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 
ABSTRACT 
 
False smart meter consumption data injected from 
compromised smart meters in Advanced Metering 
Infrastructure (AMI) is a threat that affects both utilities and 
consumers. With the increasing amount of smart meters’ 
deployment, this will cause difficulties in the identification of 
fraud and malicious attempts. Due to the large scale of 
potential evidence, it is regarded as a grand challenge for 
forensic investigators in identifying relevant patterns of 
events. Furthermore, most of the existing works only deal 
with electricity theft from customers. Derived from these 
motivations, this study is focusing on the identification of data 
falsification in smart meter consumption and propose an 
integrated statistical technique combining interquartile range 
(IQR) and K-means. It is assumed that solving this challenge 
would help in structuring investigation findings, which able 
to aid investigator of law enforcement agencies and other 
stakeholders in reasoning and identifying compromised smart 
meters.  
 
Key words: falsification attack, smart meter, forensics, 
statistical, energy.  
 
1. INTRODUCTION 
 
Societies around the world critically depend on the proper 
functioning of their critical infrastructures (CI) services such 
as energy supply, telecommunications, financial systems, 
water, and governmental services. The trend in designing and 
managing CI is to use complex information technology (IT) 
infrastructures interconnected through networks, which 
known as critical information infrastructure (CII). 

In Malaysia, Critical National Information Infrastructure 
(CNII) is defined as those assets (real and virtual), systems 
and functions that are vital to the nations that their incapacity 
or destruction would have a devastating impact on national 
economic strength, national image, national defense and 
security, government capability to functions and public health 

 
 

and safety [1]. CNII sectors in Malaysia include national 
defense and security, banking and finance, information and 
communications, energy, transportation, water, health 
services, government, emergency services, food, and 
agriculture. 

In the energy sector, the use of electric meters was initially 
applied to industrial and commercial customers due to the 
need for more sophisticated rates and more granular billing 
data requirements [2]. The usage was gradually expanded to 
all customer classes to accommodate a large number of 
customers. Automated meter reading (AMR) has been used to 
collect meter data by utilizing one-way communication.      
 
Along with the transition of the traditional electrical grid to 
the growing development of a smart grid, advanced metering 
infrastructure (AMI) has been intensely developed during 
recent years. AMI is responsible for collecting, measuring, 
and analyzing energy consumption data, transmitting this 
information from a smart meter to a data concentrator, and 
then to a head-end system in the utility side.  

The infrastructure includes smart meters, home network 
systems, communication networks from the meters to local 
data concentrators, back-haul communications networks to 
corporate data centers, meter data management systems 
(MDMS) and, finally, data integration into existing and new 
software application platforms [3]. As one of the most crucial 
components in the smart grid, it is important to ensure the 
security of overall AMI infrastructure [4], [5]. 

The employment of IT in the CI permits huge savings by 
reducing costs by switching to networking technologies while 
allowing large scale deployments based on off-the-shelf 
computing equipment [6]. With the benefits of two-way 
communication through a very complex combination of 
devices, services, protocols, and standards, along with the 
huge accessibility to technologies and methods, CII can be 
easily exposed to cyber-attacks. This makes AMI vulnerable 
to increased security threats at both the physical and logical 
layer [5], [7].  

Furthermore, because of its bidirectional, interoperable, and 
software-oriented nature, AMI is very prone to cyber-attacks 
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[5]. If proper security measures are not taken, a cyber-attack 
on AMI can potentially bring a huge impact in the whole 
smart grid infrastructure, which might affect the society. For 
example, in mid-2010, the Stuxnet worm was engineered to 
specifically target infrastructure-monitoring computer 
systems built by Siemens and successfully gained control of 
key computer systems in Iran’s nuclear facilities [8]. It was 
reported that the worm then spread to another similar 
computer systems in other countries [9], [10]. 

In late 2012, the smart grid software company Telvant 
reported a breach of their network by a group of Chinese 
hackers, resulting in the stolen project information, and the 
spread of malicious software across their network. Despite the 
disruption, the Telvant hack was relatively minor, a breach on 
a larger scale could result in devastating prolonged electric 
blackouts, and complete disruption of a utility communication 
systems [11]. 

