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 
ABSTRACT 
 
The paper proposes a new iterative approach for the numerical 
solution of partially coupled problems of thermo elasticity for 
isotropic bodies. The tasks are considered in two settings, 
dynamic and static. A discrete analogue of the boundary value 
problem is compiled on the basis of the finite difference 
method and an iterative process is performed, which allows 
you to find the values of the desired functions. It is assumed 
that, at the zero approximation, the values of the desired 
functions in the internal nodes are trivial. The essence of the 
proposed algorithm is demonstrated by numerically solving 
the one-dimensional dynamic and two-dimensional static 
thermo elasticity problems. The proposed algorithm can be 
applied for the numerical solution of thermoplastic coupled 
and unbound problems for isotropic and anisotropic bodies. 
 
Key words: Computer simulation, deformation, stress, 
displacement, iterative process. 
 
1. INTRODUCTION 
 
Mathematical models describing the process of heat 
propagation were first considered in the works of Duhamel – 
Neumann, in which it was assumed that the total deformation 
consists of elastic deformation and thermal expansion. When 
solving the problems of thermo elasticity, usually, the 
temperature distributions were determined previously based 
on the solution of the heat equation and, as it were, the 
equations of the theory of elasticity were solved with the 
temperature terms considered in combination with the volume 
forces. Related problems of thermo elasticity, within the 
framework of thermodynamic laws, were considered in the 
works of Biot M. [1], Youssef H.M. [2] and others. In [3] - [5], 
a numerical solution of coupled problems for isotropic and 
orthotropic bodies was considered. Further in [6], computer 
simulation of plastic stresses for transversely isotropic bodies 
was considered. The nonlinear properties of composite 
materials with radioisotope inclusions were studied in [7]. In 
 

 

[8], electromagnetic voltages were investigated. A.A. 
Khaldjigitov and his students studied the issues of anisotropic 
plasticity taking into account temperature [9]-[10]. 
In many applied engineering and technical problems, the 
process of deformation of structures and their elements, taking 
into account temperature effects, can be described by model 
equations of two types, namely, in the form of a coupled or not 
coupled thermo mechanical problem. In an unrelated problem, 
the heat equation is solved separately, and its results are used 
as a well-known parameter in solving the basic model 
equations of thermo elasticity. Related problems, unlike 
unrelated problems, simultaneously solve the equations of 
thermo elasticity and the heat flux equation. Since 
deformations cause the appearance of temperature, and 
temperature causes the appearance of deformation, this 
approach allows a more adequate description of the process of 
thermo elasticity. In this paper, we consider partially related 
problems of thermo elasticity. 

2. FORMULATION OF THE PROBLEM 
A partially related problem of thermo elasticity can be 
considered in a dynamic or static setting. 

2.1 Dynamic problem 
Partially coupled dynamic thermo elasticity problem, consists 
of equations of motion 
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where,
i j - stress tensor, 

i j - strain tensor, 
iu - displacement 

components, 
iX - volume force, ,  - Lame constants, 

T-temperature, Т0-initial temperature,   corresponds to 
thermal expansion coefficient,

11 22 33      ,  -density of the 
body, 

ij - delta Kronecker symbol, 
jn - external normal to the 

surface
2 , 

1 2 3
, ,S S S - components of the external load 

vector,
0 -is the heat flow coefficient andc -denotes heat at a 

constant deformation.  
The boundary-value problem (1) - (6) in the one-dimensional 
case takes the form 
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Equations (7)-(10), after some transformations, can be written 
in the following form with respect to displacements and 
temperature 
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In the system of differential equations (13), the second 
equation is independent of displacement, and can be solved 
separately independently of the first. For this reason, the 
system of equations (13-14) will be called a 
partially-connected boundary-value problem, as mentioned 
above. 

