning Techniques for Bug
Triaging, IC3, IEEE, 2019.

18. Guo, S., Chen, R., Li, H., Zhang, T., Liu, Y., Identify
Severity Bug Report with Distribution Imbalance by
CR-SMOTE and ELM, Int. J. Softw. Eng. Knowl. Eng.,
vol.29, PP.139–175, 2019.

19. Valuating an Assistant for Creating Bug Report
Assignment Recommenders. Available at: http:
//ceur-ws.org/Vol-1705/04-paper.pdf, accessed on 20
June 2019).

20. Eng, W., Xu, J., Zhao, H., An improved ant colony
optimization algorithm based on hybrid strategies for
scheduling problem, IEEE Access, vol. 7, PP.
20281–20292, 2019.

21. Liu, Y., Wang, X., Zhai, Z., Chen, R., Zhang, B. Jiang,
Y. Timely daily activity recognition from headmost
sensor events, ISA Trans. 2019.

22. Xuan, J., Jiang, H., Ren, Z., Zou, W. Developer
prioritization in bug repositories. proceedings of the
34th International Conference on Software Engineering
(ICSE), Zurich, Switzerland, pp. 25–35, 2012.

23. Shokripour, R., Anvik, J., Kasirun, Z.M., Zammani, S.
A., Time-based approach to automatic bug report
assignment, J. Syst. Softw., vol.102, PP. 109–122, 2015.

24. Xia, X., Lo, D., Ding, Y., Al-Kofahi, J., Nguyen, T.,
Improving automated bug triaging with specialized
topic model, IEEE Trans. Software Eng., Vol. 43, PP.
272–297, 2016.

25. Wu, W., Zhang, W., Yang, Y., Wang, Q., Time series
analysis for bug number prediction, Proceedings of the
2nd International Conference on Software Engineering
and Data Mining, Chengdu, China, pp. 589–596, 2010.

26. Christopher A. Choquette-Choo, David Sheldon, Jonny
Proppe, John Alphonso Gibbs, and Harsha Gupta, A
multi-label, dual-output deep neural network for
automated bug triaging, Intel PSG, San Jose,
California, United States, IEEE, 2019.

27. A. Y. Saleh, L. Ilango, Detection of COVID-19 in
Computed Tomography (CT) Scan Images using
Deep Learning, International Journal of Advanced
Trends in Computer Science and Engineering, vol. 9,
no.5, 2020.