Numerous works of literature also reported on potential 
cyber-attacks against the smart grid and its infrastructure 
[12]–[16]. Moreover, it is not only business applications but 
also communication links and underlying control systems 
that are susceptible to cyber-attacks.  

In AMI specifically, the smart meter possesses huge cyber 
threat vulnerabilities that can cause catastrophic failure not 
only to the consumer but also to the utility provider, and the 
impact is nationwide. The smart meter is exposed to 
cyber-attacks because of its nature that allows communication 
through open space that supposed to enable consumer and 
utility provider to have the ability to monitor the smart meter 
from remote using a wireless connection and a broadband 
public network [17]. 
 
Based on [18], the vulnerabilities of a smart meter can be 
separated into three major areas that can be exploited by the 
cyber-criminal; physical hardware, the smart meter network 
topology and the software that used by the consumer and 
utility provider to monitor the smart meter condition.  

For physical hardware, the adversary can replace the smart 
meter with a replication device to false the information in the 
smart meter or will physically breach the smart meter 
appliance to gain access. This attack may attain a high 
percentage of success due to direct access from the adversary 
[12]. Once the adversary manages to gain access in the smart 
meter, they can tamper the smart meter information, which 
can lead to wrong billing information.  

For network topology, several attacks can be deployed in this 
layer such as Near-me Area Network (NAN) sniffing [19], 
signal jamming and denial of service attack [20], 
man-in-the-middle (MITM) attack [21], [22], and worm 
propagation [23], [24].  

NAN sniffing attacker able to get information about future 
price information, control structure, and power consumption 
once they successfully decrypt the network encryption used by 
the smart meter communication [19]. In comparison, a 

jamming attack in AMI targeted to flood the smart meter 
wireless media in order to prevent it from communicating 
with the utility provider. Once the node already been 
compromised, the adversary will take control of the node and 
can start sending a random packet to compromise the network 
[20]. 

The MITM attack can be categorized as a combination of 
eavesdropping, injection and spoofing attack. By doing a 
MITM attack, the adversary can distribute and false 
encryption to other nodes in the network [21], [22]. In AMI 
environment, a computer worm can be spread in various 
ways; it may convey a payload that plays out a distinction 
instruction, which kills the inner meter switch associated with 
user home. The disconnect instruction in a synchronized way 
may cause sudden load drop in the system, which may lead to 
generators stumbling and power failure. 

Whereas, the vulnerability of smart meter in software 
involves attacks on the smart meter web application level 
[19]. The unauthorized aggregating and correlating smart 
reading produce interesting information which later can be 
used by the attacker for various purposes.  

Notably, due to the diverse angle of cyber-attacks that may 
compromise AMI, it is essential to categorize and secure 
where smart metering data is collected, stored, transported, 
analyzed. By adequate categorizing through a communication 
network and security, possible relationships between source 
and criminals can be reduced.  

Concerning the time granularity, the new generation of smart 
meter technology can typically record and transmit at 
intervals of about 2 seconds or less [25]. For example, the 
smart meter data of a large utility company may generate 
millions or even billions of events per second [26]. According 
to a study done by ABI Research, there will be about 780 
million smart meters that will be installed worldwide by 2020 
[27]. 

The growing numbers of smart meter installation later 
contribute to generating a large amount of data. The data is 
needed to provide utility providers with capabilities for 
forecasting demand, shaping customer usage patterns, 
preventing outages, optimizing unit commitment and more 
[28]. On top of that, customer’s personal data also can be 
derived from meter logs and the energy consumptions 
patterns [29].  

The massive growth in the size of available digital data plays 
a major role in the increase in the size of digital evidence [30]. 
According to a summary report of CyberSecurity Malaysia, 
their Digital Forensics Department faced the increasing 
number of cases, along with the growing number of exhibits 
and size of the media which they need to tackle [31]. It is also 
challenging to handle incidents that arise during the 
unavailability of technical experts [32]. 

Particularly in AMI environment, a large number of IoT 
devices installed in one consolidated environment producing 
very big datasets of activity logs. Hence, fraudulent and 
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malicious activities/users ae harder to spot using traditional 
log correlation or visualization techniques.  

