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ABSTRACT 
 
We can define the network reliability as the ability of a 
network to carry out a desired operation such as 
communication. In the literature, several methods have been 
proposed to evaluate the reliability of networks. We can cite as 
an example state enumeration methods and cut/path set 
enumeration methods. The algorithm proposed by 
BRIJENDRA SINGH in his paper titled "ENUMERATION 
OF NODE CUTSETS FOR AN s-t NETWORK" belongs to 
the category of methods which are based on the enumeration 
of the minimal node cuts set. This  paper  is  made  for  the  
purpose to improve the Singh's algorithm. The  improvement  
includes  the efficiency  of  the  algorithm  and  the  execution  
time.  
 
Key words : Reliability, Node cutsets, minimal paths, 
network, graph.  
 
1. INTRODUCTION 
 
Network reliability is defined as the ability of a network to 
carry out a desired operation. As defined in [1], the network is 
said to be operational if the sink is accessible from the source 
(existence of at least one path connect the source to the sink). 
Since the World War II, the reliability studies has become 
very important especially for critical systems such as 
telecommunication systems, transportation systems, 
mechanical systems and oil/gas production systems 
[2]-[6],[8],[9] etc. 
Several methods can be used to evaluate the reliability of 
networks [10]-[28]. Among these methods, there are those 
based on the enumeration of list of Minimal Cuts (MCS) but 
many of them assume that the nodes are fully reliable as 
Benaddy [10], Amjed Al-Ghanim [20] and S. Hasanuddin 
Ahmad [21]. Other researchers assume that nodes and edges 
are not reliable as Nasser S. Fard [17] and Yi-Kuei Lin [16]. 
Few of the methods consider that the nodes are unreliable and 
the edges are perfectly reliable as Singh B. [13] , Prasad VC, 
Sankar V, Prasaka Rao KS [11] and Prasad VC[12]. 
 
 

 

As we have already introduced, network reliability is 
characterized by success of at least one path between two 
specified nodes. And for that, it is necessary to take into 
account all the possible sources of the failures of the systems. 
Unfortunately, most of the state of the art methods consider 
that the nodes of the network are perfectly reliable. However, 
in a practical communication network or computer network, 
nodes are also subject to failures with certain probabilities. 
Thus under such circumstance, reliability evaluation that 
assumes perfect nodes is not realistic. 
The main classes of methods to find the minimal node cuts: 

 Direct methods [12], [13]. 
 Methods based on enumeration of all minimal paths 

[20], [21], [28]. 
 Methods that count only basic minimal paths  which 

contain less paths than enumerating all minimal 
paths [11], [27]. 

The main purpose of this paper is to present and improve the 
Singh's algorithm to search for all of the minimal node cuts in 
a graph. 
The  rest  of  the  paper  is  organized  as  follows:  in section 
2 we present an introduction to the Sing B.'s method with the 
notations and the definitions that will be used all along this 
paper. In section 3, the implementation detail of Sing B.'s 
algorithm to find all minimal cuts and the problems of it will 
be presented. An improvement of the algorithm and the 
solutions for its problems are given in section 4. Section 5 
contain all the proofs for the improvements we have added 
and so their effectiveness. Finally, Section 6 contains an 
illustrative  example  that demonstrates how the algorithm 
will works with the new solutions. 
 
2. NOTIONS, DEFINITIONS AND FUNCTIONS 
 
2.1 Definitions 
 
Cut: a set of nodes whose removal divides the graph into two 
connected graphs. 
Minimal cut (MC): a cut c is a minimal if it does not contain 
other cuts. 
Reduced matrix (Ir): it is the matrix obtained after the 
removal of some lines and columns. 
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Residual graph: is the graph obtained after the deletion of the 
nodes. 
Order of combination: is the number of nodes in a 
combination. 
Shortest minimal path: is a path from source node s to 
terminal note t which contains the minimum number of 
nodes. 
Isolated node: is a node which has a row with all 0 values in 
the incidence matrix. 
2.2 Notions 
 
s: the source node. 
t : the sink node. 
G(V,E) : the graph, where V is the set of all nodes, and E is 
the set of all links. 
 
2.3 Functions 
 
getAdjacence(Node1,Set1) : return all the adjacency nodes 
of Node1, where those nodes do not contain the nodes in Set1. 
 
