
Maen M. Al Assaf, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4819 – 4826

4819

ABSTRACT

Distributed data centers are considered very important for
data storage services in the contemporary computing world
especially with the increased amount of data that are needed
to be stored and retrieved. Data retrieval speed performance is
a sensitive issue when considering the huge amount of data
that need to be retrieved from several nodes over the network.
Data prefetch has proved to be an important technique for
reducing data reading time from the distributed nodes. In
such distributed environment, data fetching time from a node
to an another consists of the disk reading time and the
network transmission time. Multi-layer (hybrid) storage
provides high performance solutions for big data centers. We
introduce a solution PPDHSS that implements
predictive-probability graph to predictively prefetch the data
that are expected to be accessed by the application in the near
future from the lower level hard disk of the storage-side nodes
(slower) to the top level solid state disk (faster) in parallel
which the application data reading requests that comes from
the client-side node by taking advantage of the storage
system’s parallelism. Our performance evaluation in which
we used real traces shows that our system can reduce the data
fetching time from storage side-nodes to the client-side nodes
without the need of using caches of large size.

Key words: Predictive prefetching · probability graph,
distributed storage environment.

1. INTRODUCTION

In contemporary world, Big Data concept became important
in different domains especially in business world [18].
Research related to Big Data processing and storage is
considered a dominant research were there exist a significant
need for solutions that aim to improve the performance [19].
There exists an increased amount of data that need to be
stored and retrieved in big data centers that consists of
distributed hybrid (multi-levels) storage nodes. Storage-side
nodes of parallel hybrid layers that vary in speed, size, and
cost are important to allocate the data based on their predicted
importance. Potential data that will be actually accessed soon
is considered more important. Data prefetch research played
an important role in solving performance bottleneck problems
in read intensive data centers [1][5]). Several prefetch
techniques were proposed to preload data from disks before

the application issues the actual read request. Mainly, there
are two prefetch methods; predictive and informed. In
predictive method, the system predicts what data will the
application needs soon based on the patterns of previous
requests history [2]. On the other hand, informed method
makes use of the hints that are given from the application to
fetch the data in advance [1][3][5]. This research implements
probability graph predictive method (PG) that continuously
record the history of the data requested by the application at
the client-side node [2][6]. We study the performance impact
of this scheme on distributed hybrid (multi-level) storage
environment. In such systems, data are allocated in remote
storage-side nodes in a form of blocks and fetched to the
application (client) side node via the network. Data fetching
time includes both, storage disk reading time and network
transmission time. We predictively prefetch the data from
lower levels (slow) of the storage-side nodes to the top one
(fast) in parallel with the application read requests in order to
reduce the data read time; and eventually, reducing the
application’s running time.

1.1 Research Motivation

Several issues motive us to do this research. The growing use
of hybrid layers in contemporary big data centers especially
with the increased amount of data that need to be stored in
daily life domains. Predictive prefetch process does not need
hints from the applications as informed prefetch process does.
In addition, data fetching time in distributed environment is
increased due to the network transmission time. Reducing
disk reading time is valuable to lessen the entire data fetching
time. Predictive prefetch process can be invoked to
predictively preload that data that is expected to be accessed
soon from the bottom to the top level of the hybrid
multi-levels environment. This can be done parallelly while
the application is issuing its data read request as there is
enough bandwidth in the parallel storage setting.

1.2 Research Contributions
Our PPDHSS research provides a mechanism based on
probability graph-predictive prefetch process to predict and
prefetch the data that are expected to be needed by the
application in the near future from the bottom level to the top
one in a two levels distributed hybrid (multi-levels) storage
environment. This process is performed simultaneously while
the application is issuing its data read requests. Our
storage-side nodes setting consists of two levels; SS and HD.

 Performance Optimization for Distributed Hybrid Storage
Systems using a Predictive Approach

Maen M. Al Assaf1

1King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
m_alassaf@ju.edu.jo

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse91942020.pdf

https://doi.org/10.30534/ijatcse/2020/91942020

Maen M. Al Assaf, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4819 – 4826

4820

2. RELATED WORK

This section presents some of the existing work and concepts
related to our research presented in this paper.

