
M. Nageswara Prasadhu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3078 – 3085

3078

ABSTRACT

Cloud computing has recently grown into a major global
trend of computing. Using the Internet and Wide Area
Network (WAN) to make services remotely is a modern
design. This is a new solution and technique to achieve high
availability, versatility, cost savings and demand-scalability.
However, cloud computing faces many problems, such as
wasteful resource use, which has a major effect on the
performance of cloud computers. These issues have to be
managed from time to time to avoid the utilization factors of
the various attributes that are used while implementing the
process. Because of the enormous amount of knowledge these
issues emerged and are unaddressed for so many years even
though they were just adjusted in between to carry out the
normal activities. Therefore, one of the most critical issues in
this area in improving cloud computing performance is the
need for robust and efficient load balancing algorithms for
cloud computing. Many researchers have proposed different
load balancing and job scheduling algorithms in cloud
computing, but system efficiency is still very unstable and
load still unbalance. This has subsequently delayed the
process of executing the algorithms within the required
timelines. Hence, in this research, we propose a load
balancing algorithm to improve performance and efficiency
in a heterogeneous cloud computing environment. We
propose a hybrid algorithm that utilizes both random and
greedy algorithms. The algorithm takes into account the
current resource data and the CPU capacity factor to attain the
objectives. The hybrid algorithm was tested using Cloud
Analyst simulator, and compared with other algorithms. This
comparison has been carried out both in a subjective way and
also objective way to establish the proposed method. The
experimental investigations showed improvements in average
response time and processing time by taking current resource
information and the CPU capacity factor compared to other
algorithms into consideration.

Key words: Cloud Computing, Load Balancing,
Virtualization, Virtual Machine, Scheduling, Cloud Analyst.

1. INTRODUCTION

Cloud computing provides the resources and data for shared
processing. It will happen by the involvement of a host
application service provider, so that the user does not need to
lease a server or pay for heating and cooling energy. It's also
easy for remote workers to connect and fly, who can easily log
in and use their applications wherever they are [1]. This type
of environment provides a customizable option such that
processing of the data is carried out without any hassles at a
particular given time. When the number of users in the cloud
computing world increases, demand for shared resources
grows rapidly. Hence, load balancing between these services
is a key challenge for scheduling tasks. This demand has to be
addressed in a scientific manner such that it meets all the
criteria that was set by the various protocols to operate these
types of algorithms.

Load balancing is the process by which a cloud computing
system distributes workloads and computing resources. It
helps organizations to handle application or workload
requests by allocating resources to different computers,
networks, or servers. In this manner various requests can be
taken care without pampering the integrity of the entire
system and its specifications. Load balancing is often used to
avoid bottlenecks, so that other load balancing characteristics
can be achieved, such as: fair distribution of tasks among all
hosts, facilitation of the quality of service, improved overall
system performance, reduced response time and improved
resource utilization [2]. These factors are most common
checklist points that have to be maintained in these types of
applications.

Figure. 1 displays Virtual Machine Load Balancer (VMs). It
assigns numerous tasks to VMs which execute them
simultaneously in a way that ensures a balance between those
VMs. The tasks that are allocated are to be monitored to
devoid of any tricky situations that may arise due to over
burden of the work slots. The main goal and also key issue of
the load balancing in a cloud environment is to handle the
workload of the host in proportion to its capacity, measured in
terms of processor speed, free memory space, and bandwidth.
While keeping these constraints in control the load balancing

An Efficient Hybrid Load Balancing Algorithm for
Heterogeneous Data Centers in Cloud Computing

M. Nageswara Prasadhu1, Dr.M.Mehfooza2
1Research Scholar, Dept of CSE, VelTech Rangarajan Dr.Sagunthala R &D Institute of Science and Technology,

Chennai, India, mnprasadu@gmail.com
2Assistant Professor, Dept of CSE, VelTech Rangarajan Dr.Sagunthala R &D Institute of Science and

Technology, Chennai, India, drmmehfooza@veltech.edu.in

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse89932020.pdf

https://doi.org/10.30534/ijatcse/2020/89932020

M. Nageswara Prasadhu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3078 – 3085

3079

has to be updated from time to time to meet the new
requirements of the clients which may arise during the
process.

