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ABSTRACT 
 
Distributed data centers are considered very important for 
data storage services in the contemporary computing world 
especially with the increased amount of data that are needed 
to be stored and retrieved. Data retrieval speed performance is 
a sensitive issue when considering the huge amount of data 
that need to be retrieved from several nodes over the network. 
Data prefetch has proved to be an important technique for 
reducing data reading time from the distributed nodes. In 
such distributed environment, data fetching time from a node 
to an another consists of the disk reading time and the 
network transmission time. Multi-layer (hybrid) storage 
provides high performance solutions for big data centers. We 
introduce a solution PPDHSS that implements 
predictive-probability graph to predictively prefetch the data 
that are expected to be accessed by the application in the near 
future from the lower level hard disk of the storage-side nodes 
(slower) to the top level solid state disk (faster) in parallel 
which the application data reading requests that comes from 
the client-side node by taking advantage of the storage 
system’s parallelism. Our performance evaluation in which 
we used real traces shows that our system can reduce the data 
fetching time from storage side-nodes to the client-side nodes 
without the need of using caches of large size.  
 
Key words: Predictive prefetching · probability graph, 
distributed storage environment. 
 
1. INTRODUCTION 
 
In contemporary world, Big Data concept became important 
in different domains especially in business world [18]. 
Research related to Big Data processing and storage is 
considered a dominant research were there exist a significant 
need for solutions that aim to improve the performance [19]. 
There exists an increased amount of data that need to be 
stored and retrieved in big data centers that consists of 
distributed hybrid (multi-levels) storage nodes. Storage-side 
nodes of parallel hybrid layers that vary in speed, size, and 
cost are important to allocate the data based on their predicted 
importance. Potential data that will be actually accessed soon 
is considered more important. Data prefetch research played 
an important role in solving performance bottleneck problems 
in read intensive data centers [1][5]). Several prefetch 
techniques were proposed to preload data from disks before 

the application issues the actual read request. Mainly, there 
are two prefetch methods; predictive and informed. In 
predictive method, the system predicts what data will the 
application needs soon based on the patterns of previous 
requests history [2]. On the other hand, informed method 
makes use of the hints that are given from the application to 
fetch the data in advance [1][3][5]. This research implements 
probability graph predictive method (PG) that continuously 
record the history of the data requested by the application at 
the client-side node [2][6]. We study the performance impact 
of this scheme on distributed hybrid (multi-level) storage 
environment. In such systems, data are allocated in remote 
storage-side nodes in a form of blocks and fetched to the 
application (client) side node via the network. Data fetching 
time includes both, storage disk reading time and network 
transmission time. We predictively prefetch the data from 
lower levels (slow) of the storage-side nodes to the top one 
(fast) in parallel with the application read requests in order to 
reduce the data read time; and eventually, reducing the 
application’s running time.  

1.1 Research Motivation 

Several issues motive us to do this research. The growing use 
of hybrid layers in contemporary big data centers especially 
with the increased amount of data that need to be stored in 
daily life domains. Predictive prefetch process does not need 
hints from the applications as informed prefetch process does. 
In addition, data fetching time in distributed environment is 
increased due to the network transmission time. Reducing 
disk reading time is valuable to lessen the entire data fetching 
time. Predictive prefetch process can be invoked to 
predictively preload that data that is expected to be accessed 
soon from the bottom to the top level of the hybrid 
multi-levels environment. This can be done parallelly while 
the application is issuing its data read request as there is 
enough bandwidth in the parallel storage setting. 

1.2 Research Contributions 
Our PPDHSS research provides a mechanism based on 
probability graph-predictive prefetch process to predict and 
prefetch the data that are expected to be needed by the 
application in the near future from the bottom level to the top 
one in a two levels distributed hybrid (multi-levels) storage 
environment. This process is performed simultaneously while 
the application is issuing its data read requests. Our 
storage-side nodes setting consists of two levels; SS and HD.  
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2. RELATED WORK 
 
This section presents some of the existing work and concepts 
related to our research presented in this paper. 
 