2.1 Hybrid (multi-level) storage Environment

A hybrid (multi-level) storage environment is commonly used
in big data centers as it provides a hierarchy of devices that
are different in their size, cost, and speed. As we go up in the
hierarchy, cost in dollars and data retrieval speed increase and
size decreases. So, it is better to store the most important data
that is most frequently demanded in the top level in order to
provide high performance in their retrieval process
[1][2][3][4][5][11][12]. When a data block is requested by the
application at the client-side node, the system search for it in
the top level of the storage-side nodes, if it is not found, the
system descends to the lower levels until it is founded and
retrieved.
In distributed environments, hybrid storage is also used where
the multi-level storage devices are distributed in a form of
storage-side nodes connected through the network. Data
blocks are in such setting are replicated or stripped all over
the storage-side nodes [1]. Applications on client-side nodes
request the data to be fetched from storage-side nodes over the
network. Such systems are highly important to maintain high
performance, availability, reliability, fault tolerance, and
scalability [10].

2.2 Data Prefetch
There exist two main data prefetch techniques: Predictive and
Informed [15]. Predictive approach predicts the data that will
be requested in the future by the application based on its
historical requests’ patterns. An approach used to record the
history of the application’s previous data requests is called
probability graph (PG) [2][6][13]. Markov chain prediction
approach was also used by other researchers [8]. Informed
approach takes hints from the application on its future data
requests in order to preload the data in advance.
Data Prefetch process in hybrid (multi-levels) storage
environment is performed by moving the important data
blocks from a bottom level in the hierarchy to the top one.
This process is technically challenging as it importantly needs
to control both prefetch process aggressiveness and accuracy
[7][9][11] [12].

3. SYSTEM DESIGN ISSUES

This section presents the hardware and the software design on
which our PPDHSS system functions.

3.1 Hardware Design

The system consists of several nodes that are connected over a
network. A node is either an application (client)-side node or

a storage-side node. The array of storage-side nodes forms the
distributed parallel hybrid (multi-levels) storage
environment/ system. The application on the client-side node
keeps requesting data by issuing data read requests for the
data blocks that are located at the storage-side nodes. The
storage-side nodes architecture consists of a two-level storage
disks that consists of Solid-State Disk (SS) in the top level and
Hard Disk (HD) in the bottom level as shown in (Figure. 1). In
terms of performance, SSs have higher data retrieval speed
performance. In this research, we are not going to implement
a cache at client-side node to cache the data that are brough
from the storage-side nodes through the network as we
consider that will be more helpful in optimizing the
performance. In addition, we will implement one client-side
node (i.e. one application); however, our approach will
function in case several client-side nodes are connecting.
At the top level of each storage-side node (i.e. SS), there exists
a reserved portion (we call it: SS cache) that implements
(LRU) least-recently-used policy to cache both of; the
application’ data read requests and the data that our PPDHSS
mechanism prefetch to the SS from the HD.

Figure 1: PPDHSS’s hardware design. Quoted from [1].

As we will illustrate next, data are stored in the distributed
hybrid (multilevel) storage environment in a form of fixed
sized data blocks. So, the size of the cache implemented in SS
level is measured by number of cache blocks. Each cache
block has the same size of the fixed size data block. Our
system uses data stripping to parallelize data in the distributed
storage-side nodes. This leads us to consider that each cache
block is also stripped in the distributed SS level in the form of
equal size distributed chunks; where each cache block chunk
at each storage-side node’s SS can buffer a prefetched chunk
of a particular stripped data block available in the same
storage-side node’ HD.

3.2 Software Design

PPDHSS’s implements three modules: disk manager, SS
cache manager, and predictor. The three modules are
implemented in the storage-side nodes. While the application
issues requests for data reads, PPDHSS receives the request in
the three software modules. The disk manager seeks for the
requested data block in the storage system from top to bottom.

