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ABSTRACT 
 
Dimension reduction is an important task in 
hyperspectral image (HSI) processing to minimize 
computational complexity. This work presents an 
efficient band selection method to select a set of highly 
relevant yet non-redundant bands using class-band 
mutual information (MI) and clustering technique.In 
HSI, the bands comprise continuous reflectance values, 
while the class labels in the ground truth are discrete. 
Thus before calculating class-band MI, the continuous 
reflectance values are converted to several discrete 
values using a novel graph-based superpixel generation 
method based on the spectral angle divergence (SAD). 
To ensure non-redundancy of the selected bands, 
clustering is performed to using correlation distance and 
then from each cluster only one representative band is 
selected using the calculated class-band MI. 
Experiments are carried out over three hyperspectral 
images to evaluate the efficacy of the proposed band 
selection technique. For each image, classification is 
performed using Support Vector Machine (SVM) 
classifier over both the compressed image with only the 
selected bands and the original image. The comparison 
results reveal the capability of the proposed method to 
maintain the classification accuracy with a substantially 
compact set of selected bands. 
 
Key words: Band selection, clustering, correlation, 
hyperspectral image, mutual information, SAD, 
superpixel. 
 
1. INTRODUCTION 
 
HSIs contain hundreds of spectral bands with relatively 
narrow bandwidths (5-10 nm). A HSI is represented as a 
data cube with spatial information stored in the first two 
dimensions and spectral information represented along 
the third dimension. These high dimensional data cubes 
contain ample information about the objects and thus 
enable the classification of spectrally unique materials 
with high precision. However, due to the increased 
number of spectral bands, more processing time is 
required for analyzing such images. Therefore, 
dimension reduction of HSI by selecting only the 

significant bands, without compromising the 
information content, has been an active area of research 
[1], [2]. In literature, many criteria such as- divergence, 
Bhattacharya distance, entropy has been used for the 
selection of bands that are crucial and significant in 
terms of information conservation [3], [4]. In [5], 
Nakamura et al proposed a band selection method based 
on optimum path forest (OPF) classifier [6] as an 
optimization function. In another technique, A.C. S 
Santos et al used k-means clustering with entropy 
filtering for band selection and classification in 
hyperspectral images [7]. They used correlation distance 
to cluster the similar bands, from each of which, they 
selected the band closest to the cluster center. Next, they 
performed classification over the reduced image 
constructed with only the selected bands.In addition, 
they also reduced the image spatially by using 9X9 
entropy filter before classification. 
 
In this work, we have proposed an algorithm that aims to 
select a set of non-redundant bands having high 
relevance to the class information. Non-redundancy is 
taken care of by selecting only the bands that are loosely 
correlated with each other. In [3], authors effectively 
utilized the correlation that exists among the adjacent 
bands of HSI to select non-redundant bands. Class-band 
MI, a widely used criterion [8], has been used for 
measuring the relevance of the bands with the class 
information. But, the calculation of the MI is based on 
probability, which tends to get more involved for 
datasets with continuous values. In [9] authors have 
explained this problem by considering two random 
variables X= {1, 1.1, 0.9, 5, 1.12, 5.1, 1.13, 0.89, 0.87, 
1.15} and Y= {a, a, b, a, a, a, b, b, a, b} of type 
continuous and categorical respectively. 
Mathematically, P(1), the probability of occurrence of 1 
in X  is 1/10. Similarly, P(5) in X also evaluates to 1/10. 
But, intuitively, 1 is more likely to repeat in X than 5 as 
the majority of the values are much closer to 1. This sort 
of problem does not arise in categorical datasets such 
as Y. 
 
In HSI, each pixel has an associated reflectance vector 
consisting of N reflectance values, one for each of the N 
spectral bands. The reflectance values are continuous 
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and thus the reflectance vectors, for pixels belonging to 
the same object, tend to be similar but may not be the 
same. On the other hand, the class labels in the ground 
truth are of type categorical. In [10] Swarnajyoti et al, to 
convert the continuous reflectance values to discrete 
values, used a basic equal-width interval binning 
approach (uniform quantization) [11]. In this algorithm, 
the minimum and maximum values of the discreet 
variables were calculated and the range was then divided 
into user-defined number discrete intervals of 
equal-width. In a subsequent step, the relevance and 
importance of the bands were determined using the 
rough set theory [12]. The authors then selected 
the k highly informative bands based on the relevance 
score and significance of the bands. 
 