2.1 Hybrid (multi-level) storage Environment 
 
A hybrid (multi-level) storage environment is commonly used 
in big data centers as it provides a hierarchy of devices that 
are different in their size, cost, and speed. As we go up in the 
hierarchy, cost in dollars and data retrieval speed increase and 
size decreases. So, it is better to store the most important data 
that is most frequently demanded in the top level in order to 
provide high performance in their retrieval process 
[1][2][3][4][5][11][12]. When a data block is requested by the 
application at the client-side node, the system search for it in 
the top level of the storage-side nodes, if it is not found, the 
system descends to the lower levels until it is founded and 
retrieved. 
In distributed environments, hybrid storage is also used where 
the multi-level storage devices are distributed in a form of 
storage-side nodes connected through the network. Data 
blocks are in such setting are replicated or stripped all over 
the storage-side nodes [1]. Applications on client-side nodes 
request the data to be fetched from storage-side nodes over the 
network. Such systems are highly important to maintain high 
performance, availability, reliability, fault tolerance, and 
scalability [10]. 
 
2.2 Data Prefetch 
There exist two main data prefetch techniques: Predictive and 
Informed [15]. Predictive approach predicts the data that will 
be requested in the future by the application based on its 
historical requests’ patterns. An approach used to record the 
history of the application’s previous data requests is called 
probability graph (PG) [2][6][13]. Markov chain prediction 
approach was also used by other researchers [8]. Informed 
approach takes hints from the application on its future data 
requests in order to preload the data in advance. 
Data Prefetch process in hybrid (multi-levels) storage 
environment is performed by moving the important data 
blocks from a bottom level in the hierarchy to the top one. 
This process is technically challenging as it importantly needs 
to control both prefetch process aggressiveness and accuracy 
[7][9][11] [12]. 
 
3.  SYSTEM  DESIGN ISSUES 
 
This section presents the hardware and the software design on 
which our PPDHSS system functions.  
 
3.1 Hardware Design  
 
The system consists of several nodes that are connected over a 
network. A node is either an application (client)-side node or 

a storage-side node. The array of storage-side nodes forms the 
distributed parallel hybrid (multi-levels) storage 
environment/ system. The application on the client-side node 
keeps requesting data by issuing data read requests for the 
data blocks that are located at the storage-side nodes. The 
storage-side nodes architecture consists of a two-level storage 
disks that consists of Solid-State Disk (SS) in the top level and 
Hard Disk (HD) in the bottom level as shown in (Figure. 1). In 
terms of performance, SSs have higher data retrieval speed 
performance. In this research, we are not going to implement 
a cache at client-side node to cache the data that are brough 
from the storage-side nodes through the network as we 
consider that will be more helpful in optimizing the 
performance. In addition, we will implement one client-side 
node (i.e. one application); however, our approach will 
function in case several client-side nodes are connecting. 
At the top level of each storage-side node (i.e. SS), there exists 
a reserved portion (we call it: SS cache) that implements 
(LRU) least-recently-used policy to cache both of; the 
application’ data read requests and the data that our PPDHSS 
mechanism prefetch to the SS from the HD. 
 

 
Figure 1: PPDHSS’s hardware design. Quoted from [1]. 

 
As we will illustrate next, data are stored in the distributed 
hybrid (multilevel) storage environment in a form of fixed 
sized data blocks. So, the size of the cache implemented in SS 
level is measured by number of cache blocks. Each cache 
block has the same size of the fixed size data block. Our 
system uses data stripping to parallelize data in the distributed 
storage-side nodes. This leads us to consider that each cache 
block is also stripped in the distributed SS level in the form of 
equal size distributed chunks; where each cache block chunk 
at each storage-side node’s SS can buffer a prefetched chunk 
of a particular stripped data block available in the same 
storage-side node’ HD. 
 