3. SING B. ALGORITHM  
 
This section will present the Singh B. [13] algorithm that 
finds all the minimal nodes cutsets in a graph, and all the 
steps of the algorithm. 
The algorithm at the first step accept as inputs the incidence 
matrix of the graph (I), and a set of nodes (Pm) that contain all 
the nodes in the shortest minimal path, except two, the source 
and terminal nodes. The algorithm also takes as parameter a 
set (N) that contain all nodes except the source and terminal 
nodes. 
In the second step, the algorithm initialize a set (S) by an 
empty set, and then in step 3 store the source node s and the 
terminal node t in the set (S) = {(s),(t)}. 
In the next step (step 4), the algorithm choose element by 
element from the set (Pm), and delete the column and the row 
that correspond to that element from the incidence matrix (I), 
to get the reduced matrix (Ir). If either the reduced matrix (Ir) 
is in a block diagonal form or (Ir) has a row with all 0 values, 
then store that element of (Pm) in the set (S), because it's a 
minimal cut. 
In the step 5, a variable K which contains the order of nodes 
combinations is initialize by 2, thus a node combinations of 
that order is generated. 
In the step 6, the algorithm take all nodes from the set N, and 
forms  the set (P) of all node combinations of order (K-1). 
Thereafter the algorithm combines each element in the set (P) 
with an element of (Pm) to obtain a node combination (Ck) of 
order K. 
The next step (step 7), is to take those combinations stored in 
(Ck) and delete all elements that have a subset in (S) to form 
the set (Cr). 
 

Now (Cr) contain all the candidates for the minimal node cuts 
of order K. The step 8 check if (Cr) is an empty set or not. If it 
is, go to the step 10, otherwise continue to step 9. 
In the step 9, the algorithm take each element of (Cr) and 
delete the column and the row that correspond to that element 
from the incidence matrix (I) to get the reduced matrix (Ir), 
and check if either the reduced matrix (Ir) is in a block 
diagonal form or (Ir) has a row with all 0 values. If it is, then 
the algorithm store that element of (Cr) in the set (S). 
In the two next steps 10 and 11, the order of the combinations 
of nodes will be incremented  K = K + 1, and check if K 
≤(Tn+1), where Tn is the total number of nodes in (N). If it is,go 
to step 6. Otherwise, the algorithm is over. 
It seems that the algorithm works perfectly, but if we look at 
step 4, it seems that it will not work in all cases. Considering 
the following example given in Figure 1 and Figure 2, the 
shortest minimal path in the graph is {s,2,t}, as a 
consequence (Pm) = {2}, if we take the step 4 and we delete 
the column and the row that correspond to it from the 
incidence matrix (I) to get the reduced matrix (Ir), we find 
that the values in row number 4 are 0. But it's not a minimal 
node cut, because there is another path that connect the source 
node s and the terminal node t. This implies that the 
algorithm can only work for reduced networks (networks that 
contain only the nodes which can appear in the set of minimal 
cuts). 

 

 
Figure 1: Graph1 

 

 
Figure 2: The reduced matrix (Ir) of the graph 1 

 
This is not the only problem of the algorithm. The step 9 has 
the same problem. Considering the following example given 
in Figure 3 and Figure 4. The set (Cr) generated by the 
algorithm contains (2,4,6) ⊂ (Cr) , now if we delete the 
column and the row that correspond to those nodes from the 
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incidence matrix (I) to get the reduced matrix (Ir), we will 
find that line number 5 has only values 0, but it's not a 
minimal cut, because there are other paths connecting the 
source node s to the terminal node t. 
After giving some examples where the algorithm cannot 
correctly generate the set of minimal cuts, we propose in the 
next section the improvements that can make the algorithm 
more efficient and faster. 

 
Figure 3: Graph2 

 

 
Figure 4: The reduced matrix (Ir) of the graph 2 

 
4. IMPROVING SING B. ALGORITHM  
 
In this section we present all the proposed improvements of 
the  Singh B. algorithm [13], which includes the complexity, 
the computational time and also proposing solutions for the 
failures of the algorithm. 
In the rest of this document, we represent a set of nodes by 
{rep, node1,..., noden}. In this new notation we add a unique 
number, noted rep, that's will be calculated using a simple 
algorithm (Left_Shifts) for each set of nodes. 
 
The Left_Shifts algorithm will use the Binary Left Shift 
Operator  << (the bits of the left operand are shifted to the left 
by the number of bits specified by the right operand exp :  
1 << 3 → 8). So each time we want to check if a given node, 
denoted x, belongs to a given set, instead of browsing the 
whole set we will only calculate the result of the bit-by-bit 
AND operation (denoted &) between the node x and the 
number representing the set rep. So if the result equal to x 
then x belongs to the set. Otherwise, x does not belong to the 
set. 