Maen M. Al Assaf, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4819 – 4826

4821

The SS cache manager controls the cache that is implemented
in the SS level to buffer the application’s reads as well as the
prefetched data from the HD. It also performs LRU policy
when the SS cache reaches to its full capacity. The predictor
receives each application data read request and executes the
probability graph-predictive algorithm to determine the data
blocks that have good cache to be requested by the application
soon in the near future [2]. Those requests are sent to the disk
manager to read them from the HD to the SS unless if the data
block is already existing in the SS level. In such parallel
storage setting, there is a maximum bandwidth of the number
of data blocks that can be prefetched from the SS to the HD in
parallel with the application data read requests without being
congested. Later we will discuss this issue and its
measurements.

3.3 Assumptions

We assume that the data blocks are already stored in the
bottom level (HD) as it has a significant large storage space in
comparison to the SS. This represent a worst-case scenario
since we can have better performance if some of the data are
already stored in the SS. [1][2][5].
As we have the small cache implemented in the SS level (SS
Cache), our data prefetch mechanism will cache copies of
prefetched data beside the application’s data read request the
are read from the HD (SS misses). No moves for the entire
data blocks from the HD to the SS takes place as that will
waste the SS level’s capacity and we will consume the parallel
storage’ bandwidth; especially if some of these data blocks
need to be returned to the HD level later [2]. Using our SSs
and HDs installed in our research lab’s distributed storage
setting, we found that SS provides higher performance than
HD when using big sized data blocks. Other researchers have
noticed the same observation too. For example, HDFS uses
data blocks of sizes starting from 64 MB [14]. Hadoop uses
Hadoop archives (HAR) tool to combine the data blocks in
case they are already small [17]. Based on our research lab
setting, we will use data blocks of size 200MB. [1][5].

4. THE PPDHSS ALGORITHM

For such storage systems, we proposed our PPDHSS that
implements probability graph- predictive approach (PG) in
order to do data prefetch for important data blocks to the top
level of the storage-side nodes. Important data blocks are
those that are very likely to be requested by the application
soon. This will reduce data fetching time from remote
storage-side nodes to the client-side node and therefor,
reduces the application’s running time. This process goes
simultaneously while the application on the client-side node
is requesting the data.
In a distributed storage environment, application reads its
needed data from the remote storage-side nodes. Reading

time for each data block includes network transmission time
beside the disk read time. Our mechanism reduces disk read
time as a part of the overall data loading time.
At storage-side nodes, our experiments indicate that parallel
storage environment may encounter bandwidth congestion in
case a huge number of data are requested in one time. So,
there is an ultimate limit of data read requests that can be
processed in the same time in the parallel storage
environment. As the application issues only one data read
request at the moment, the unused bandwidth can be used for
doing the prefetch process from the low to the top level in
order to increase the chance in which the application finds its
future read requests in the top (fast) level of the storage
hierarchy.

4.1 Definitions

Our distributed environment consists of two types of nodes:
user-side nodes and storage-side nodes where each
storage-side node contains two storage disks levels (SS and
HD) (Figure. 1).
We define (BwMax) to be the max number of data read
request that can be processed in the storage system without
causing a congestion. As the application always issue one
read request at each time for a particular data block to be read,
the remaining value of the max bandwidth (BwMax - 1) can
be used to process the data prefetch requests in the
storage-side nodes. Since each storage-side node can perform
one data read request for one block inside its hybrid system at
a time without being congested, (BwMax) value is equal to
the number of storage-side nodes. The SS cache size is
represented by the term (CacheSize) which is counted by the
number of cache blocks. Each cache block has the same size
of the fixed data block size that is stored in the storage-side
node.
An application running time comprises both, the processing
time and the data loading time from the storage-side nodes
over the network. The time interval between each two
consequent data read requests is the sum of the loading and
the processing times for the current under manipulation data
block. We will not consider processing time in our study as
our system is mainly concerned for read intensive
applications.
As our distributed hybrid storage-side nodes consist of HD
and SS, THD−network is the time of loading one data block from
a remote storage-side node HD level to the client (application)
side node, and Tss−network be the same when reading that from
the remote node’ SS. Tss−network value is less when compared to
THD−network due to the high speed of SSs. THD−ss is the time
needed to load one data block from the HD and to have it
copied to the SS one. In addition, the process of data prefetch
from HD to the SS level is performed simultaneously with the
application data read requests [1].