3.2 Software Design 
 
PPDHSS’s implements three modules: disk manager, SS 
cache manager, and predictor. The three modules are 
implemented in the storage-side nodes. While the application 
issues requests for data reads, PPDHSS receives the request in 
the three software modules. The disk manager seeks for the 
requested data block in the storage system from top to bottom. 
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The SS cache manager controls the cache that is implemented 
in the SS level to buffer the application’s reads as well as the 
prefetched data from the HD. It also performs LRU policy 
when the SS cache reaches to its full capacity. The predictor 
receives each application data read request and executes the 
probability graph-predictive algorithm to determine the data 
blocks that have good cache to be requested by the application 
soon in the near future [2]. Those requests are sent to the disk 
manager to read them from the HD to the SS unless if the data 
block is already existing in the SS level. In such parallel 
storage setting, there is a maximum bandwidth of the number 
of data blocks that can be prefetched from the SS to the HD in 
parallel with the application data read requests without being 
congested. Later we will discuss this issue and its 
measurements. 
 
3.3 Assumptions 
 
We assume that the data blocks are already stored in the 
bottom level (HD) as it has a significant large storage space in 
comparison to the SS. This represent a worst-case scenario 
since we can have better performance if some of the data are 
already stored in the SS. [1][2][5]. 
As we have the small cache implemented in the SS level (SS 
Cache), our data prefetch mechanism will cache copies of 
prefetched data beside the application’s data read request the 
are read from the HD (SS misses). No moves for the entire 
data blocks from the HD to the SS takes place as that will 
waste the SS level’s capacity and we will consume the parallel 
storage’ bandwidth; especially if some of these data blocks 
need to be returned to the HD level later [2]. Using our SSs 
and HDs installed in our research lab’s distributed storage 
setting, we found that SS provides higher performance than 
HD when using big sized data blocks. Other researchers have 
noticed the same observation too. For example, HDFS uses 
data blocks of sizes starting from 64 MB [14]. Hadoop uses 
Hadoop archives (HAR) tool to combine the data blocks in 
case they are already small [17]. Based on our research lab 
setting, we will use data blocks of size 200MB. [1][5]. 
 
4.  THE PPDHSS ALGORITHM 
 
For such storage systems, we proposed our PPDHSS that 
implements probability graph- predictive approach (PG) in 
order to do data prefetch for important data blocks to the top 
level of the storage-side nodes. Important data blocks are 
those that are very likely to be requested by the application 
soon. This will reduce data fetching time from remote 
storage-side nodes to the client-side node and therefor, 
reduces the application’s running time. This process goes 
simultaneously while the application on the client-side node 
is requesting the data.  
In a distributed storage environment, application reads its 
needed data from the remote storage-side nodes. Reading 

time for each data block includes network transmission time 
beside the disk read time. Our mechanism reduces disk read 
time as a part of the overall data loading time.  
At storage-side nodes, our experiments indicate that parallel 
storage environment may encounter bandwidth congestion in 
case a huge number of data are requested in one time. So, 
there is an ultimate limit of data read requests that can be 
processed in the same time in the parallel storage 
environment. As the application issues only one data read 
request at the moment, the unused bandwidth can be used for 
doing the prefetch process from the low to the top level in 
order to increase the chance in which the application finds its 
future read requests in the top (fast) level of the storage 
hierarchy. 
 
 
4.1 Definitions 
 
Our distributed environment consists of two types of nodes: 
user-side nodes and storage-side nodes where each 
storage-side node contains two storage disks levels (SS and 
HD) (Figure. 1). 
We define (BwMax) to be the max number of data read 
request that can be processed in the storage system without 
causing a congestion. As the application always issue one 
read request at each time for a particular data block to be read, 
the remaining value of the max bandwidth (BwMax - 1) can 
be used to process the data prefetch requests in the 
storage-side nodes. Since each storage-side node can perform 
one data read request for one block inside its hybrid system at 
a time without being congested, (BwMax) value is equal to 
the number of storage-side nodes. The SS cache size is 
represented by the term (CacheSize) which is counted by the 
number of cache blocks. Each cache block has the same size 
of the fixed data block size that is stored in the storage-side 
node.  
An application running time comprises both, the processing 
time and the data loading time from the storage-side nodes 
over the network. The time interval between each two 
consequent data read requests is the sum of the loading and 
the processing times for the current under manipulation data 
block. We will not consider processing time in our study as 
our system is mainly concerned for read intensive 
applications. 
As our distributed hybrid storage-side nodes consist of HD 
and SS, THD−network is the time of loading one data block from 
a remote storage-side node HD level to the client (application) 
side node, and Tss−network be the same when reading that from 
the remote node’ SS. Tss−network value is less when compared to 
THD−network due to the high speed of SSs. THD−ss is the time 
needed to load one data block from the HD and to have it 
copied to the SS one. In addition, the process of data prefetch 
from HD to the SS level is performed simultaneously with the 
application data read requests [1]. 
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4.2 The Predictive Probability Graph (PG) 
 