Left_Shifts (NodeSet) 
Begin 
Result = 0; 
For Node IN NodeSet DO 
Result = = Result + (1 << Node); 

EndFor 
 
RETURN Result;  

End 
For illustrating the algorithm, we consider the node set 
{2,3,4} as an argument of the algorithm. 
Result = 0; 
First iteration 
For 2 in {2,3,4} 
Result = 0 + (1 << 2) = 4. 
Second iteration 
For 3 in {2,3,4} 
Result = 4 + (1<<3) = 12; 
Third iteration 
For 4 in {2,3,4} 
Result = 12 + (1<<4) =28; 
The representing number of the node set {2,3,4} is 28. the set 
{2,3,4} will then be represented by {28, 2, 3, 4} 
 
4.1 First Improvement 
 

For the first improvement of the algorithm, we will propose 
a solution for the two failures of the the two steps 4 and 9. The 
case where Ir has a row with all 0 values and the elements of 
(Pm) does not represent a cut as already illustrated in the 
previous examples. 

 
The condition that say "if either Ir has a row with all 0 values 
" means that any node from the reduced matrix that have a 
row with all 0 value is an isolated node, but that doesn't mean 
that there is no path between s and t, unless the isolated node 
is the source node or the terminal node. 
 
4.1.1 The proposed solution 
 
The improvement for the step 4 is:  
Step 4 : For each element of (Pm): 

 Delete the column and row that correspond to the 
element from the incidence matrix to get the reduced 
matrix Ir : I ⇐ Ir 

 If either the source node s or the terminal node t of Ir 
has a row with all 0 values or, Ir is in block diagonal 
form then store the elements of (Pm) in (S). 
Otherwise choose the next element from (Pm). 

The improvement for the step 9 is: 
Step 9 : For each element of (Pm): 

 Delete the column and row that correspond to the 
element from the incidence matrix to get the reduced 
matrix Ir : I ⇐ Ir. 

 If either the source node s or the terminal node t of Ir 
has a row with all 0 values or, Ir is in block diagonal 
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form then store the elements of (Cr) in (S). 
Otherwise choose the next element from (Cr). 

With this change of conditions in step 4 and step 9, two 
improvement have been made, the first is to fix the Singh B. 
algorithm to work for all cases, the second is to reduce the 
execution time of the algorithm. 
 
4.1.2 Complexity 
 
The complexity of the previous condition (used in Singh's 
algorithm) is of the order of O(n*n) (n is the number of nodes 
in the reduced matrix). Because we have to check all the lines. 
For the new condition the complexity is O(n*2), because it is 
enough to check if at least one of the lines corresponds to the 
source node s and the terminal node t has only values 0. 
 
4.2 Second Improvement 
 
Now the algorithm has been improved in the term of checking 
the first condition, for the  step 4 and step 9. But there is still 
a condition that take too much time to test if the reduced 
matrix is in a form of block diagonal or not. For obtaining the 
block diagonal form of a matrix, a permutation of any two 
rows, or columns is made until the matrix could be written as: 
I(G) = [I(g1)/0|0/I(g2)], where g1 and g2 are two 
disconnected sub graphs such as s ∈ g1 and t ∈ g2. As it can be 
noticed for a small network it can be accepted as a solution, 
because the first operation is to permute the columns or rows, 
and after each permutation, a test is made  to check if the 
resulting matrix is written in a block diagonal form or not. in 
the case where there is a connection between the two 
sub-graphs, it is necessary to make all the permutation 
between the rows and the columns in order to conclude that 
there is a connection between the source and the sink. For a 
large network this solution is not acceptable because the 
complexity and the computational time for this operation is 
too height. 
For this issue, this paper propose a new technique  to replace 
the block diagonal form, by a simple algorithm. 
 
4.2.2 The proposed algorithm for testing connection 
 
The main idea of the proposed algorithm is to test if there is a 
connection, between the source node s and the terminal node t 
by starting from the source node s to the terminal node t. 
 
testConnection (Graph,Source,Terminal) 
Begin 
Set SourceSet = {s}; 
For Node IN SourceSet DO 
NodeAdj = getAdjacence(Node,SourceSet); 
If t ∈ NodeAdj Then  
 RETURN TRUE; 
ELSE 
Add the NodeAdj set to the set SourceSet. 

