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ABSTRACT 
Quantum machine learning is the combination of quantum 

computing and classical machine learning. It helps in solving the 
problems of one field to another field. Shor’s algorithm is used 
for factoring the integers in polynomial time. Since the best-
known classical algorithm requires super polynomial time to 
factor the product of two primes, the widely used cryptosystem, 
RSA, relies on factoring being impossible for large enough 
integers. In this paper we will focus on the quantum part of 
Shor’s algorithm, which actually solves the problem of period 
finding. In polynomial time factoring problem can be turned into 
a period finding problem so an efficient period finding algorithm 
can be used to factor integers efficiently. 
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I. INTRODUCTION 

Shor's algorithm is used for integer factorization and it is a 
polynomial-time quantum computer algorithm. Informally, it 
solves the following problem: Given an integer find its prime 
factors. It was invented in 1994 by the American mathematician 
Peter Shor.On a quantum computer, to factor an integer N, 
Shor's algorithm runs in polynomial time (the time taken is 
polynomial in, the size of the integer given as input).If a 
quantum computer with a sufficient number of qubits could 
operate without succumbing to quantum noise and other 
quantum-decoherence phenomena, then Shor's algorithm could 
be used to break public-key cryptography schemes, such as the 
widely used RSA scheme. RSA is based on the assumption that 
factoring large integers is computationally intractable. As far as 
is known, this assumption is valid for classical (non- quantum) 
computers; no classical algorithm is known that can factor 
integers in polynomial time. Shor's algorithm is efficient on an 
ideal quantum computer for integers factorization, so it is 
feasible to defeat RSA by constructing a large quantum 
computer. It helps in design and construction of quantum 
computers, and for the study of new quantum-computer 
algorithms. It has also helps in research on new cryptosystems 
that are secure from quantum computers, collectively called 
post- quantum cryptography. 

In 2001 Shor's algorithm was explained by a group at IBM, 
who factored 15 into 3*5, using an NMR implementation of a 
quantum computer with 7 qubits. Two independent groups were 
implemented Shor's algorithm using photonic qubits, 
emphasizing that multi-qubit entanglement was observed when 

running the Shor's algorithm circuits. In 2012, the factorization of 
15 was performed with solid- state qubits. Also, in 2012, the 
factorization of 21 was achieved, setting the record for the largest 
integer factored with Shor's algorithm. In 2019, the factorization 
of 35 has been done with the help of Shor's algorithm on an IBM 
Q System One, due to cumulating errors algorithms was failed. 
However, much larger numbers have been factored by quantum 
computers using other algorithms, specifically quantum annealing.  

II. LITERATURE SURVEY 
To contribute in any field it is very important to be aware of 

the works that are currently in progress. In this regard during this 
mini project, a thorough review of various works carried out in the 
field of quantum mechanics was carried out. A brief description of 
the same is presented here. 

In “Near term implementation of Shor's Algorithm using 
Qiskit” [1] the authors Casimer DeCusatis et al. have presented 
preliminary work on quantum computing, Although the 
fundamental principles of quantum computing have been known 
for decades, it is only within the past few years that practical 
quantum computers have become available. These systems are 
limited to a small number of qubits, they cannot demonstrate 
quantum advantage for many practical problems. Near term 
implementation of Shor's Algorithm using the Qiskiton an IBM Q 
System One quantum computer was explained in this paper. We 
present an implementation capable of factoring small two-digit 
prime numbers, and discuss the limitations of noise when using 
real quantum computers vs. simulations. 