Maen M. Al Assaf, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4819 – 4826

4822

4.2 The Predictive Probability Graph (PG)

Our PPDHSS makes use of predictive data prefetch algorithm
that is based on PG approach to prefetch predicted data blocks
to the top level in the storage-side nodes; hence, reducing the
applications’ running time. As mentioned previously, the
predictor module that performs this task is implemented in
the storage-side nodes. PG contentiously records the
application’ past data requests patterns in order to predict
near future requests. PG uses a directed-weighted-graph that
consists of nodes and edges that are used to estimate the near
future request probabilities of the data blocks. Each
previously requested data block by the application is allocated
a node in the PG. Directed-weighted-edges are used to make
connections across the nodes to be used in the probability
calculations of which a particular block will be requested.
While the application is issuing data read requests, the
predictor module keeps updating the graph and executing the
prefetch process. There are two main parameters attached to
this process, 1- Look-Ahead-Period (LKP) 2- Minimum-
Chance Percentage (MNC). LKP determines the correlation
among the consequent requested data blocks. MNC
determines the volume of the upcoming data prefetch request
when a data block is requested by the application. Increased
LKP and decreased MNC leads to make the prefetch process
more aggressive. Over aggressive prefetch process threaten
the prefetch process accuracy as un-needed data blocks will be
brought [2][6].

4.3 Putting All Together

While the application at the client-side node requests data
blocks that are stored in the storage-side nodes, the predictor,
SS cache manager, and the disk manager modules get each
request. The predictor continues its operation in updating the
PG setting and in issuing the prefetch requests for those data
blocks that are deemed to be requested soon by the application.
The disk manager checks if the requested block is already in
the SS level to be provided to the application. Otherwise, it
will be directly provided from the HD level. The volume and
the aggressiveness of each prefetch request are determined by
both LKP and MNC. Our system does not allow more than
(BwMax – 1) volume of a prefetch request in the same time.
Our system takes into account the case when a prefetch
request is issued for a data block that is already in the SS. Our
system also takes into account the case where a data block was
modified by the application for the sake of consistency. The
SS cache buffers the application’s data requests and the
prefetched data. SS cache manager applies LRU
least-recently-used policy whenever needed in order to open a
space for other potential blocks. The time gap between each
two consequent application’ data requests comprises of both,
processing time and data loading time over the network. In
performance evaluation, we set the processing time to zero as
we assume a more severe scenario of an aggressive read

intensive application. (Figure. 2) describes PPDHSS
algorithm work.

Figure 2: The PPDHSS algorithm. Quoted from [2] with some
modifications.

5. PERFORMANCE EVALUATION

This section illustrates our simulation process and results for
PPDHSS system.

5.1 System Parameters

The following are our system’ platform and the underlying
hardware resources: (1) Linux OS (2) Western Digital HD (3)
Intel SS (4) Dell Network Switch.
As mentioned, the size for each data blocks stored in the SS or
in the HD levels will be 200MB. Using a large size data blocks
is a realistic observation in the contemporary life especially
with the huge increase in data that need to be stored in big
data center where data are stored in form of huge size data
blocks. In the subsequent subsections, we consider that the
data block size equals to 200 MB. As we mentioned
previously, the size of the SS cache reserved for our technique
is determined in terms of number of cache blocks where each
one has a size same as the size of a data block. Hence, a SS
cache block size equals to 200 MB. As we will discuss later,
predictive prefetch process provides its best performance
improvement when using small caches. Hence, cache
reserved in the storage-side nodes SS level will not consume
its capacity.
As mentioned, application processing time on loaded data is
set to null as we are concerned in this research about the
applications that do aggressive data reads. In case we add
some value for the processing time, this will help the prefetch
processes; as the application data requests frequency will
decrease.
In our laboratories, we found that, THD−ss equals to 4.5
seconds, (THD−network) equals to 4.43, and (Tss−network) equals to
4.158 when considering a 200MB fixed size for each data
block. As we can see, remote SS shows higher efficiency [1].