Whilst there is variety data being transferred to and from AMI 
environment, this study will focus on data falsification of 
consumption data. Consumption data can be falsified or 
modified due to calibration inaccuracies, faulty meter, false 
readings by meter reader either consciously or not, flaws in 
head-end-system, temper attempt either by meter owner 
himself or outsider attacker.  

False consumption data from smart meter could be either less 
than or even more than the actual usage. While higher 
consumption data readings may seem like profit for electricity 
company when translated to monthly bills, it causes loss of 
trust between consumers towards the company that could 
result in higher unpaid bill numbers [33]. Billing more would 
also cause unused generated energy that was calculated by 
demand from billing data. 

Smaller reading of actual consumption did not also solely 
impact annual revenues; these losses also indirectly mess with 
another power system such as power surge, where the system 
is expecting smaller usage but the demand is a lot more than 
expected [33]. The severe consequences of that situation 
would be a nationwide blackout. 

In order to make sure that what is billed to the customer is 
what he only use for that month, necessary prevention and 
detection mechanism must be there. However, a deeper 
investigation like physical inspection of meters are 
time-consuming and require high-cost labor on every meter 
on a daily basis, and more complex analytics needs more data 
that is challenging to obtain due to a multitude of privacy and 
security concerns.  

Hence, this study will focus on identifying data falsification in 
smart meter consumption data which is able to identify 
compromised meters from non-compromised meters over 
margins of false data on a large scale.  
 

2.ADVANCED METERING INFRASTRUCTURE (AMI) 
 

2.1 Overview of AMI 
 
In the energy sector, the use of electric meters was initially 
applied to industrial and commercial customers due to the 
need for more sophisticated rates and more granular billing 
data requirements [2]. The usage was gradually expanded to 
all customer classes to accommodate a large number of 
customers. AMR has been used to collect meter data by 
utilizing one-way communication. 

Along with the transition of the traditional electrical grid to 
the growing development of the smart grid, AMI is one of the 
components of the electrical network combining the energy 
and telecommunications infrastructure. The main actor in 
this system is a new type of energy metering device called 

smart meter [34]. AMI is responsible for collecting, 
measuring, and analyzing energy consumption data. It 
transmits information from a smart meter to a data 
concentrator, and then to a head-end system in the utility side. 
AMI works in two-way communication, starting with a 
request by the energy provider or pre-programmed 
microcontroller-based system to continuously and 
automatically records the readings and send information back 
for a pre-determined time [35]. One of the critical elements to 
implement AMI and smart meters is to use this functionality 
to manage electricity generation and distribution [36].  

In AMI, a nearly real-time monitoring display of consumer’s 
energy consumption data has made it easier for utility 
companies to monitor anomalies in the network [37], [38]. 
However, a large number of users and smart meters give rise 
to the need to deliver better maintenance and monitoring 
more efficiently while keeping consumers informed on their 
own consumption habits [39]. As one of the most crucial 
components in the smart grid, it is vital to ensure the security 
of overall AMI infrastructure [4], [5]. 

2.2 Smart Meter 
 

Smart meters support instant power consumption reading, 
remote connection and disconnection of supply, remote 
system update and downgrade, event reporting functions and 
steal detection functions [40]. Some smart meter is also able 
to inform users about the quantities measured [39] through 
communication with display device interference called 
in-home monitor that displays info such as real-time price. 

Smart meters include various communication networks, 
depending on the geographical range and purpose. It sends 
information about the meter’s environment, status, as well as 
meter readings to Data Concentrator Unit (DCU) using Local 
Area Network (LAN) or Neighbourhood Area Network 
(NAN) [41]. After that, DCU which function similar to 
routers, acts as a gateway between smart meters and 
Head-End-System(HES) [41]. It collects, stores and transmits 
data/messages to and from smart meters and HES using WAN 
[41] which is usually the backhaul network that uses 
long-range and high-bandwidth communication 
technologies, such as long-range wireless (e.g., WiMAX), 
cellular (e.g., 3G, EVDO, EDGE, GPRS, or CDMA), 
satellite, or Power Line Communication (PLC) [42]. The data 
have to travel through various communication protocols [43] 
before collected and cleansed to use in other application for 
billing and analyzing purpose.  