In this work, to address this issue with MI calculation in 
HSI, we have proposed a graph-cut based superpixel 
generation method. Superpixel is a state of the art 
technology to find the patches of similar neighboring 
pixels and label those as being of the same type [13]. The 
authors in [14] introduced a graph-based superpixel 
generation method for HSI, where the input HSI was 
represented as an undirected weighted graph. The 
primary advantages of this algorithm were that it did not 
require the number of superpixels to be pre-defined and 
also could be directly applied to 3-D HSI without any 
transformation. Owing to these advantages, the proposed 
superpixels generation method also adapts a similar 
approach using graph-cut and spectral angle divergence 
(SAD). After the generation of the superpixels, all the 
pixels belonging to a superpixel are assigned with the 
same reflectance vector. Though this step results in some 
amount of information lost, this simplifies the 
calculation of MI by using the same reflectance vector 
for similar pixels. Section 2 presents a detailed 
description of the proposed method. 
 
2. PROPOSED METHODOLOGY 
 
The proposed band selection algorithm is divided into 
three phases - a) generation of superpixels, b) calculation 
of class-band MI and c) band clustering and selection. A 
detailed description of each phase is presented in the 
following sub-sections. Figure 1 presents the block 
diagram of the proposed methodology. 
 
2.1 Generation of Superpixels 
 
In this phase, superpixels are generated for the input HSI 
using a graph-cut based method. In the proposed 
method, initially, a graph G (V, E) is constructed using 
the input HSI, I. Let I consists of 'n' pixels and 'N' 
spectral bands. Each pixel is treated as a node in G and 
from each node; edges are created to its 8-connected 
spatial neighbourhood. The weight, w(eij), of an edge eij 

connecting two vertices vi and vj, is calculated using a 
divergence function d(vi,vj) based on SAD which is 
defined as[14]- 

 ( ) ( , ) 1
| || |
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ij i j
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      (1) 

 
Where, ρiλ is the reflectance value of the ith pixel at a 
band with wavelength λ. In the next step, the edges 
whose weights exceed a predefined threshold, δ, are 
deleted from the graph. Next, the connected components 
of the graph are extracted. Let the number of connected 
components be n', where n' may vary from 1 to n. Each 
component results in a superpixel consisting of the nodes 
(pixels) belonging to that component. Thus, a total of n' 
(n'<=n) superpixels are generated for I. Next, for each 
superpixel, the mean spectral reflectance vector is 
calculated by averaging the reflectance vectors of all the 
pixels belonging to that superpixel. The calculated mean 
reflectance vectors are then assigned to all the pixels of 
the corresponding superpixel. This results in a 
transformed image I', having the same dimensions as I, 
but with modified reflectance values. Algorithm 1 
presents the proposed graph-cut based superpixel 
generation method. 
 
Algorithm 1: A graph-cut based superpixel 
generation method 
Input: Hyperspectral Image (I), δ 
Output: A superpixel based transformed image I 
 
Step 1:Construct a weighted undirected graph G(V,E) by 
considering each pixel of I as a vertex. Connected each 
vertex to its 8-connected spatial neighborhood vertices 
by an edge. 
Step 2: For each edge e in E, Calculate its weight w(e) 
using equation 1.  
Step 3: 
for each edge e belonging to E do 

if w(e)> δ, then 
delete the edge e; 

end 
end 
Step 4: Find the set of all connected components of the 
graph G. 
Step 5: Construct a superpixel map from G and a 
transformed image I' 
for each component Ci in G do 

Mark all the vertices in Ci as the same superpixel 
number Si 
ri= average reflectance vector of all the  pixels in Si 
for all the pixels in Si do 

set reflectance vector of the pixel to ri 
end 

end 
Step 6: Stop 
.
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Figure 1: a) Input image with n number of pixels and N number of spectral bands b) Image with n number of pixels, n' 
number of superpixels and N number of spectral bands c) Spatially reduced image with n' number of pixels and N spectral 
bands d) k clusters of spectral bands e) Ground truth f) Normalized class-Band MI g) Image with n number of pixels and k 
selected bands and h) Classified image 
 