Maen M. Al Assaf, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4819 – 4826

4823

5.2 The PPDHSS Simulation

In this simulation, we are going to evaluate the system
performance in terms of application total running time; first:
without implementing PPDHSS, second: when using
PPDHSS under different SS cache sizes, and third: using
PPDHSS under different levels of aggressiveness. A
decreased application running time indicates better
performance. Our simulator is trace driven implemented in C.
The system consists of one client-side node and BwMax
number of storage-side nodes connected via a network. As we
will see, our solution provides significant performance
improvement when SS cache is small. So, we will set BwMax
to 5 and SS cache size to 5 cache blocks (i.e. 1 GB aggregated
SS cache size where each cache block on each storage-side
node has a size of 200 MB). Recall that each SS cache block is
stripped on the SS level through all over the storage-side
nodes and can buffer a stripped chunk of a stripped data block.
Increased BwMax will by default increase the performance in
which; as we will see; will not be much needed.
We use in this simulation LASR1 from the LASR trace
repository [16]. The trace consists of approximately 11600
reading requests. Each distinct request represents a data block
stored in the system. As we are neglecting the processing time,
the time gap between each two consequent requests is the
loading time of the currently requested data block to the
client-side node either is founded in the SS or the HD level.

5.2.1 performance without PPDHSS

Based on our assumption where all data blocks are initially
placed in the HD level. Without implementing PPDHSS, the
running time of the application will be 51724.7 seconds. Next,
we will see that PPDHSS can improve performance in about
2% when using small sized cache and 4% when using
moderate sized one.

5.2.2 PPDHSS with increased SS cache sizes

Whenever the SS cache size increases, application running
time will decrease as more SS cache hits take place. We
executed our simulation when using different values of SS
cache sizes from 1 - 100 and when setting the prefetch
aggressiveness to a moderate level (i.e. LKP = 1 and the MNC
= 0.5). (Figure. 3) shows a decreased running time trend as
the SS cache becomes larger. The most interesting
observation is that the system shows its best significant
improvement when using small SS cache sizes (i.e. 1 - 13).
Performance continues to improve till the SS cache size
reaches to 40, then, more large size will not add much added
value. So, we can conclude that no large SS caches are
needed.

Figure 3: App running time in seconds when the SS cache size from

1 - 100. BwMax = 5. LKP = 1. MNC = 0.5.

5.2.3 PPDHSS with aggressive prefetching

As mentioned, the values of MNC and LKP determine
aggressiveness of the prefetch process. Increased LKP and
decreased MNC increase the aggressive prefetch.
(Figure. 4) shows the case when using a small SS cache (i.e. =
1 block) and performs aggressive prefetching (i.e. when MNC
= 0.1 and LKP = 1 or 2 or 3). Since the cache is quite small,
aggressive prefetch will replace useful blocks with non-useful
ones. Decreasing the aggressiveness (i.e. MNC = 0.2 and LKP
= 2 or 3), will provide better performance as more valuable
data will stay longer in the SS cache. Increased LKP to values
(2 or 3) and increased MNC to a level higher than 0.2 will
negatively affect the performance because of the reduced
aggressiveness and accuracy. So, PPDHSS is not bringing
enough valuable data to the SS cache.
It is clear that the case when LKP = 2 shows better
performance than the case when LKP = 3 due to the increased
accuracy of the prefetch decisions. LKP = 1 case shows
increased improvement trend in performance especially with
the increase in MNC value. Hence, the aggressiveness goes
down and the accuracy goes up and the system retains
valuable data for longer durations.
(Figure 5), shows an increased SS level cache size to 2. The
observations explained in Figure. 4 case (SS cache size =1)
happen. But as the SS cache size goes up, it is natural that it
will be able to buffer more data, and hence positively affect
the performance. It will also be more able to benefit from
more aggressive prefetch. We observed that when MNC = 0.2
and LKP = 3, our system provides its best performance
optimization as a result of moderate aggressive prefetch
process.
We simulated the system when using larger sizes of SS cache
that span to 100 blocks. PPDHSS shows similar trend in
performance improvement. Due to space limitation, we will
mention our general notes on the performance results of those
cases and illustrate some figures. In each of those cases, SS