EndIF 

EndFor 
 
RETURN FALSE;  

End 
 
4.2.2 Illustration for the proposed algorithm 
 
For illustrating the proposed algorithm, consider the network 
in the Figure 1 : 
Initialize the parameters:  
N = 6; 
SourceSet = {s}; 
First iteration 
For s in SourceSet 
NodeAdj = {1,2} 
t not in NodeAdj ⇒	SourceSet ={s,1,2} 
Second iteration 
For 1 in SourceSet 
NodeAdj = {3} 
t not in NodeAdj ⇒ SourceSet = {s,1,2,3} 
Third iteration 
For 2 in SourceSet 
NodeAdj = {4,t} 
t  not in NodeAdj ⇒ there is a connection between s and t. 
 
The algorithm found that there is a connection between the 
source node s and the terminal node t in the third iteration, 
instead of doing the block diagonal technique, that require to 
do all the permutation between the rows and the columns to 
know that there is a connection between s and t. 
 
4.2.3 Complexity 
 
The complexity of the algorithm which makes it possible to 
test whether a matrix is on a diagonal block form or not is of 
order (n! * n!), Because it is necessary to permute all the 
columns and rows of the matrix. For the proposed solution, 
the complexity is  O(| V | + | E | ). 
 
4.2.4 The result of improvement 
 
The result of the improvement for step 4 is:  
Step 4 : For each element of (Pm): 

 Delete the column and row that correspond to the 
element from the incidence matrix to get the reduced 
matrix Ir : I ⇐ Ir 

 If either the source node s or the terminal node t of Ir 
has a row with all 0 values, or there is a no 
connection between the source and the terminal node 
using the testConnection algorithm, then store the 
elements of (Pm) in (S). Otherwise choose the next 
element from (Pm). 

The improvement for the step 9 is: 
Step 9 : For each element of (Pm): 

 Delete the column and row that correspond to the 
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element from the incidence matrix to get the reduced 
matrix Ir : I ⇐ Ir 

 If either the source node s or the terminal node t of Ir 
has a row with all 0 values, or there is a no 
connection between the source and the terminal node 
using the testConnection algorithm, then store the 
elements of (Cr) in (S). Otherwise choose the next 
element from (Cr). 

 
4.3 Third Improvement 
 

The other thing that slows down Singh's algorithm is the 
operation of generation of combinations of order k (step 6). 
This is due to the fact that each time we repeat step 6, it 
regenerates the order combinations (k -1), which increases 
the computation time. 

 
The proposed solution consists in using the set (Cr), which 
contains the minimal cuts obtained from the previous time. 
For the first iteration (k=2), and since (Cr) is not yet defined, 
the algorithm uses the classical method to generate the 
combinations of order (k). But from iteration 2, the proposed 
solution will use (Cr) to accelerate the algorithm while 
reducing the time necessary for the construction of the 
combinations of order (k) (see the proposed solution below). 
The improvement for the step 6 is:  
Step 6 : Generation of node combinations of order k: 
1) If K = 2 then 

 Write the set of nodes combination of order (k-1) from 
the set N to obtain (P). 

 Combine each element from (P) with an element of 
(Pm) to obtain (Ck), and calculate the corresponding 
unique number for each new generated element. 

2) If K != 2 then 
 If Cr = ∅ then Stop. 
 Combine each element el ∈	 (P) with a node of the set 

(N) where v ∈	 (N) and v not in el to form (Ck), 
recalculate the unique number for each generated 
candidate. 

While generating the new candidates for the minimal node 
cutsets, the algorithm will recalculate the unique number for 
each set of nodes. Four example considering the set P = {{28, 
2,3,4}} and the set N = {5}, the new set of nodes will be {{60, 
2,3,4,5}} (28 + (1 << 5) ⇒ 60) 
 
4.3.1 Complexity 
 
For the previous condition (step 6 in Singh's algorithm), the 
algorithm generate all the combinations of order K-1, the 
complexity for this operation in each time is O(M! / 
((M-K+1)!(K-1)!) ) (K is the order of combination and M is 
the number of nodes in the set N). The complexity of the 
proposed solution, for the first time is M, because it will 
generate combination of order 2 : O(M! / ((M-1)!1!) ) = M. In 

the next, it will use the set (Cr) that contains the MCS 
generated in the last time step. Therefore the complexity is  
O(|Cr|*M) in the worst cases. 
 