Figure 1: Virtual Machine Load Balancer

Algorithms for load balancing are categorized in two types;
static and dynamic algorithms. This classification is purely
based upon the primary concerns and it is not an exhaustive
one. Compared to dynamic algorithms static algorithms are
much simpler. Static algorithms only operate efficiently when
hosts have small variations in load, as they fail to take into
account the previous state or actions of a host when
distributing the load. These limitations will lead to consider
the feedback of previous records mandatory to avoid any
delays in the processing of the request from certain groups of
tasks. Dynamic load balancing algorithms are best suited to
massively distributed systems such as cloud computing [3,4].
These methods have the efficiency to take care of the past
issues into consideration forming a certain amount of
feedback structure to avoid the problems raised in the
previous stages. Round robin (RR) [5] is a well-known static
scheduling algorithm whose design is straightforward. This
method of allocation has been a classical one in these
situations which holds the good amount of record when it
comes to the execution process. In addition, it allocates tasks
to each node, without taking into account each VM's resource
quantity and the time the tasks are performed. Modified
throttled algorithm [6] is a dynamic load balancing algorithm
which distributes incoming tasks uniformly between available
VMs. This property of uniformity is considered as the main
asset of this procedure which leads to integrity of the data
shared. Nonetheless, during task allocation it does not find
the resource usage.

Owing to the rising complexities of workload, modern load
balancing algorithms have several disadvantages in cloud
world. The computational complexities have to be managed
in a stochastic nature such that algorithms become simple and
easy to use without any tacky situations. Throughout recent
decades, Swarm Intelligence (SI) algorithms, such as ant
colony optimization (ACO) and artificial bee colony (ABC)

are provided to resolve these challenges [7]. These
evolutionary algorithms completely depend on the natural
phenomenon and are driven based on the natural resources
and their behavioral characteristics. Optimization techniques
are always driven based on the inherent capabilities built on
their natural instincts. They are making huge strides in the
competitive cloud computing situation. So many researchers
tended to study the SI-based algorithms to manage loads
across cloud environments such as food foraging. Many of
these algorithms, however, have disadvantages such as
overloading other hosts, and having poor throughput. These
limitations can be overcome based on the behaviors of the
input attributes chosen for the purpose of processing.

The goal of this paper is to propose a load balancing
algorithm with the intention of seamlessly spreading the
complex workload to all the hosts in the cloud to achieve an
increase in both resource utilization and execution time
speed. The utilization factor has been always a point of
discussion in this field as the wastage of already available
resources can lead to traffic and execution time is required to
be importantly concerned as the time factor plays vital role
when the data shared is of most significant. It assigns entrant
tasks to all available VMs. The proposed algorithm allocates
tasks to the least loaded VM in order to achieve fairness and
avoid congestion, and prevents the allocation of tasks to a VM
when the deviation of this VM processing time from average
processing time of all VMs is greater or equal to a threshold
value. This results in a reduction of the total response time
and host processing time. Variation of VM processing time is
the primary limiting factor in the proposed algorithm during
the task allocation process because it prevents underutilize
and overutilization of VMs. It also has a high standard
deviation effect, which maintains the load balance of all
system.

2. RELATED WORK

Millions of users share cloud services through the transfer of
their computing tasks to the cloud. Scheduling these millions
of activities poses a threat to cloud computing. Work in SI
discovered that cloud computing system cooperation of
groups of related agents can solve complicated problems.
ACO and ABC are the most common load balancing
algorithms in field SI. SI based scheduling algorithms survey
for a variety of distributed system tasks was presented in [8].
The distributed system tasks always come up with the
possibilities of various intermittent issues which can slow
down the processing procedures, however these tasks cannot
be put away as these are most in demand these days to meet
the requirements of most of the cloud computing applications.
This contrasts equally between implementations of tasks in
distributed computing environments based on a standardized
structure for comparisons. This structure is prepared based on
the various criterion which are having the standardized
protocols and well-defined precise requirements for various
applications. This serves SI schedulers, which are

M. Nageswara Prasadhu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3078 – 3085

3080

responsible for optimizing one or more scheduling metrics in
distributed environments, such as make span and load
balance. In most of these optimization techniques attributes
such as number of iterations required and compilation time
for executing a particular algorithm have to be defined in
advance and must be customizable to suit various applications
that arise due to the demands.