The authors HarashtaTatimmaLarasatiet al. of “Simulation of 
Modular Exponentiation Circuit for Shor's Algorithm in Qiskit” 
This paper discusses and demonstrates the construction of a 
quantum modular exponentiation circuit in the Qiskit simulator for 
use in Shor's Algorithm for integer factorization problem (IFP), 
which is deemed to be able to crack RSA cryptosystems when a 
large-qubit quantum computer exists. We base our implementation 
on Vedral, Barenco, and Ekert (VBE) proposal of quantum 
modular exponentiation, one of the firsts to explicitly provide the 
aforementioned circuit. Furthermore, we present an example 
simulation of how to construct a 7 x mod 15 circuit in a step-by-
step manner, giving clear and detailed information and 
consideration that currently not provided in the existing literature, 
and present the whole circuit for use in Shor's Algorithm. Our 
present simulation shows that the 4-bit VBE quantum modular 
exponentiation circuit can be constructed, simulated, and 
measured in Qiskit. 
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III. BACKGROUND ON SHOR’S ALGORITHM 
Consider a number N which is the product of two primes. 

To determine the prime factors, we first take an initial guess at 
some number, g, which is either a factor of N or which shares a 
factor with N. The fact that we can use a guess that shares 
factors with N derives from Euclid’s Theorem [4, 14], a2,000-
year-old method from discrete mathematics which allows us to 
find the greatest common divisor (GCD), and therefore the 
factors of interest. This makes the problem significantly easier 
to solve. However, for a reasonably large N it’s highly unlikely 
that our initial guess g will turn out to either be a factor of N or 
share a factor with N. It can be shown [13] that for any pair of 
whole numbers A and B which do not share a factor, 
multiplying A by itself enough times eventually results in an 
integer multiple of Bplus 1, 

i.e.Ap = mB + 1 
For some integers p and m. This means that 

gp = mN +1 
Rearranging terms and factoring yields the following: 

gp -1 = mN 
(gp/2 -1) (gp/2 +1) = mN 

The two terms on the left side of are factors of mN. Of 
course, we are interested only in factors on N, not m. Further, 
we’re interested only in integer factors of N, so this will only 
work if p is an even number (if p is odd, then p/2 is a fraction, 
not a whole number). If we encounter either of these conditions 
when attempting to solve we simply start over with a new value 
of g. It can be shown that we’re 99% likely to find a useful 
guess within 10 attempts. At this point, solving for p would take 
exponential time on a conventional computer, but can be done in 
quadratic time on a quantum computer. To see this, we will state 
without proof the following theorem for integer values m, m2 
and r. 

If g x = mN + r, then g x+p = m2 N + r 
From this, we can see that p repeats with some period r, or in 
other words g x, g x+p, g x+2p, g x-p and so on are all separated 
by some constant value r. We can therefore reduce the problem 
of factoring N to the problem of finding the period r. This can be 
achieved using a Quantum Fourier Transform(QFT). When 
using the QFT, we input a sequence of values and the output is a  
superposition of all other numbers weighted in a particular 
manner (the weights correspond to the frequency of the input 
value). If we input a super position,then the output is also a 
superposition of all possible states, which add or subtract either 
constructively or destructively. Quantum physics tells us that if 
we input a superposition and the resulting output could have 
come from more than one element in the superposition, then 
we’ll be left with a superposition of just those elements. In our 
algorithm, if we take an input superposition of all possible 
exponents (i.e. x,x+p, x-p, x+2p, etc.) then the output contains 
just those possibilities that would result in the same value of r, 
spaced apart with a constant period, p (or equivalently with a 
frequency which is the reciprocal of the period). We now have a 
quantum superposition of values that repeats with a period p;if 
we can find the frequency of these repeating values, we can 
determine p. Expressing this in standard bra-ket notation yields 
the relationship 

 
Figure 1: Bra-ket notation for period finding 

Finding p means we can compute (g p/2 +/- 1), which is an 
improved guess that shares factors with N. The period finding 
algorithm is shown schematically in figure 2, for various size 
input registers of qubits initialized to zero. Note that this is 
aversion of Simon’s Algorithm [9] using the Simon oracle Qf . 