Maen M. Al Assaf, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4819 – 4826

4824

cache size becomes significantly large and able to keep more
data. Hence, we surely can achieve extra performance
improvement even if the prefetch process decisions are not
that much accurate. As the SS cache becomes larger,
aggressive prefetch process becomes able to leverage the
increased cache size and to achieve more cache hits. In many
cases, we observed that PPDHSS provides its best positive
effect on the performance when the MNC = 0.1 and LKP = 3.
When the aggressiveness of the data prefetch process
decreases, it will not bring enough data; which negatively
affects the performance. It is also good to mention that when
the MNC goes up to 0.6 or above and LKP = 3, PPDHSS
shows its lowest performance improvement due to the low
accuracy and aggressiveness of the prefetch process. So,
prefetch process is bringing few and unneeded data blocks.
Figures 6-12 show different scenarios of increased SS cache
sizes. It is clear that performance trend improves with the
increased size SS cache.

Figure 4: App running time in seconds when SS cache size = 1 and
multiple values of LKP from 1 - 3 and multiple percentage of MNC

from 0.1 - 0.9

Figure 5: App running time in seconds when SS cache size = 2 and
multiple values of LKP from 1 - 3 and multiple percentage of MNC

from 0.1 - 0.9

Figure 6: App running time in seconds when SS cache size = 3 and
multiple values of LKP from 1 - 3 and multiple percentage of MNC

from 0.1 - 0.9

Figure 7: App running time in seconds when SS cache size = 5 and
multiple values of LKP from 1 - 3 and multiple percentage of MNC

from 0.1 - 0.9

Figure 8: App running time in seconds when SS cache size = 7 and
multiple values of LKP from 1 - 3 and multiple percentage of MNC

from 0.1 - 0.9

Maen M. Al Assaf, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4819 – 4826

4825

Figure 9: App running time in seconds when SS cache size = 10 and
multiple values of LKP from 1 - 3 and multiple percentage of MNC

from 0.1 - 0.9

Figure 10: App running time in seconds when SS cache size = 20
and multiple values of LKP from 1 - 3 and multiple percentage of

MNC from 0.1 - 0.9

Figure 11: App running time in seconds when SS cache size = 50
and multiple values of LKP from 1 - 3 and multiple percentage of

MNC from 0.1 - 0.9

Figure 12: App running time in seconds when SS cache size = 100
and multiple values of LKP from 1 - 3 and multiple percentage of

MNC from 0.1 - 0.9

6. CONCLUSION

In this research, we introduced a mechanism based on
predictive probability graph approach of data prefetch that
takes advantage of the parallelism of hybrid (multi levels)
storage environment in order prefetch the valuable data from
bottom level to the top one. This process is performed in
parallel with the application data read requests. Valuable data
blocks are those that are expected to be requested by the user’s
application very soon. This process helps the users’
applications to find more of their future requests in the top
level that is distinguished in its fast reading speed. We
implemented our solution (i.e. PPDHSS) in a distributed
environment where there exist several storage-side nodes of
two levels storage hierarchy (i.e. SSs and HDs) and client
(application) side nodes. PPDHSS reduces the running time
in about 2% when using small size cache and 4% when using
moderate size one.

ACKNOWLEDGEMENT

This research was discussed with my advisor Dr. Xiao Qin
and his research group at Auburn University. System
parameters were validated at his research laboratories. I
would like to express my sincere gratitude for his support.

REFERENCES
1. Al Assaf, M. M., Jiang, X., Qin, X., Abid, M. R., Qiu,

M., & Zhang, J. (2018). Informed prefetching for
distributed multi-level storage systems. Journal of
Signal Processing Systems, 90(4), 619-640.
https://doi.org/10.1007/s11265-017-1277-z

Maen M. Al Assaf, International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4819 – 4826

4826

2. Al Assaf, M. M. (2015). Predictive Prefetching for
Parallel Hybrid Storage Systems. International Journal
of Communications, Network and System Sciences,
8(05), 161.