2.2 Calculation of Class-Band MI 
 
In this step, the normalized mutual information (NMI) of 
the bands from I' are calculated with the referenced ground. 
Mutual information measures the amount of information 
that two variables X and Y share. Mathematically, the MI 
between two discrete random variables X and Y is defined 
as [15]- 

 ( , )
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( ) ( )x X y Y

p x y
I X Y p x y
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  (2) 

 
Here p(x), p(y) and p(x, y) are the probability distribution 
of X, probability distribution of Y and the joint probability 
distribution of X and Y respectively. Though MI is a good 
criterion for similarity measure, it is not bounded. Thus, for 
our work, we have used the normalized mutual information 
as defined by authors in [16]. Mathematically, it can be 
expressed as- 
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Where, H(X) and H(Y)are the entropies of the variables X 
and Y respectively. Entropy for a given discrete random 
variable X with probability distribution p(x) is defined as 
[15]- 
 ( ) ( ) log( ( ))
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2.3 Band Clustering and Band Selection Phase 
 
In this phase, highly correlated bands are grouped to form k 
(k<=N) clusters using the k-means clustering algorithm 
[17]. We have used correlation as the distance metric, 
which fortwo vectors X and Y may be defined as [7]-
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Where, n is the length of the vectors X and Y. x  and y  are 
the means of the vectors X and Y respectively. Clustering is 
performed by considering each of the N spectral bands as a 
sample and the pixels as feature vectors. However, instead 
of using all the pixels, we are considering only one pixel 
from each superpixel. Thus, the length of the feature vector 
for each band is n'. This decreases the computation time of 
the band selection phase as generally n' is much smaller 
than n. Next, from each of the k clusters, the band having 
the highest class-band mutual information score (calculated 
in the second phase) is selected. Thus the number of 
selected bands by the algorithm is equal to the number of 
clusters. This set of selected bands is later used for training 
and testing the classifier. 
 
3. EXPERIMENTAL SETUP 

 
3.1 Dataset Description 

 
For the experimental analysis of the proposed work, we 
have used three hyperspectral images – Botswana, Indian 
Pines (IP) and Salinas.  
 
The Botswana image was acquired by NASA Earth 
Observing-1 satellite over the Okavango Delta, Botswana, 
using 242 bands. Noisy bands that cover water absorption 
features were removed, and the remaining 145 bands were 
included as candidate features. The image contains a total 
of 377856 pixels, out of which only 3248 are labelled. The 
ground truth consists of 14 classes. 
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Table 1: Number of labelled samples (class wise) for the different 
datasets 

Class# #Samples 
Botswana  

#Samples 
IP 

#Samples 
Salinas 

C1 270 46 2009 
C2 101 1428 3726 
C3 251 830 1976 
C4 215 237 1394 
C5 269 483 2678 
C6 269 730 3959 
C7 259 28 3579 
C8 203 478 11271 
C9 314 20 6203 
C10 248 972 3278 
C11 305 2455 1068 
C12 181 593 1927 
C13 268 205 916 
C14 95 1265 1070 
C15 N/A 386 7268 
C16 N/A 93 1807 
# labeled 
Samples 

3248 10249 54129 

# Unlabeled 
samples 

374608 10776 56975 

 
The Indian Pines scene was acquired by the AVIRIS 
(Airborne Visible/Infrared Imaging Spectrometer) 
sensor over the Indian Pines test site in 
North-westernIndianaand consists of 145×145 pixels and 224 
contiguous spectral bands. A corrected version of the original 
dataset containing only 200 bands (by removing the 20 bands 
covering water absorption region) is also available. The 
reference ground truth consists of 10249 labeled samples from 
16 classes.  
 
The Salinas scene was also acquired by the AVIRIS 
sensor over Salinas Valley, California using 224 spectral 
bands. The image contains 512×217 pixels. The corrected 
image consists of 200 bands by discarding the 20 water 
absorption bands. The ground truth contains 54129 labelled 
samples from 16 classes [18]. Table 1 presents the different 
classes and the corresponding number of pixels for the three 
dataset. 