2.2 Static problem 
Neglecting the dynamic terms in the boundary value problem 
(1) - (6), i.e. inertial terms, we obtain 
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For simplicity, we consider problem (15) - (17) in the 
two-dimensional case. After several transformations, 
equations (15) and (17) can be written in the following form, 
respectively 
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with the following boundary conditions 
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3. NUMERICAL METHOD 

3.1 Numerical method for a dynamic problem  
Replacing the partial derivatives in equations (13) with finite 
differences, we can find that 
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solving difference equations (20)-(21) with respect to 
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The initial and boundary conditions with respect to the nodal 
points have the form 
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Using the nodal values of the functions 0 1,i iu u  and 0 ,j j

NT T  
from the initial and boundary conditions, on the initial two 
layers, one can find the desired quantities using the recurrence 
relations (22) and (23). 
Recall that the solution of problem (13) - (14) based on 
explicit finite-difference schemes was reduced to recurrence 
relations (22-23). 
Now, let us consider how the iterative method can be applied 
to solve a partially coupled dynamic one-dimensional 
problem (13-14). To do this, replacing the partial derivatives 
in equations (13) with finite difference relations, we have 
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Note that the right side of equation (25) differs from the right 
side of difference equation (20) and the left side of equation 
(26) differs from the left side of equation (21). 
 
Solving the difference equations (25)-(26) with respect to 

iju and ,i jT , respectively, we can find that 
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Next, based on equations (27) and (28), we organize an 
iterative process
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Using the initial and boundary conditions (24) on each layer in 
time t for j = 2,3, ... from the iterative relations (29) - (30) one 
can find the values of the desired functions. 

3.2 Numerical method for a static problem  
Replacing the derivatives with finite-difference relations in 
equations (29), we can find the finite-difference equations 
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We solve the system of difference equations (31) - (32) with 
respect to , ,,i j i ju v and ,i jT , respectively, and construct the 
following iterative process 
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In equations (33-35), the superscript k is the number of 
(successive approximations) iterations. For k=0, the values of 
the functions (0 ) (0 )

, ,,i j i ju v  and (0)

,i jT  are known on the boundary Γ, 
according to boundary conditions (30), at the internal nodal 
points, they are trivial. 

4. TEST PROBLEMS 

4.1 Dynamic problem 
As an example, we solve a dynamic partially connected 
problem under the following boundary and initial conditions 
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Table 1: Values of the function u(x,t) (iterative method) 
for 0.001   

 x 
t 

0 0.1 0.2 0.3 0.4 

0 0 0 0 0 0 
0.01 0 -0.00042 -0.00035 -0.00026 -0.00014 
0.02 0 -0.00163 -0.00141 -0.00102 -0.00054 
0.03 0 -0.00358 -0.00316 -0.00230 -0.00121 
0.04 0 -0.00623 -0.00559 -0.00407 -0.00214 
0.05 0 -0.00949 -0.00869 -0.00633 -0.00333 

 
Table 2: Values of the function u(x,t) (explicit scheme) 

 x 
t 

0 0.1 0.2 0.3 0.4 

0 0 0 0 0 0 
0.01 0 -0.00042 -0.00035 -0.00026 -0.00014 
0.02 0 -0.00165 -0.00142 -0.00103 -0.00054 
0.03 0 -0.00369 -0.00318 -0.00231 -0.00121 
0.04 0 -0.00646 -0.00564 -0.00410 -0.00216 
0.05 0 -0.00992 -0.00880 -0.00640 -0.00336 

 
Table 3: Temperature values T(x,t) (iterative method) 

for 0.001   
 x 

t 
0 0.1 0.2 0.3 0.4 

0 0 4.63525 8.81678 12.13525 14.26585 
0.01 0 4.62958   8.80599   12.12041   14.24839   
0.02 0 4.62392   8.79523   12.10559   14.23098   
0.03 0 4.61827   8.78448   12.09079   14.21358   
0.04 0 4.61263   8.77374   12.07601   14.19621   
0.05 0 4.60699   8.76301   12.06125   14.17885   
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Table 4: Temperature values T(x,t) (explicit scheme) 
 x 

t 
0 0.1 0.2 0.3 0.4 

0 0 4.63525 8.81678 12.13525 14.26585 
0.01 0 4.62958   8.80599   12.12041   14.24839   
0.02 0 4.62392   8.79522   12.10558   14.23096   
0.03 0 4.61826   8.78445   12.09076   14.21355   
0.04 0 4.61261   8.77371   12.07597   14.19615   
0.05 0 4.60697   8.76297   12.06119   14.17878   