As it gets smarter day by day, the smart meter also able to 
tackle energy efficiency issues by having demand response 
and smart pricing features. Consumption patterns of users are 
utilized to forecast generation of electricity supply align with 
demand [44]. Tariff of Use (TOU) can also be set accordingly 
and give the consumer the freedom to pay peruse. Hence, 
many utility companies are leveraging smart meter in 
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producing more cost-effective and reliable energy 
management. 

However, smart meter consumption data include large 
volumes of time-series measurements that are subject to noise 
and may not be effective when used in the raw form [45]. 
Moreover, it has been widely acknowledged that given the 
important role and interconnected nature of AMI, it could 
potentially be the target of powerful and organized 
adversaries [46].  

Bugden and Stedman [36] suggested a future research should 
investigate how utilities and policymakers can protect 
vulnerable groups from risks imposed by smart meter-enabled 
changes.  

2.3 AMI Threats and Security Features 
 
From attack resilience AMI model created by [41], we found 
that threats in AMI can be classified into three categories; 
‘physical’ level, ‘manufacturing’ levels, and ‘network’ level. 
Physical level attacks are various such explained in [47] [48]. 
Some of the attacks include ‘Direct hooking from the line’, 
‘Bypassing the energy meter’, ‘Injecting foreign element into 
the energy meter’, ‘Disc Physical Obstruction’, and ‘ESD 
attack’. Some of these attacks are indeed preventable by a 
smart meter, but some others are not. Besides, smart meter 
technology also comes along with a bundle of newer threats 
such as network attacks [49] and other attacks related to the 
Internet of Things (IoT) [43]. 

On the manufacturing level, threats faced are more severe 
than at other levels. This is because its consequences have 
mass and immediate effect. Imagine possible incidents that 
could happen if the meter was bugged or faulty by the time it 
rolled out from factories itself. For example, Puerto Rico had 
experienced electricity theft amounting to annual losses for 
the utility estimated at $400 million [50]. Its electricity 
Company, Puerto Rican Electrical Power Authority (PREPA) 
had also filed bankruptcy once [51].  Due to that, according to 
a report by Brian Krebs [52] and [33], the company had asked 
the FBI to investigate large-scale thefts of electricity-related 
to its smart meters. The Cyber Intelligence Section of the FBI 
found that the former employees of the smart meter 
manufacturer company had hacked and bugged the smart 
meters that were then sold to the customer for $300 − $700 
each [53].  From this case, we could derive that the usage of 
hashing, digital signatures, and cryptographic algorithms are 
very important in making sure that access and control during 
the manufacturing process are given to only trusted parties 
[54]. 

Meanwhile, on the network level, the main concern is on how 
to maintain availability and authenticity of end-to-end 
transfer of genuine smart meter data. While Firewall and 
common network protection such as Virtual LAN (VLAN) 
and demilitarized zones (DMZ) are a must, this is particularly 
challenging in AMI as it uses a lot of network technology in 
its infrastructure [40].  

For instances, HAN technology such as ZigBee Protocol 
allows an attacker to join the HAN network without proper 
authentication and further impersonating or send a command 
to other devices connected [40]. This issue also happens to 
GSM technology, where the GSM tower requires only 
one-way authentication of the device to tower, providing 
loopholes of the attacker to exploit the system using the fake 
tower. For this issue, shared key authentication (SKA) should 
be used. For example, [55] introduces a security solution that 
is designed to ensure privacy protection, data authenticity, 
confidentiality and data integrity of smart meter data. 
 
Another threat level that both impacts but also a subset of all 
three levels mentioned above are legal/political threat. As 
described by [56], due to various limitation experienced by 
developing countries, quality of standards and audits 
regarding information security is not quite on par and 
rigorously done as most developed countries. 
 

2.4 Anomalies Detection using Data Analytics 
 
All of the security features mentioned earlier are of intrusion 
prevention systems (IPSs). It prevents threat events from 
occurring [49]. Another feature that could further secure the 
AMI is by using intrusion detection systems (IDSs) and 
network intrusion detection systems (NIDS). It comes in 
action during and after the occurrence of threat events [57]. 
They are divided into two types; ‘Signature-based IDSs’ and 
‘Anomaly-based IDS’. Signature-based IDS monitor system 
behavior or network traffic(NIDS) for predefined attack 
patterns, known as signatures [49] [57]. Meanwhile, 
anomaly-based IDS detect abnormal events that deviate from 
the normal behavior of the system [49] [57].  