4.4 Fourth Improvement 
 
 

The fourth improvement is for the step 7, that delete those 
elements of (CK) which have a subset in (S) to obtain the set 
(Cr).  
For example : CK={{2,3}}, and S = { {2,4,5}, {2,1,5}, 
{3,4,5}}. The first step is to compare the set {2,3} with the set 
{2,4,5}, for this operation we have to check if each node  x ∈ 
{2,3}, x ∈ {2,4,5} (check if 2 ∈ {2,4,5} and if 3 ∈ {2,4,5}). 
The execution time of this operation is very large. The 
purpose of this improvement is to present a technique for 
reducing the execution time of the step 7. 

 
The main idea of the proposed solution is to use the unique 
number that's been calculated for each set to check if (R) ⊂ 
(Q) or not ( R and Q two sets). 
 
4.2.1 The proposed algorithm 
 
For deleting the MCS candidate from (Ck), which have a 
subset in (S) to form the set (Cr). The proposed algorithm 
compare all the elements EC ∈ CK with the all elements ES ∈ 
S using the bitwise operation & to tell if ES ⊂ EC. 
 
DeletingSubsets (Ck,S) 
Begin 
Cr = Ck; 
For Candidate IN Ck DO 
 For Cut IN S DO 

IF{(Candidate & Cut) == Cut} 
Remove the Cut from the set Cr; 
BREAK; 

ENDIF 
EndFor 

EndFor 
 
RETURN Cr;  

End 
 
4.2.1 Illustration of the proposed algorithm 
 

For illustrating the proposed algorithm, we consider the set 
Ck = {{2,3,4,5}[60]} and the set  S = {{1,2}[5],{2,3}[12], 
{4,6}[80]} as an arguments of the algorithm. 
Cr = {{2,3,4,5}[60]}; 
Iteration 1 
For {2,3,4,5}[60] in Ck 
For} {1,2}[5] in S; 
We have (60 & 5) == 4, therefor {1,2} not in {2,3,4,5}. 
Iteration 1.1 
For {2,3,4,5}[60] in Ck 
For {2,3}[12] in S; 
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We have (60 & 12) == 12, therefor {2,3} ⊂	 {2,3,4,5}, we 
remove {2,3,4,5} from (Cr). 
 
5. THE PROPOSED ALGORITHM 
 
In this section the improved algorithm to search for all 
minimal node cutsets is presented, with all the steps. 
Step 1 : Input the following. 

 Incidence matrix (I) of the graph. 
 (Pm) → set of nodes in the shortest minimal path 

except source node (s) and terminal node (t). 
 (N) → set of nodes in the graph except (s), (t), and Pm. 

Step 2 : Initialize: set of cutsets S = ∅, and the set B = ∅. 
Step 3 : Store the source node (s) and terminal node (t) as 
elements of (S) :  (S) = ((s),(t)). 
Step 4 : For each element of (Pm): 

 Delete the column and row that correspond to the 
element from the incidence matrix to get the reduced 
matrix Ir : I ⇐ Ir 

 If either the source node s or the terminal node t of Ir 
has a row with all 0 values, or there is a no 
connection between the source and the terminal node 
using the testConnection algorithm, then store the 
elements of (Pm) in (S). Otherwise choose the next 
element from (Pm). 

Step 5 : Initialize order of nodes combination K = 2. 
Step 6 : Generation of node combinations of order k: 
1) If K = 2 then 

 Write the set of nodes combination of order (k-1) from 
the set N to obtain (P). 

 Combine each element from (P) with an element of 
(Pm) to obtain (Ck), and calculate the corresponding 
unique number for each new generated element. 

2) If K != 2 then 
 If Cr = ∅ then Stop. 
 Combine each element el ∈	 (P) with a node of the set 

(N) where v ∈	 (N) and v not in el to form (Ck), 
recalculate the unique number for each generated 
candidate. 

Step 7 :  Delete those elements of (Ck) which have a subset in 
(S) to obtain the set (Cr) using the DeletingSubsets algorithm. 
Step 8 : If (Cr) = ∅ then STOP, otherwise 
to step 9. 
Step 9 : For each element of (Pm): 

 Delete the column and row that correspond to the 
element from the incidence matrix to get the reduced 
matrix Ir : I ⇐ Ir 

 If either the source node s or the terminal node t of Ir 
has a row with all 0 values, or there is a no 
connection between the source and the terminal node 
using the testConnection algorithm, then store the 
elements of (Cr) in (S). Otherwise choose the next 
element from (Cr). 