 
3.2 Threshold Selection and Superpixel generation 

 
The number of superpixels generated in the first phase of the 
proposed algorithm is directly dependent on the input 
threshold, δ. A very low threshold results in 
over-segmentation by grouping similar pixels into different 
superpixels. Alternatively setting a high threshold produces a 
relatively small number of superpixels at the cost of merging 
of pixels from different classes. Due to this, the selection 
of δ is a crucial task to generate a suitable number of 
superpixels. For our experiment, for a dataset, we have first 
calculated the average intra-class SADs for each class using 

the ground truth. Table 2 presents the average intra-class 
divergences for the datasets. Then, inter-class SADs were 
computed by finding differences in average intra-class SADs 
for each pair of classes. The threshold, δ, for the dataset was 
then set to the average of the inter-class SADs. The calculated 
threshold values and the corresponding number of superpixels 
are reported in table 3. 
 
3.3 Setting the value of k 

 
As already stated in the proposed methodology, the number of 
selected bands is equal to the number of clusters formed in the 
band clustering phase. In k-means clustering, the number of 
desired clusters has to be pre-defined. For this work, we have 
repeated the band clustering phase of the algorithm for 
different k values ranging from 5 to 50 in a step of 5. For each 
k value, a reduced dataset was constructed by retaining only 
the selected bands from the original image. 
 

Table 2: Average intra-class divergence of the different datasets 
Class# Botswana IP Salinas 
C1 0.013912 0.00150189 0.9790839 
C2 0.00461 0.00300793 0.9623952 
C3 0.00091 0.00210921 0.5843338 
C4 0.001271 0.00416295 0.8327617 
C5 0.00262 0.00892097 0.7406048 
C6 0.002996 0.00286835 0.4632312 
C7 0.00496 0.00084361 0.5910876 
C8 0.001036 0.00190302 0.460925 
C9 0.001757 0.00101102 0.5912938 
C10 0.000811 0.00234199 0.6797362 
C11 0.000639 0.00246688 0.7773878 
C12 0.000659 0.00464918 0.8678898 
C13 0.001057 0.0009779 0.9712606 
C14 0.002622 0.001883 0.9790839 
C15 N/A 0.00605556 0.9623952 
C16 N/A 0.00292895 0.5843338 

 
 

Table 3: Threshold values and the corresponding number of 
superpixels the datasets 

Dataset #Pixels (n) Threshold 
(δ) 

#Superpixels 
(n') 

Botswana 21025 0.00324 20137 
IP 111104 0.00231 2130 
Salinas 377856 0.17216 9468 

 
3.4 Designing of the Classification Model 

 
To examine the effectiveness of the selected bands, 
classification was performed over the compressed image. The 
pixels were treated as samples and the reflectance values of a 
pixel, across the selected bands, were considered as the 
features. The classification was performed using multiclass 
Support Vector Machine (SVM) with the one-against-one 
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strategy with the polynomial kernel. SVM has been used 
successfully for classification of hyperspectral images owing 
to its capability of handling large input space [19]. Two 
parameters, C (soft margin cost function) and d (degree of the 
polynomial) were tuned by performing grid search over the 
normalized IP dataset using 5-fold cross-validation. For this 
purpose, the ranges of C and d were set to 0.01−100 and 1−15, 
respectively. The best combination reported by grid search 
was C=40 and d=5, which was used for the other two datasets 
as well. The model was then trained and tested using stratified 
10-fold cross-validation. The classification results were 
reported in terms of overall accuracy (OA) and kappa score. 
 
4. RESULTS AND DISCUSSION 
 
Initially, for all the three datasets, we constructed the 
superpixel based transformed images (I') using the thresholds 
given in table 3. As can be seen from the table, the numbers of 
generated superpixels were much less than the actual number 
of pixels in the original images. Next, for each dataset 
superpixel based transformed images were constructed. 
Figure 2 shows the band number 25 of the actual (I) and the 
transformed (I') images of the Botswana dataset. Figure 3 
shows the band number 178 from the actual and the 
transformed images of the IP dataset. Similarly, for the 
Salinas dataset, figure 4 shows the band number 178 of the 
original and the transformed images. The differences between 
the original and the transformed images are evident from 
these figures. 
 