 
Figure 2: High level circuit for period finding 

IV. METHODOLOGY 
The problem we are trying to solve is that, given an integer N, 

we try to find another integer p between 1 and N that divides 
N.Shor's algorithm consists of two parts: 

1. A reduction, which can be done on a classical computer. 
2. A quantum algorithm to solve the order-finding problem. 

 
Classical part 

1. Pick a pseudo-random number a < N 
2. Compute gcd(a, N). This may be done using the 

Euclidean algorithm. 
3. If gcd(a, N) ≠ 1, then there is a nontrivial factor of N, 

so we are done. Otherwise, use the period-finding 
subroutine (below) to find r, the period of the 
following function: 
f(x) = ax mod N, i.e. the smallest integer r for 
which f(x + r) = f(x). 

4. If r is odd, go back to step 1. 
5. If a r/2 ≡ -1 (mod N), go back to step 1. 
The factors of N are gcd(ar/2 ± 1, N). We are done. 

 
 The Problem: Period Finding  
Let’s look at the periodic function: 
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where aand N are positive integers, aa is less than N, and they 

have no common factors. The period, or order (r), is the smallest 
(non-zero) integer such that: 

 

 
 
The example of periodic function was shown below 

 
Figure 3: Example of the periodic function 

Quantum phase estimation on the unitary operator can be solved 
by shor’s solution 

U|y⟩≡|ay mod N⟩ 
To see how this is helpful, let’s work out what an eigenstate 

of U might look like. If we started in the state |1⟩, we can see 
that each successive application of U will multiply the state of 
our register by a(modN), and after rr applications we will arrive 
at the state|1⟩ again. For example with a=3 and N=35. 

 

 
Figure 4: effect of successive application of u 

So a superposition of the states in this cycle (|u0⟩) would be an 
eigenstate of U: 

 
This eigenstate has an eigenvalue of 1, eigenstate can be one in 
which the phase is different for each of these computational basis 
states. Similarly the case in which the phase of the kth state is 
proportional to k: 

 
 
 

This is a particularly interesting eigenvalue as it contains r. In 
fact, rr has to be included to make sure the phase differences 
between the r computational basis states are equal. This is not the 
only eigenstate with this behaviour; to generalise this further, we 
can multiply an integer s, to this phase difference, which will 
show up in our eigenvalue: 

 
We now have a unique eigenstate for each integer value 

of ss where 0 ≤ s ≤ r − 1 
Very conveniently, if we sum up all these eigenstates, the different 
phases cancel out all computational basis states except |1⟩: 

 
Since the computational basis state |1⟩ is a superposition of 

these eigenstates, which means if we do QPE on UU using the 
state |1⟩, we will measure a phase: 

 
Where ss is a random integer between 0 and r−1. We 
finally use the continued fractions algorithm on ϕ to 
find r. The circuit diagram looks like this 
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Figure 5: Block Diagram 

3. Qiskit Implementation 
In this example we will solve the period finding problem 

for a=7 and N=15. We provide the circuits for U where: 
U|y⟩=|aymod15⟩ 

without explanation. To create Ux, we will simply repeat the 
circuit x times. 

 
Figure 6: Quiskit Implementation 

 

 
Figure 7: Circuit Composer realization 

 
 
 
 

V. RESULTS 
 

Shor’s algorithm is designed and implemented using Qiskit 
and results are verified with respect to probabilities.  

 
 

Fig 8: Result of shor’s algorithm 

 
Figure 9: Real quantum computer result of period finding 

using Shor’s Algorithm 

VI. CONCLUSIONS 
Quantum systems produces typical patterns which 

simplifies and enhances the computational power that can be 
advantageous in handling huge data at a faster rate.  Hence the 
whole motivation in this work was in understanding and 
analysing the circuit design using Quantum mechanics. First a 
thorough study was carried out to understand the basics of 
quantum mechanics.Two circuits i.e. half adder and full adder 
were designed and implemented on IBMQ and thoroughly 
analysed for the results. It was observed that, in quantum 
computing results are based on probabilities for all the possible 
input combination at one go. Due to this there as an enormous 
reduction in the time to obtain the outputs when compared to 
classical computation wherein we need to force all the input 
combinations one by one.  
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