Our PPDHSS makes use of predictive data prefetch algorithm 
that is based on PG approach to prefetch predicted data blocks 
to the top level in the storage-side nodes; hence, reducing the 
applications’ running time. As mentioned previously, the 
predictor module that performs this task is implemented in 
the storage-side nodes. PG contentiously records the 
application’ past data requests patterns in order to predict 
near future requests. PG uses a directed-weighted-graph that 
consists of nodes and edges that are used to estimate the near 
future request probabilities of the data blocks. Each 
previously requested data block by the application is allocated 
a node in the PG. Directed-weighted-edges are used to make 
connections across the nodes to be used in the probability 
calculations of which a particular block will be requested. 
While the application is issuing data read requests, the 
predictor module keeps updating the graph and executing the 
prefetch process. There are two main parameters attached to 
this process, 1- Look-Ahead-Period (LKP) 2- Minimum- 
Chance Percentage (MNC). LKP determines the correlation 
among the consequent requested data blocks. MNC 
determines the volume of the upcoming data prefetch request 
when a data block is requested by the application. Increased 
LKP and decreased MNC leads to make the prefetch process 
more aggressive. Over aggressive prefetch process threaten 
the prefetch process accuracy as un-needed data blocks will be 
brought [2][6]. 
 
4.3 Putting All Together 
 
While the application at the client-side node requests data 
blocks that are stored in the storage-side nodes, the predictor, 
SS cache manager, and the disk manager modules get each 
request. The predictor continues its operation in updating the 
PG setting and in issuing the prefetch requests for those data 
blocks that are deemed to be requested soon by the application. 
The disk manager checks if the requested block is already in 
the SS level to be provided to the application. Otherwise, it 
will be directly provided from the HD level. The volume and 
the aggressiveness of each prefetch request are determined by 
both LKP and MNC. Our system does not allow more than 
(BwMax – 1) volume of a prefetch request in the same time. 
Our system takes into account the case when a prefetch 
request is issued for a data block that is already in the SS. Our 
system also takes into account the case where a data block was 
modified by the application for the sake of consistency. The 
SS cache buffers the application’s data requests and the 
prefetched data. SS cache manager applies LRU 
least-recently-used policy whenever needed in order to open a 
space for other potential blocks. The time gap between each 
two consequent application’ data requests comprises of both, 
processing time and data loading time over the network. In 
performance evaluation, we set the processing time to zero as 
we assume a more severe scenario of an aggressive read 

intensive application. (Figure. 2) describes PPDHSS 
algorithm work. 
 

 
 

Figure 2: The PPDHSS algorithm. Quoted from [2] with some 
modifications. 

 
5. PERFORMANCE EVALUATION  
 
This section illustrates our simulation process and results for 
PPDHSS system.  
 
5.1 System Parameters 
 
The following are our system’ platform and the underlying 
hardware resources: (1) Linux OS (2) Western Digital HD (3) 
Intel SS (4) Dell Network Switch. 
As mentioned, the size for each data blocks stored in the SS or 
in the HD levels will be 200MB. Using a large size data blocks 
is a realistic observation in the contemporary life especially 
with the huge increase in data that need to be stored in big 
data center where data are stored in form of huge size data 
blocks. In the subsequent subsections, we consider that the 
data block size equals to 200 MB. As we mentioned 
previously, the size of the SS cache reserved for our technique 
is determined in terms of number of cache blocks where each 
one has a size same as the size of a data block. Hence, a SS 
cache block size equals to 200 MB. As we will discuss later, 
predictive prefetch process provides its best performance 
improvement when using small caches. Hence, cache 
reserved in the storage-side nodes SS level will not consume 
its capacity. 
As mentioned, application processing time on loaded data is 
set to null as we are concerned in this research about the 
applications that do aggressive data reads. In case we add 
some value for the processing time, this will help the prefetch 
processes; as the application data requests frequency will 
decrease. 
In our laboratories, we found that, THD−ss equals to 4.5 
seconds, (THD−network) equals to 4.43, and (Tss−network) equals to 
4.158 when considering a 200MB fixed size for each data 
block. As we can see, remote SS shows higher efficiency [1]. 
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5.2 The PPDHSS Simulation 
 