Then, we calculated the normalized class-band NMI of the 
bands from transformed images with the corresponding 
ground truth. We have measured the same for the bands from 
the original images for comparison. Figures 5-7 display the 
calculated normalized class-band MI for the three datasets. 
The values for the original images are shown using green lines 
and that for the transformed images are shown using blue 
lines. 
 
Next, we performed band clustering and band selection. The 
process was repeated for both the original and the transformed 
images. The resultant sets of selected bands were different in 
both cases. Two reduced datasets, Ired and I'red were created 
with the selected bands. The first one was created using the 
selected bands for the original image and the second using the 
selected bands for the transformed image. The classification 
was carried out independently on both Ired and I'red. The 
classification results in terms of overall accuracies and kappa 
scores for the different datasets are presented in table 4. 
Figures 8-10 present the results in the form of graphs, where 
the blue and the green lines reflect the results obtained for 
Ired and I'red respectively. 
 
Figure 8 presents the classification results obtained for the 
Botswana dataset with a different number of selected bands. It 
was observed that the performance of the I'red was much better 
than Ired. With only 30 selected bands, for I'red, we achieved 

an overall accuracy of 98%. Table 5 reveals that it was an 
enhancement over the result (94.66%), obtained by 
Swarnajyoti et al [10], using the same number of bands. 

 
Figure 9 displays the measured overall accuracy and kappa 
score for the reduced datasets with a different number of 
selected bands. It was noted that the accuracy obtained by I'red 
outperformed the accuracy obtained by Ired. For I'red, with only 
25 bands, we could gain an accuracy of 89.86%. This 
accuracy, as can be observed from table 5, was better than the 
accuracy obtained by the authors in [5] and [10]. In [5], 
authors achieved the best accuracy of 85.40% using 25 
selected bands. In [10], authors achieved an accuracy of 
89.66% using 40 selected bands. However, the results 
reported by A.C. S Santos et.al. [7], for IP dataset was still 
better compared to the proposed method.  

 
The last experiment was conducted over the Salinas dataset. 
From table 3, it is noticed that the number of superpixels 
produced for the dataset was very small, barely 0.08% of the 
original number of pixels. Figure 10 gives the overall 
accuracy and kappa score achieved for the reduced datasets. It 
was seen that the overall accuracy and kappa score was much 
better in the case of Ired than I'red. This might be due to the 
inadequate number of superpixels in the transformed image, 
which resulted in a substantial amount of information loss. 
Nevertheless, the performance of the selected bands by the 
proposed band selection algorithm, for the original image, 
was still better than the results obtained in [5] and [7]. In [5], 
authors achieved accuracy of 97.70% using almost 100 
selected bands and in [7], using 30 bands authors achieved an 
accuracy of 97.10%.  However, for the original image, with 
only 25 selected bands by the proposed method we could 
achieve an accuracy of 97.02%. 
 

 

 

(a) (b) 
Figure 2:Band no. 25 of the Botswana Dataset- (a) Original image 
(I) and (b) Transformed image (I') for the threshold δ 
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(a) (b) 
Figure 3:  Band no. 178 of the IP Dataset- (a) Original image (I) and 
(b) Transformed image (I') for the threshold δ. 
 

  

(a) (b) 
Figure 4: Band no. 178 of the Salinas Dataset- (a) Original image (I) 
and (b) Transformed image (I') for the threshold δ. 
 