Anomalies and outliers technically refer to the same thing and 
usually used interchangeably by researchers. Anomalies can 
be categorized as point anomaly [58][59], contextual anomaly 
[60][59] and collective anomaly[61][60]. 

As smart meter and smart grid deployments continue to gain 
momentum, demand for data analytics capability to better 
manage grid operations and plan network investment is at an 
all-time high. It is important to manage high volume 
real-time data from smart meters and identifying innovative 
analytics to grab any potential opportunities presented by the 
data generated from smart meters. 

The availability of large smart meter consumption data in 
AMI has the potential to enable new insights and better 
decisions [62]. Currently, extensive research is being done to 
carry out data analytics [63], [64]. The research is mainly 
focused in forecasting the accurate and efficient power 
consumption/supply [65], predicting peak demand [62], 
identifying the impact of temporal data granularity on the 
accuracy of electricity consumption [62], analyzing security 
risk [66], and detecting future attacks [67]–[69]. 



Siti Hawa Binti Mokhtar  et al., International Journal of Advanced Trends in Computer Science and  Engineering, 9(5),  September - October  2020, 7582 –  7590 

7586 
 

 

A forensic investigation procedure on electric meters has been 
done by [64]. In their finding, an increasing number of 
committed crimes with advanced technologies and 
sophisticated methods. Another study only focuses on power 
system disturbance criminal case [70]. However, very limited 
studies were conducted on digital data in AMI. Which is a 
loss as  [71] in his literature review has compiled how data 
mining is used in predicting crime and legal judgements. 

In this study, predictive analytics will be utilized through 
applied mathematical techniques to uncover explanatory and 
predictive models. 

3. PROPOSED TECHNIQUE 
 
The proposed technique consists of five major steps that are 
step 1: training data clustering, step 2: the interquartile range 
(IQR) range comparing, step 3: cluster updating and Mean 
recalculation 4: IQR pattern modulation test and 5: flagging 
and reporting with the output from each step serving as the 
input to the subsequent step in the process. 

Firstly, for distance or pattern-based anomaly detection, 
reference pattern must first be set as a guide to classify the 
following data. This data set is called “training data”. The 
training data will go through the clustering process using 
K-Means technique. 

After the training step has been done, a consumption unit of a 
smart meter is read, and the counter is started. For counter 
less than 24, IQR value is calculated for each cluster, and the 
new point value will be compared with each IQR threshold 
ranges.  

If the point fits in ‘normal’ cluster’s IQR range, then the value 
will be updated into the cluster. Meanwhile, if the point fits in 
‘less-than-normal’ cluster’s IQR range, then the value will be 
updated into the cluster. Else, it will be updated in 
‘higher-than-normal’. In addition, for every point that does 
not fit in ‘normal’ cluster IQR, a flag that will be reflected in 
the output report will be given accordingly. 

At the point where the counter hit 24 (one day reading), the 
mean of the clusters will be recalculated, and the cluster will 
change in mean and points membership accordingly. This 
step is done for every 24 readings instead of for every updated 
point is to save on performance cost. 

After recalculation of mean happened, the new IQR is 
calculated and compared with the past four IQR records 
collected. This step is to ensure there is no attempt of injecting 
false data little-by-little, enough to fit in normal IQR to 
manipulate the cluster’s pattern. For constant drop or rise in 
readings, the flag is given. 

This process will be repeated until all data points are finished, 
or it finds Null value. Once, a null value is found, a report is 
generated. And the report can be given to a physical 
inspection team or forensic team for further investigation. 

3.1 K-Means 
 
K-Means will be used in this study to categorize the training 
data set into three clusters and during the cluster’s Mean 
centroids recalculation that occurs every 24 readings (a day 
consumption). Firstly, the number of the centroid is chosen 
according to how we want to partition the data and the value is 
initially randomized. In this study, we set the ‘K’ number of 
cluster to K=3.  