In this simulation, we are going to evaluate the system 
performance in terms of application total running time; first: 
without implementing PPDHSS, second: when using 
PPDHSS under different SS cache sizes, and third: using 
PPDHSS under different levels of aggressiveness. A 
decreased application running time indicates better 
performance. Our simulator is trace driven implemented in C.   
The system consists of one client-side node and BwMax 
number of storage-side nodes connected via a network. As we 
will see, our solution provides significant performance 
improvement when SS cache is small. So, we will set BwMax 
to 5 and SS cache size to 5 cache blocks (i.e. 1 GB aggregated 
SS cache size where each cache block on each storage-side 
node has a size of 200 MB). Recall that each SS cache block is 
stripped on the SS level through all over the storage-side 
nodes and can buffer a stripped chunk of a stripped data block. 
Increased BwMax will by default increase the performance in 
which; as we will see; will not be much needed. 
We use in this simulation LASR1 from the LASR trace 
repository [16]. The trace consists of approximately 11600 
reading requests. Each distinct request represents a data block 
stored in the system. As we are neglecting the processing time, 
the time gap between each two consequent requests is the 
loading time of the currently requested data block to the 
client-side node either is founded in the SS or the HD level. 
 
5.2.1 performance without PPDHSS 

 
Based on our assumption where all data blocks are initially 
placed in the HD level. Without implementing PPDHSS, the 
running time of the application will be 51724.7 seconds. Next, 
we will see that PPDHSS can improve performance in about 
2% when using small sized cache and 4% when using 
moderate sized one. 

 
5.2.2 PPDHSS with increased SS cache sizes 

 
Whenever the SS cache size increases, application running 
time will decrease as more SS cache hits take place. We 
executed our simulation when using different values of SS 
cache sizes from 1 - 100 and when setting the prefetch 
aggressiveness to a moderate level (i.e. LKP = 1 and the MNC 
= 0.5).  (Figure. 3) shows a decreased running time trend as 
the SS cache becomes larger. The most interesting 
observation is that the system shows its best significant 
improvement when using small SS cache sizes (i.e. 1 - 13). 
Performance continues to improve till the SS cache size 
reaches to 40, then, more large size will not add much added 
value. So, we can conclude that no large SS caches are 
needed. 
 

 
Figure 3: App running time in seconds when the SS cache size from 

1 - 100. BwMax = 5. LKP = 1. MNC = 0.5. 
 