Cloud task scheduling strategy was introduced in [9], based
on the ACO algorithm. This algorithm's main objective is to
minimize the make span of the tasks. ACO is a classical
problem which completely depends on simple and natural
phenomenon based on the ant behavior of searching for food
and passing through the hurdles while taking the best route to
reach their destinations. During the process of reaching the
destination ants take various paths with the help of a
substance named pheromones which is emitted by each ant for
the purpose of communication. ACO is a random search
technique for optimisation that is used to assign incoming
work to VMs. This uses a framework for positive feedback,
internal parallelism and extensible feedback. There are,
however, other disadvantages such as the overhead arising
from the use of more than one control parameter to chart the
relative value of pheromone quantity and the desirability of
each move. Therefore, the phenomenon of stagnation which
results in finding exactly the same solution while searching
for certain individuals. ACO-based soft computing algorithm
was introduced in [10] which uses the concept of foraging and
trailing pheromones to search over loaded nodes and under
loaded nodes. Compared to the original ACO method where
ants create their own solutions and then develop into a whole
solution, ants continuously update a single result set in this
algorithm instead of updating their individual solutions. A
load balancing strategy based on ant colony was proposed in
[11]. In this algorithm, to achieve the balance, ants are
created and detached in the cloud seeking under loaded VMs.
Nevertheless, it does not take into account problems of fault
tolerance and all workers are expected with the same priority.

ABC algorithm based on the bees' foraging behavior is
introduced in [12]. The artificial bees are categorized in this
algorithm into three groups: employed bees, scouts and
onlookers. Employ bees pay for the colony's first half, while
the onlooker occupies the other half. It can be easily perceived
that it depends on natural behavioral characteristics based on
Bees which is a part of Evolutionary algorithms. A number of
disadvantages of this algorithm include lack of use of
secondary information, the risk of missing relevant
information, a large number of objective function tests,
slowing down when used in sequential processing, and the
population of solutions increases the computational cost. As it
has many parameters to look after, it is understood that this
algorithm has limitations due to the inherent parameters
related to the evolutionary issues.
Load balancing algorithm focused on behavior of honey bee
foraging strategy in cloud computing environments has been
proposed in [13]. The tasks are sent to the underloaded

machine and the next tasks are also sent to that VM like
foraging bee before the machine is overloaded as exploitation
of flower patches is done by scout bees. In this algorithm the
evolutionary approach is purely based up on the object that is
flower. However, this algorithm does not take into account the
cost of VM bandwidth and VM in inter-datacenter level load
balancing. The other attributes such as bandwidths are to be
maintained in a pre-defined range to avoid the wastage of the
resources.

In [14], cost-effective load balancing was suggested based on
actions of honey bee in cloud climate. It selects optimal VM
by comparing the cost of executing a task on one VM to that of
all other VMs and the estimated running time of that task in
one VM to that in all other VMs. Lastly, it selects a VM that
has minimum minimization function value and assigns the
task to it. The function of minimization is calculated based on
running time and cost of the monitoring. Here the number of
iterations used during the experimental investigations also
concerned as important aspect to attain the best optimal
result. The minimization process leads to obtaining the best
cost solution with respect to number of iteration and
population size. This technique causes a high number of
migrations which diminish the overall system's quality and
performance.

In [15] an improved bee colony algorithm was proposed for
load balancing in cloud. This method removes the tasks from
overloaded VMs and assigns them to the most suitable
undercarriage VMs. This method also considers the priorities
of the tasks in the VMs queues, as it chooses the task with the
least migration priority to reduce the imbalance. The selection
of task is virtuously dependent on the priority in this case and
this is carried out based on the queues. And there's no need for
activities to wait longer to get processed. The number of task
migrations, however, is high which adversely affects cloud
performance. Hence over switching of the tasks are to be
avoided to enhance the performance of the system.

The idea of a random algorithm is to assign the selected jobs
randomly to the Virtual Machines (VM) available [16].
However, the randomness is often based on a simple
chronological fashion which follows a particular criterion to
perform the tasks in an effective manner. This algorithm does
not take into account the VM state, which will be either under
high or low load. It can then contribute to the selection of a
VM under heavy load, and the job needs a long waiting time
before service is obtained. This algorithm's complexity is very
small, as it does not require any overhead or pre-processing
[16, 17]. Thus, due to non-requirement of the pre-processing
strategies in this model, the computational complexity is
always within the operable range.