 

 
Figure 1: Graph of the distribution of the function u(x,t) along 

the OX axis (iterative method) for 0.001   

 
Figure 2: Graph of the distribution of the function u(x,t) along 

the OX axis (explicit scheme) 
 

From the Tables 1-4 and Figures 1-2 it can be seen that the 
numerical values of the approximate solutions obtained by the 
two methods are quite close. 

4.2 Static problem 
Note that according to the boundary conditions on all sides of 
the rectangle, the displacement values are equal to zero; on the 
sides perpendicular to the OY axis, a sinusoidal temperature is 
specified. On the other two sides, it is assumed that the 
temperature is zero. The values of the desired functions, at 
internal points, at zero approximation are considered zero at 
k=0. 
The problem was solved with the following parameter values 

0.7  , 0.3  , 0.125  , 1 2 1 , 1 2 10l l N N    . 
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Table 5: Values of the function u(x,y) for 0.0001   
 x 

y 
0 0.1 0.2 0.3 0.4 

0 0 0 0 0 0 
0.1 0 -0.08237 -0.10713 -0.09261 -0.05264 
0.2 0 -0.10103 -0.13932 -0.12418 -0.07167 
0.3 0 -0.10343 -0.14491 -0.13088 -0.07614 
0.4 0 -0.10227 -0.14353 -0.13014 -0.07593 
0.5 0 -0.10156 -0.14491 -0.12924 -0.07545 

 
Table 6: Values of the function v(x,y) for 0.0001 

  x 
y 

0 0.1 0.2 0.3 0.4 

0 0 0 0 0 0 
0.1 0 0.01652 0.05859 0.09696 0 
0.2 0 0.02940   0.07584 0.11972 0 
0.3 0 0.02902 0.06551 0.09965 0 
0.4 0 0.01746 0.03719 0.05536 0 
0.5 0 0 0 0 0 

 
Table 7: Temperature T(x, y) for 0.0001   

 x 
y 

0 0.1 0.2 0.3 0.4 

0 0 4.63525 8.81678 12.13525 14.26585 
0.1 0 3.51870 6.69296 9.21207   10.82944 
0.2 0 2.74661   5.22436   7.19071 8.45319   
0.3 0 2.24344   4.26728   5.87341   6.90461   
0.4 0 1.95997 3.72809   5.13128   6.03218   
0.5 0 1.86847   3.55404   4.89171   5.75056   

 

 
Figure 3: The distribution graph of the function u(x,y) inside 

the rectangle for 0.0001   
 

 
Figure 4: The distribution graph of the function v(x,y) inside 

the rectangle for 0.0001   
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Figure 5: The distribution graph of the function T(x,y) inside 

the rectangle for 0.0001   
 
The displacement values u(x,y) and v(x,y) can be seen in 
Tables 5-6 and Figures 3-4, which are equal to zero at the 
edges of the rectangle, which is consistent with the given 
boundary conditions. The values of the function are 
symmetrical with respect to the midlines. The maximum 
temperature value T=15 is reached in the center of the side 
where the temperature of the sinusoidal shape is applied 
(Table 7). In Figures 3-5, we can analyze the distributions of 
the components of the displacements u(x,y), v(x,y) and the 
temperature T(x,y) in the rectangle. 

5. CONCLUSION 
 
The article presents a new approach for the numerical solution 
of partially coupled boundary problems of thermo-elasticity. 
These tasks are considered in dynamic and static setting. The 
dynamic problem was solved by two methods for comparing 
numerical results. The results obtained are very close, this 
ensures the reliability of the numerical results and the solution 
method. For a static problem, symmetric boundary conditions 
are considered. The numerical results obtained are also 
symmetrical. The proposed numerical solution technique can 
be applied to solve thermoplastic problems. 
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