Step 10 : K ⇐ K + 1 
Step 11 : If K ≤ ((Tn+1) where Tn is the total number of nodes 
in (N) then go to step 6. Otherwise, go to step 12. 
Step 12 : STOP. 
 
6. ILLUSTRATION OF THE ALGORITHM 
 
Consider the network shown in Figure 1. 
 
Step 1 : Input the following. 

 Incidence matrix (I) of the graph. 
 

 
 (Pm) = (2) in the shortest minimal path (s-2-t). 
 (N) = (1, 3, 4). 

Step 2: Initialize set of cutsets : (S) = ∅. 
Step 3: Store the source node (s) and terminal node (t) as 
elements of (S). 
Step 4: Repeat for all element (Pm) = 2. 

 Choose 2: the result is: 

 
 There is no link between source node s and terminal 

node t, neither the source node s nor the terminal 
node t of Ir has a row with all 0 values. 

Step 5: Initialize order of nodes combination k=2. 
Step 6: Generate node combinations of order 2 in the 
following steps. 

 P = ((1), (3), (4)). 
 Ck = ( (1,2) , (2,3) , (2,4) ). 

Step 7: Cr = ( (1,2) , (2,3) , (2,4) ). 
Step 8: Since Cr != ∅ go to step 9. 
Step 9 : Repeat for all element  of  Cr  = ( (1,2) , (2,3) , (2,4) 
) 

 Choose (1,2) the result is : 

 
 The row corresponding to s has all 0 values. Store the 

node combination (1, 2) as an element of (S). 
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 Choose (2,3) the result is : 

 
 

 The row corresponding to t has all 0 values. Store the 
node combination (2, 3) as an element of (S). 

 Choose (2,4) the result is : 

:  
 There is no connection between source node s and the 

sink node t, neither the source node s nor the 
terminal node t of Ir has a row with all 0 values. 

Step 10: K = 3. 
Step 11: If 3 ≤ ((Tn+1)  Tn = 4, then go to step 6. 
Step 6: Generate node combinations of order 2 in the 
following steps. 

 Since Cr != ∅ and k != 2  then P = ( (1,2) , (2,3) ,(2,4) 
). 

 Ck = ( (1,2,3) , (1,2,4) , (2,3,4) ). 
Step 7:  Cr = ∅. 
Step 8:  Since Cr =  ∅, go to step 10. 
Step 10: K = 4. 
Step 11: If 4 ≤ ((Tn+1); Tn = 4, then go to step 6. 
Step 6: Generate node combinations of order 3 in the 
following steps. 

 P = ((1, 3, 4)). 
 Ck = ((1, 2, 3, 4)). 

Step 7:  Since (Cr) = 0, go to step 10. 
Step 10: K = 5. 
Step 11: If 5 ≤ ((Tn+1); Tn = 4, then go to step 12. 
Step 12: Stop. 
Result : (s) , (t) , (1 , 2) , (2 , 3) . 
 
7. BENCHMARK AND TEST 
 

To evaluate the efficiency of the proposed improvements of 
the algorithm, we carried out an experiments. In these 

experiments, we have tested on typical grid networks, shown 
in Figure 5, in each experiment we incremented the number 
of edges and nodes. The result of this test, as expected, show 
that our algorithm is more efficient than [13]. 
As for the implementation language we used JAVA, and for 
equipment HP core i5 second generation 6 GB Ram. 

 
Figure 5: A typical grid network with 12 nodes 17 edges. 

 
Table 1: Comparison result of the second test 

 

 
Figure 6: Ratio = CPU time of [13] / CPU time of the proposed improvements. 
 
As a results of experiments (Figure 5, Table 1, Figure 6), it 
show's that the execution time of the proposed improvements 
is less than [13]. In addition, the execution time of our 
improvements gets shorter than [14] as more we add nodes 
and edges to the grid graph. 
 
8. CONCLUSION 
 
Based on Singh B. method, this paper make many 
improvements to the Singh B. algorithm, and present them by 
an illustrated examples. Multiple solutions are proposed by 
adding and editing conditions in the algorithm, and 
proposing an method for replacing the block diagonal form 
that take too much time, which lead us to reduce the execution 
time of the algorithm as the result of the experiments shows. 

Network 
(N*E) 

Nb of MCS Our Algo [13] 

12*17 22 0.136 s 1.163 s 
16*24 65 0.399 s 3.271 s 
20*31 141 2.393 s 20.186 s 
24*38 191 12.744 s 103.098 s 
28*45 265 153.426 s 1352.339 s 
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