Equally spread current execution algorithm distributes the
load randomly by testing the size and moving the load to a
virtual machine that is easily loaded or handles the job, taking
less time and optimizing the throughput. It is technique of

M. Nageswara Prasadhu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3078 – 3085

3081

spreading the range in which the load balancer spreads the
load of the job in hand into several virtual machines [17,18].
Sometimes this type of operations may land in a complex
situation due to many VMs come into executing the necessary
commands or instructions for a given application.

In Throttled load balancing algorithm, the load balancer
maintains a virtual machine index table as well as its state
(Available or Busy) [3, 19]. The data center must ask the load
balancer for VM allocation. The load balancer scans the index
table from the top until it finds the first available VM or scans
the index table in full. This scanning procedure comprises of
concerning various issues related to VMs. The data center
assigns the role to the VM by id if the VM is found, but if VM
is not found, the load balancer returns -1 to the data center.
The data center would then bring the work into a queue [20].
This algorithm has a unique way of representing with
different integers for each and every outcome.

A greedy algorithm always makes the option which currently
looks best. This is, in the expectation that this choice will lead
to a globally optimal solution [21], it allows a locally optimal
choice. This also chooses the best place to perform the job
according to different parameters such as: the shortest length
of line, the least work load and the least line time. This system
sometimes also referred to be nearest neighbor approach
which jumps on to the best cost value depending on the
availability of the nodes to the referred node which is
performing the operational procedure.

The proposed hybrid algorithm in this paper attempts to
balance the load of VMs during task allocation by checking
the variance of and VM processing time from all VMs'
average processing time. The statistical values are to be
computed and considered which are completely based on the
probabilistic calculations, And Variance is a parameter which
indicates the variation of a variable with respect to other
variables that are involved in the process of comparison.
When the value of specific VM is greater than or equal to a
predefined threshold, this means that at this stage this VM is
overloaded. Then, the load balancing process begins the
algorithm which limits the allocation to overloaded VM. The
running function is then performed until completion which is
called a non-pre-emptive program.

3. PROPOSED SYSTEM

In the cloud computing environment, the latest load balance
scheduling algorithms are not highly efficient in
heterogeneous of a processor capacity. The main aim of this
research is to achieve efficient efficiency of a processing
power in heterogeneous cloud computing system. Thus, this
leads to attainment of the optimal solution without going
through any sort of delays during the computational process.
In this section, we will present the proposed hybrid algorithm
which exploits both random and greedy algorithms.

In this research we have proposed a hybrid algorithm which
benefits from both random and greedy algorithms. The
probabilistic approach is to combine with the greedy nature of
the variables that are induced in the proposal of the effective
algorithm that can handle the issues that are occurred during
randomness and behavioral characteristics which are
inherent to the greedy algorithms. The random algorithm
that randomly selects a VM to process the assigned tasks does
not require complicated computation to make a decision, but
it does not select the best VM. We can observe here that, the
greedy algorithm selects the best VM to handle the obtained
task but the selection process involves some complex
computation to find the best VM. This hybrid combination
can overcome the problem of each of the other algorithm
limitations yielding out a best cost optimal solution.

First, we design a proposed hybrid algorithm based on
algorithms of random and greedy nature. The design cycle
involves model creation, specification and algorithm design,
Algorithm correctness testing, and Algorithm analysis. These
steps have to be executed in a way such that the continuous
flow of the proposed algorithm does not violate the required
criterion. Then we use Cloudanalyst simulator to implement
the proposed algorithm. Afterwards we use the Cloud analyst
simulator to test the proposed algorithm. Then we evaluated
the proposed algorithm without considering network delay in
a heterogeneous power of the processors. Then with
considering network delay, we evaluated the proposed
algorithm in heterogeneous capacity of processors.
Ultimately, we compared the results of the algorithm
proposed to existing algorithms.

The algorithm adopts the randomization and greedy
characteristics to achieve an effective load balancing and
covers its drawbacks. To achieve the goals, the algorithm
considers the current resource information and the power
factor for the CPU. The abstract view of a proposed hybrid
algorithm is shown in Figure 2.