The first cluster is ‘normal’ cluster, which is expected to be 
populated with the un-modified consumption reading. The 
next cluster will be ‘less-than-normal’ cluster. This cluster is 
expected to be of data with deductive-ly manipulated data. In 
contrast, the other one, that is expected to consist of 
additive-ly modified data is a ‘higher-than-normal’ cluster. 

Secondly, the distance between each of the data points with 
each of the centroids is calculated. Euclidean distance is used 
as the distance metric to find which cluster the points belong 
to. The formula is: 

dist((x, y), (a, b)) = √(x - a)² + (y - b)²   (1) 
 
After figuring out the distances, the data point is then grouped 
to the nearest centroid using below mathematical 
representation (description Table 1): 

S(t)i={xp:∥∥xp−m(t)i∥∥2≤∥ ∥ xp−m(t)j∥∥2∀j,1≤j≤k}   (2) 

Table 1: Formula Description. 

 

Which means Set i contains all data points (x) in which the 
distance from the data point (xp) to the mean of i (mi) is 
smaller than that of the distance from the data point to the 
mean of all other centroids (mj). 

This process is repeated for every data points until data points 
finish and similar data points get grouped into clusters. While 
this process happens, it repeatedly calculates the Mean value 
for each cluster and reassigns the centroid. This step can be 
represented using below mathematical representation: 

m(t+1)i=1∣∣S(t)i∣∣∑xj∈ S(t)ixj   (3) 

New centroid value of cluster Set I (mi) is equal to Mean (sum 
of value divide by total number) of cluster i members. Now 
that we are done with clustering, we need to iteratively 
Reassign data points to new clusters, refining the centroid 
values until they do not change much. 

 

Symbol Description 
S1 ,..., Si Cluster 
m Centroid value (mean) 
x Data Point 
xp Distance of Data Point(x) to the mean(m) 
Symbol Description 
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S(t+1)i={xp:∥∥xp−m(t+1)i∥∥2≤∥∥xp−m(t+1)j∥∥2∀ j, 1≤j≤k}    (4) 

Cluster i contains data point where its distance to newly 
calculated Mean m(t+1) i is nearest compared to other newly 
calculated Mean m(t+1) j. 

3.2 IQR 
 
The interquartile range (IQR), is somewhat similar to Z-score 
in terms of finding the distribution of data and then keeping 
some threshold to identify the outlier. But it uses Median-the 
middle value, as a point of reference compared to Mean in 
Z-Scores. In such settings, the median is typically considered 
to be more robust to outliers [72].  

The main reason for introducing IQR technique in this study 
is to leverage performance issues caused by repetitive 
iteration of K-Means. IQR works faster as it does not need 
recalculation of Means for every new data point arrival, but 
will just sorts the value and compares the data point value 
fitness to the value within the quartile range. Anomaly will be 
indicated per data point that lies outside the overall 
distribution of the dataset. 

IQR implementation consist of five general step. The first one 
is to arrange the data in increasing orders. Secondly the data 
is divided into four equal parts with each part comprises of 
quarter data. The four quarters will result in five boundary 
lines namely Q0, Q1, Q2, Q3 and Q4 as shown in Figure 1. 

 
Figure 1: IQR Representation 
 
Thirdly, the values of Q1, Q2 and Q3 are calculated. Q2 is the 
median of the data set, Q1 is the middle number between the 
smallest number and the median of the data set and Q3 is the 
middle value between the median and the highest value of the 
data set.  

Next, IQR is calculated using a formula “IQR = Q3 − Q1” to 
get the “range between the between upper and lower 
quartiles”. Datapoint that falls outside of 1.5 times of an 
interquartile range above the 3rd quartile and below the 1st 
quartile is considered anomalies. 

X =Q1-( 1.5xIQR) or Q3+( 1.5xIQR) (5) 

4.CONCLUSION AND FUTURE WORKS 
 
From the review of AMI infrastructure, type of anomalies and 
techniques of anomaly detection done above, this study 
proposes to implement K-Means and IQR to detect falsified 
data. K-Means and IQR are chosen due to the suitability of the 

smart meter consumption data set and its ability to produce 
the expected end result. Furthermore, IQR is chosen to aide 
K-Means in terms of performance. 
 
The proposed technique is expected to (i) identify 
compromised smart meter (ii) enables quick identification for 
larger sized smart meter consumption data in AMI 
environment.  
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