 
Figure 5: Normalized Class-Band MI for Botswana Dataset 

 
Figure 6: Normalized Class-Band MI for the IP Dataset 

 
Figure 7:  Normalized Class-Band MI for the Salinas Dataset 
 

Table 4: Classification results in terms of overall accuracy and 
kappa score for the different dataset 

Dataset #Selected 
Bands 

OA(%) Kappa 
Ired I'red Ired I'red 

B
ot

sw
an

a 

5 86.58 73.98 0.86 0.72 
10 86.79 88.73 0.86 0.86 
15 90.39 95.00 0.90 0.95 
20 90.39 95.00 0.90 0.95 
25 90.67 97.94 0.90 0.96 
30 91.96 98.00 0.92 0.97 
35 92.67 98.87 0.93 0.97 
40 92.40 98.94 0.92 0.98 
45 95.28 98.72 0.95 0.98 
50 94.95 98.87 0.95 0.98 

IP
 

5 65.04 65.17 0.58 0.60 
10 73.66 77.92 0.78 0.78 
15 75.62 85.92 0.71 0.86 
20 79.70 88.29 0.76 0.88 
25 79.52 89.86 0.76 0.90 
30 81.50 89.40 0.78 0.90 
35 81.98 89.47 0.79 0.90 
40 82.57 90.02 0.80 0.92 
45 84.72 91.33 0.82 0.92 
50 85.70 91.48 0.83 0.92 

Sa
lin

as
 

5 77.68 91.64 0.75 0.88 
10 89.46 94.47 0.88 0.92 
15 95.35 95.92 0.89 0.93 
20 90.38 96.64 0.89 0.94 
25 90.46 97.02 0.89 0.95 
30 90.75 97.21 0.89 0.95 
35 90.68 97.3 0.89 0.95 
40 90.79 97.75 0.90 0.96 
45 91.81 98.14 0.91 0.96 
50 91.25 98.42 0.91 0.97 
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(a) 

 
(b) 

Figure 8:Classification results for different number of bands of 
Botswana dataset - (a) Overall Accuracy (b) Kappa 

 

 
(a) 

 
(b) 

Figure 9:Classification results for different number of bands of IP 
dataset - (a) Overall Accuracy (b) Kappa 

 
(a) 

 
(b) 

Figure 10: Classification results for different number of bands of 
Salinas dataset - (a) Overall Accuracy (b) Kappa 

 
 

Table 5: Comparison of the proposed band selection method 
with other approaches available in the literature 

Dataset Authors  #Selected 
Bands  

OA (%) 

Botswana 
SwarnajyotiPatra et 
al 

30/145 94.66 

Proposed 30/145 98.00(I'red) 

IP 

Nakamura et al.  25/220 85.4 
SwarnajyotiPatraet al 40/220 89.66 
A. C. S. Santos et al 30/220 97.1 
Proposed 25/200 89.86(I'red) 

Salina 

Nakamura et al.  ≈100/204 93.7 
A. C. S. Santos et al 30/204 97.1 
Proposed 25/204 97.02 

(Ired) 
 
 
5. CONCLUSION 

 
In this paper, we proposed a band selection method based on 
k-mean clustering, correlation, mutual information and 
superpixels. The paper attempted to address the issues 
involved with the calculation of mutual information for 
datasets having continuous values. As the pixels of HSI also 
comprise of continuous reflectance values, similar issues also 
occur in such datasets. A superpixel based solution was 
proposed in this work, using the spectral angle of divergence, 
to address these issues in HSI. The proposed solution strived 
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to uniformize the reflectance vectors of neighboring pixels 
that carry similar information. The modified dataset was then 
used for the proposed band selection algorithm. This also 
added to the spatial reduction of the dataset, as in the final 
phase of the algorithm, i.e. band clustering, instead of 
considering all the pixels, only one pixel from each superpixel 
was considered. This reduced the time required for the band 
clustering and thus sped up the band selection process. It was 
noted that the proposed technique was capable of selecting a 
set of relevant bands and thus achieved high classification 
accuracy with a relatively low number of bands. The 
experimental results for Botswana and IP datasets 
demonstrated that the classification accuracy was much better 
in case of the reduced dataset constructed using the superpixel 
based transformed image. However, it was also observed that 
if the number of superpixels was too less, as in the case of 
Salinas dataset, the classification accuracy degraded 
significantly. This is due the reason that the given threshold 
resulted in merging of pixels from different classes. Hence, 
the threshold selection is a sensitive issue in the applied 
graph-based superpixel generation method. For binary 
classification problem finding a threshold is not that difficult. 
However, for multi-class problems, selecting one threshold to 
separate all the classes is a challenging task, as each class has 
different margins with each of the remaining classes. Thus, 
this is an open area for future research. 
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