 Figure 2: Proposed Hybrid Algorithm

The hybrid algorithm consists of two key steps which are:
VMs are spread over host in the first step according to the

M. Nageswara Prasadhu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3078 – 3085

3082

qualifications of the host. These VMs are fed with pre-defined
variables to assess the situation that may help in the
processing of the procedures leading to evaluate the tasks that
are assigned at the first step. The largest number of VMs is at
the most suitable host, depending on the CPU capacity of the
hosts.

In the second step a new index table was used by the algorithm
to record the current loads for each VM. And which used to
test the current VM loads at each iteration and the iteration
number must be user defined to have the control of the entire
process, the algorithm reads the value of VM load from the

index table; it sends the request to the hybrid load balancer
when the data center receives a request from the users. The
hybrid algorithm will randomly pick k nodes (VM), and then
select the current load for each VM selected. Then it will pick
a VM with least current Disk loads and return the Disk id to
Data Center. The data center will assign the load to the
selected VM, and update the selected VM value in the current
load index table. Finally, when the VM finishes processing
the request, the data center will be told to update its current
load value.

M. Nageswara Prasadhu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3078 – 3085

3083

4. IMPLEMENTATION

The research is performed using the simulator Cloud Analyst
[51]. We specify the parameters of the simulator such as
(configuration of users, configuration of data centers,
configuration of VMs) and identify several configurations.
And also, one point has to be taken into account that this
checklist of parameters is not an exhaustive list that has to
noted, there are other attributes of less significance as of their
names suggest but play a prominent amount of role while
execution process is induced. The experiments were
implemented using the configuration described. This specific
configuration has to be under obvious monitor process such
that the algorithm can be changed whenever there is
particular requirement or need. In the first steps we studied
the problem without the effect of network delay, we tested the
algorithm in heterogeneous host environment, and each
machine has different number and speed of CPUs, and then
we tested the effect of considering the CPU factor power. The
consumption of power is to be dealt with a specific operative
procedure, as it can sometimes make the process look good or
break the process if it is over used. Finally, we tested the
impact of network delay effect on the hybrid algorithm,
taking into account CPU factor efficiency and host
heterogeneous environment. We implement some of the
latest algorithms for load balancing, such as Equally
distributed latest execution, Random and Greedy algorithms.
Then, the hybrid algorithm is applied.

5. EVALUATION

Various metrics are used to evaluate the various techniques.
We used 2 metrics in our work to measure the performance as
follows:
Response Time: This is the time interval between sending a
request and receiving its response. To maximize system
efficiency, we will reduce the response time. Will get the total
response time as follows:
Total response time = the users request processing delay +
Network delay
Average processing time: It is the amount of time actually
needed to process a task.

6. EXPERIMENTS
6.1. Configuration

We established the 50 virtual machines in the data center,
and the size used in the experiment to host applications is 100
MB (figure 1). Virtual machines have 1GB of RAM memory,
and 10MB of bandwidth available. Simulated hosts include
an operating system of x86 architecture, Xen virtual machine
monitor, and Linux. The selection of the operating systems is
based upon the requirement and the availability of
infrastructure and necessity of the algorithms. The exact
overload has to be computed at first hand to clearly identify
the necessity and requirement to procure the basic amenities
which can be used for experimentation and investigation.

The data center hosts 5 dedicated virtual machines. The hosts
have RAM 2 GB, and capacity 100 GB. Each computer has
different number of CPUs and speeds, first host has 4 core
processor with 2000 MIPS, second host has 5 core 5000
MIPS, third host has dual core with 9000 MIPS, fourth host
dual core with 10000 MIPS, and fifth host dual core with
15000 MIPS.

Users are grouped by 1000, and requests are grouped by 100.
Each user request needs 250 implementing instructions. The
length of the simulation took a day. Comparing the algorithm
with other existing algorithms we used the response time and
processing time metrics.

Table 1: Application development Configuration used in
Experiment

Data
Center

No. of
VMs

Image
Size

Memory Band
Width

1 50 10000 512 1000

Table 2: User bases configuration used in Experiment
Name Requests

per user
per
Hr.