5.2.3 PPDHSS with aggressive prefetching 
 
As mentioned, the values of MNC and LKP determine 
aggressiveness of the prefetch process. Increased LKP and 
decreased MNC increase the aggressive prefetch.  
(Figure. 4) shows the case when using a small SS cache (i.e. = 
1 block) and performs aggressive prefetching (i.e. when MNC 
=  0.1 and LKP = 1 or 2 or 3). Since the cache is quite small, 
aggressive prefetch will replace useful blocks with non-useful 
ones. Decreasing the aggressiveness (i.e. MNC = 0.2 and LKP 
= 2 or 3), will provide better performance as more valuable 
data will stay longer in the SS cache. Increased LKP to values 
(2 or 3) and increased MNC to a level higher than 0.2 will 
negatively affect the performance because of the reduced 
aggressiveness and accuracy. So, PPDHSS is not bringing 
enough valuable data to the SS cache.  
It is clear that the case when LKP = 2 shows better 
performance than the case when LKP = 3 due to the increased 
accuracy of the prefetch decisions. LKP = 1 case shows 
increased improvement trend in performance especially with 
the increase in MNC value. Hence, the aggressiveness goes 
down and the accuracy goes up and the system retains 
valuable data for longer durations.   
(Figure 5), shows an increased SS level cache size to 2. The 
observations explained in Figure. 4 case (SS cache size =1) 
happen. But as the SS cache size goes up, it is natural that it 
will be able to buffer more data, and hence positively affect 
the performance. It will also be more able to benefit from 
more aggressive prefetch. We observed that when MNC = 0.2 
and LKP = 3, our system provides its best performance 
optimization as a result of moderate aggressive prefetch 
process.  
We simulated the system when using larger sizes of SS cache 
that span to 100 blocks. PPDHSS shows similar trend in 
performance improvement. Due to space limitation, we will 
mention our general notes on the performance results of those 
cases and illustrate some figures. In each of those cases, SS 
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cache size becomes significantly large and able to keep more 
data. Hence, we surely can achieve extra performance 
improvement even if the prefetch process decisions are not 
that much accurate. As the SS cache becomes larger, 
aggressive prefetch process becomes able to leverage the 
increased cache size and to achieve more cache hits. In many 
cases, we observed that PPDHSS provides its best positive 
effect on the performance when the MNC = 0.1 and LKP = 3. 
When the aggressiveness of the data prefetch process 
decreases, it will not bring enough data; which negatively 
affects the performance. It is also good to mention that when 
the MNC goes up to 0.6 or above and LKP = 3, PPDHSS 
shows its lowest performance improvement due to the low 
accuracy and aggressiveness of the prefetch process. So, 
prefetch process is bringing few and unneeded data blocks. 
Figures 6-12 show different scenarios of increased SS cache 
sizes. It is clear that performance trend improves with the 
increased size SS cache.  
 

 
Figure 4: App running time in seconds when SS cache size = 1 and 
multiple values of LKP from 1 - 3 and multiple percentage of MNC 

from 0.1 - 0.9 

 
Figure 5: App running time in seconds when SS cache size = 2 and 
multiple values of LKP from 1 - 3 and multiple percentage of MNC 

from 0.1 - 0.9 

 

 
Figure 6: App running time in seconds when SS cache size = 3 and 
multiple values of LKP from 1 - 3 and multiple percentage of MNC 

from 0.1 - 0.9 
 

 
Figure 7: App running time in seconds when SS cache size = 5 and 
multiple values of LKP from 1 - 3 and multiple percentage of MNC 

from 0.1 - 0.9 

 
Figure 8: App running time in seconds when SS cache size = 7 and 
multiple values of LKP from 1 - 3 and multiple percentage of MNC 

from 0.1 - 0.9 
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Figure 9: App running time in seconds when SS cache size = 10 and 
multiple values of LKP from 1 - 3 and multiple percentage of MNC 

from 0.1 - 0.9 
 

 
Figure 10: App running time in seconds when SS cache size = 20 
and multiple values of LKP from 1 - 3 and multiple percentage of 

MNC from 0.1 - 0.9 

 
Figure 11: App running time in seconds when SS cache size = 50 
and multiple values of LKP from 1 - 3 and multiple percentage of 

MNC from 0.1 - 0.9 
 

 
Figure 12: App running time in seconds when SS cache size = 100 
and multiple values of LKP from 1 - 3 and multiple percentage of 

MNC from 0.1 - 0.9 
 
6. CONCLUSION 
 
In this research, we introduced a mechanism based on 
predictive probability graph approach of data prefetch that 
takes advantage of the parallelism of hybrid (multi levels) 
storage environment in order prefetch the valuable data from 
bottom level to the top one. This process is performed in 
parallel with the application data read requests. Valuable data 
blocks are those that are expected to be requested by the user’s 
application very soon. This process helps the users’ 
applications to find more of their future requests in the top 
level that is distinguished in its fast reading speed. We 
implemented our solution (i.e. PPDHSS) in a distributed 
environment where there exist several storage-side nodes of 
two levels storage hierarchy (i.e. SSs and HDs) and client 
(application) side nodes. PPDHSS reduces the running time 
in about 2% when using small size cache and 4% when using 
moderate size one. 
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