3. Al Assaf, M. M., Jiang, X., Abid, M. R., & Qin, X.
(2013). Eco-storage: A hybrid storage system with
energy-efficient informed prefetching. Journal of
Signal Processing Systems, 72(3), 165-180.
https://doi.org/10.1007/s11265-013-0784-9

4. Jiang, X., Al Assaf, M. M., Zhang, J., Alghamdi, M. I.,
Ruan, X., Muzaffar, T., & Qin, X. (2013). Thermal
modeling of hybrid storage clusters. Journal of Signal
Processing Systems, 72(3), 181-196.

5. Al Assaf, M. M., Alghamdi, M. I., Jiang, X., Zhang, J., &
Qin, X. (2012, August). A pipelining approach to
informed prefetching in distributed multi-level
storage systems. In 2012 IEEE 11th International
Symposium on Network Computing and Applications
(pp. 87-95). IEEE.

6. Griffioen, J., & Appleton, R. (1994, June). Reducing
File System Latency using a Predictive Approach. In
USENIX summer (pp. 197-207).

7. Li, C., Shen, K., & Papathanasiou, A. E. (2007, March).
Competitive prefetching for concurrent sequential
I/O. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007 (pp.
189-202).
https://doi.org/10.1145/1272996.1273017

8. Domenech, J., Sahuquillo, J., Gil, J. A., & Pont, A.
(2006, December). The impact of the web prefetching
architecture on the limits of reducing user's perceived
latency. In 2006 IEEE/WIC/ACM International
Conference on Web Intelligence (WI 2006 Main
Conference Proceedings)(WI'06) (pp. 740-744). IEEE.

9. Zhang, Z., Lee, K., Ma, X., & Zhou, Y. (2008, June).
Pfc: Transparent optimization of existing prefetching
strategies for multi-level storage systems. In 2008 The
28th International Conference on Distributed Computing
Systems (pp. 740-751). IEEE.

10. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., Burrows, M., ... & Gruber, R. E. (2008).
Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS),
26(2), 1-26.

11. Nijim, M. (2010, July). Modelling speculative
prefetching for hybrid storage systems. In 2010 IEEE
Fifth International Conference on Networking,
Architecture, and Storage (pp. 143-151). IEEE.
https://doi.org/10.1109/NAS.2010.27

12. Nijim, M., Zong, Z., Qin, X., & Nijim, Y. (2010,
September). Multi-layer prefetching for hybrid
storage systems: algorithms, models, and evaluations.
In 2010 39th international conference on parallel
processing workshops (pp. 44-49). IEEE.

13. Lewis, J., Alghamdi, M., Al Assaf, M., Ruan, X., Ding,
Z., & Qin, X. (2010, December). An automatic
prefetching and caching system. In International

Performance Computing and Communications
Conference (pp. 180-187). IEEE.

14. Erraissi, A., & Belangour, A. (2019) Hadoop Storage
Big Data Layer: Meta-Modeling of Key Concepts and
Features. International Journal of Advanced Trends in
Computer Science and Engineering, 8, 646-53.
https://doi.org/10.30534/ijatcse/2019/49832019

15. Al Assaf, Maen & Rodan, Ali & Qatawneh, Mohammad
& Abid, Mohamed. (2015). A Comparison Study
between Informed and Predictive Prefetching
Mechanisms for I/O Storage Systems. Int. J.
Communications, Network and System Sciences. 8.

16. LASR trace machine01, doi: http://iotta.snia.org/traces/
17. Hadoop Archive Guide, doi: http://hadoop.apache.org/
18. Lim, Sang. (2019). Classification and Big Data Usages

for Industrial Applications. International Journal of
Advanced Trends in Computer Science and Engineering.
8. 1117-1122.
https://doi.org/10.30534/ijatcse/2019/18842019

19. Ahamad, D., Akhtar, M., & Hameed, S. A. (2019). A
Review and Analysis of Big Data and MapReduce.
International Journal of Advanced Trends in Computer
Science and Engineering, 8(1), 1–3.
https://doi.org/10.30534/ijatcse/2019/01812019