Data
Size
Per
req.
(Bytes)

Peak
Hours
Start
(IST)

Peak
Hours
End
(IST)

Avg.
Peak
Users

User Base
1

12 100 13 15 40000
0

User Base
2

12 100 15 17 10000
0

User Base
3

12 100 20 22 30000
0

User Base
4

12 100 13 15 15000
0

User Base
5

12 100 21 23 50000
0

Table 3: Data centers configuration used in Experiment

Id Memory
(GB)

Storag
e

(TB)

Available
BW

(Mbps)

Number of
Processors

Processor
Speed

1 200 100 100 4 2000
2 200 100 100 5 5000
3 200 100 100 2 9000
4 200 100 100 2 10000
5 200 100 100 2 15000

6.2. Results

In this experiment, the VMs distributed to the hosts
according to the hosts qualification and the CPU capacity, the
results showed that when considering the CPU capacity
factor, the best qualified host has more VMs than other hosts,
so when selecting K nodes randomly from the VMs and

M. Nageswara Prasadhu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3078 – 3085

3084

selecting the least loaded one from the selected VMs, the
response time will be improved.

The hybrid algorithm recorded 842.53 (ms) of the best
average response time and 887.52 (ms) of the best average
processing time when K= 15. This result is better than round
ECSP which had previously been the best performance of
algorithms. ECSP reported 972.32 (ms) average response
time and 925.24 (ms) average processing time represented in
figure 3. The discrepancy between the results and other
algorithms on each average answer and processing time
exceeded 100 (ms). This means decreasing the number of
VM to 15 and the hybrid algorithm decreased the overhead
computation with consideration of the CPU capacity factor.
Compared with other algorithms, the hybrid algorithm makes
a major gain on average response time and processing time.
So, the hybrid algorithm enhanced the efficiency of cloud
computing in a heterogeneous setting.

Table 4: Response time and processing time results for testing the

effect of Capacity of CPU factor
 RESPONSE TIME PROCESSING TIME
Algori
thm

Avg Min Max Avg Min Max

ECSP 972.32 85.32 5120.45 925.24 32.15 4958.63
RAN
DOM

982.15 84.65 5023.21 956.12 35.47 5224.26

GREE
DY

970.13 84.29 4926.39 902.15 29.56 4875.24

HYB
RID

842.53 76.52 4789.51 827.52 22.24 4557.68

Figure 3: All algorithm results Comparison for testing the effect

Capacity of CPU factor

7. CONCLUSION

In this paper, a load balancing algorithm based on random
and greedy strategies are proposed in cloud computing
setting. The proposed Hybrid Algorithm aims to reduce
overall response time and processing time for the data center,
as it distributes workload between various VMs taking into
account the availability and load of each VM. This limits
request allocation to VM when the difference in this VM
processing time from the average processing time of all VMs
is greater or equal to a predefined threshold. Results from the
simulation show that the proposed algorithm increases the

average response time and execution time over the
well-known algorithms; like ECSP, Random and Greedy.
Therefore, it preserves the deviation and balance better than
the existing algorithms. While in the proposed method the
migration process is not efficient as it checks the variation
value of VM during task allocation, the migration can be
applied in the case of serving a community of dependent
tasks. In Future research this improvement can be introduced.

REFERENCES

1. Ramana, K., T. Krishna, C. Narayana, and M. P. Kumar,

"Comparative analysis on cloud computing and
service-oriented architecture", International Journal
of Advanced Research in Technology, vol.1, Issue 1,
pp.22–28, 2011

2. Ramana, Kadiyala, and M. Ponnavaikko. "A
Multi-Class Load Balancing Algorithm (MCLB) for
Heterogeneous Web Cluster", Studies in Informatics and
Control, Vol. 27, Issue 4, pp.443-452, Dec 2018)
https://doi.org/10.24846/v27i4y201808

3. D. Satria, D. Park, and M. Jo, "Recovery for
overloaded mobile edge computing", Future
Generation Computer System, vol.70, pp.138–147, May
2017.
https://doi.org/10.1016/j.future.2016.06.024

4. S. Aslam, and M. A. Shah, "Load balancing
algorithms in cloud computing: A survey of modern
techniques", National Software Engineering
Conference (NSEC), Pakistan, December 2015.

5. W. Saber, R. Rizk, W. Moussa, and A. Ghonem,
"LBSR: Load balance over slow resources", in Proc.
of International Conference on Computer Applications
& Technology (ICCAT), Cairo, Egypt, January 28-29,
2017.

6. P. Samal, and M. Pranati, "Analysis of variants in
round robin algorithms for load balancing in cloud
computing", International Journal of Computer
Science and Information Technologies, vol. 4, no. 3, pp.
416-419, 2013.

7. S. G. Domanal, and G. R. M Reddy, "Load balancing in
cloud computing using modified throttled
algorithm", in Proc. of International Conference on
Cloud Computing in Emerging Markets (CCEM),
Bangalore, India, October 2013.
https://doi.org/10.1109/CCEM.2013.6684434

8. M. Gamal, R. Rizk, H. Mahdi, and B. Elhady,
"Bio-inspired load balancing algorithm in cloud
computing", in Proc. of The International conference
on Advanced Intelligent systems and Informatics (AISI),
Cairo, Egypt, pp. 579-589, September 2017.

9. H. de Vries, and J. C. Biesmeijer, "Modelling collective
foraging by means of individual behavior rules in
honey-bees", Behavioral Ecology and Sociobiology,
Springer-Verlag, vol. 44, no.2, pp. 109 – 124, 1998.

M. Nageswara Prasadhu et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3078 – 3085

3085

10. R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D.
Rose, and R. Buyya, "CloudSim: a toolkit for modeling
and simulation of cloud computing environments and
evaluation of resource provisioning algorithms",
Software: Practice and Experience, vol. 41, no. 1, pp.
23–50, January 2011.
https://doi.org/10.1002/spe.995

11. E. Pacini, C. Mateos, and C. G. Garino, "Distributed
job scheduling based on Swarm Intelligence: A
survey”, Computers & Electrical Engineering, vol. 40,
no. 1, pp 252-269, January 2014.

12. M. Tawfeek, A. El-Sisi, A. Keshk, and F. Torkey,
"Cloud task scheduling based on ant colony
optimization”, The International Arab Journal of
Information Technology, vol. 12, no. 2, pp. 129-137,
2015.

13. K. Nishant, P. Sharma, V. Krishna, C. Gupta, et al,
"Load balancing of nodes in cloud using ant colony
optimization", in Proc. of 14th International
Conference on Computer Modelling and Simulation
(UKSim), Cambridge, March 2012.
https://doi.org/10.1109/UKSim.2012.11

14. S. Dam, G Mandal, K. Dasgupta and P. Dutta, "An ant
colony based load balancing strategy in cloud
computing", Advanced Computing, Networking and
Informatics, vol. 2, Smart Innovation, Systems and
Technologies, Springer, vol. 28, pp. 403-413, 2014.

15. D. Karaboga, "An idea based on honey bee swarm for
numerical optimization", Technical Report TR06,
Computer Engineering Department, Erciyes University,
Turkey, 2005.

16. K. R. Babu, A. A. Joy, and P. Samuel, "Load balancing
of tasks in cloud computing environment based on
bee colony algorithm", in Proc. of Fifth International
Conference on Advances in Computing and
Communications (ICACC), Kochi, September 2015.

17. Y. S. Sheeja, and S. Jayalekshmi, "Cost effective load
balancing based on honey bee behavior in cloud
environment", in Proc. of First International
Conference on Computational Systems and
Communications (ICCSC), Trivandrum, December
2014.
https://doi.org/10.1109/COMPSC.2014.7032650

18. Singh, A., Gupta, S., and Bedi, R., “Comparative
Analysis of Proposed Algorithm with Existing Load
Balancing Scheduling Algorithms in Cloud
Computing”, International Journal of Emerging Trends
& Technology in Computer Science (IJETTCS), 3(1): pp.
197-200, (2014).

19. Tiwari, M., Gautam, K., and Katare, K., “Analysis of
Public Cloud Load Balancing using Partitioning
Method and Game Theory”, International Journal of
Advanced Research in Computer Science and Software
Engineering, 4(2): pp. 807-812, (2014).

20. Ratan, M. and Anant, J., “Ant colony Optimization: A
Solution of Load Balancing in Cloud”, International

Journal of Web & Semantic Technology (IJWesT), III,
(2012).

21. Khatib, V. and Khatibi, E. “Issues on Cloud
Computing: A Systematic Review”, in International
Conference on Computational Techniques and Mobile
Computing. Singapore, (2012).

