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 
ABSTRACT 
 
This paper aims to investigate the ability of the proposed 
Modified Cuckoo Search-Markov chain Monte Carlo 
(MCS-MCMC) algorithm for two (2) types of Higher Order 
Neural Networks (HONNs); Pi-Sigma Neural Networks and 
Functional Link Neural Networks that will influence the 
performance of searching ability, even at high numbers of 
dimensions. We validated the proposed MCS-MCMC 
algorithm alongside several benchmark test functions The 
proposed MCS-MCMC were tested on three (3) different 
time-series data; relative humidity, temperature and laser 
datasets. The performance of those HONNs is benchmarked 
against the performance of Multilayer Perceptron. The 
simulation results shows that, by incorporating MCS-MCMC 
algorithm in both HONNs can improve convergence rate and 
decrease the prediction error. 
 
Key words : MCS-MCMC, modified cuckoo search, cuckoo 
search, Markov chain Monte Carlo. 

1. INTRODUCTION 

Artificial Neural Networks (ANNs) have been successfully 
applied to a variety of real-world classification task in 
industry, business and science [1, 2]. For prediction task, 
ANNs needs to be “trained” to produce the desired 
input-output mappings. The realism of using such gradient 
base optimisation techniques has been reduced by the 
difficulty of generating automatically objective functions and 
their derivatives for highly non-linear engineering problems 
[3-5]. Accordingly, the gradient search techniques in those 
ANNs prone to easily get trapped into local minima during 
training phase and may lead to poor network performance. 
The most common architecture of ANNs is the multilayer 
feedforward network or mostly known as multilayer 
perceptron (MLP) which utilises a supervised learning 
technique called backpropagation (BP) for training the 
network [2, 6-8]. Thus, since the BP learning algorithm is a 

 
 

gradient descent local optimisation technique, there is still 
have several major problems needed to be solved. Therefore, 
further investigations to improve the learning algorithm in 
ANNs are still desired [2, 9]. 

In the era of 1950s and 1960s, researchers investigated the 
prospect of applying the concepts of evolutions to a subclass 
of gradient free methods [3, 4, 10]. These intelligent 
mechanisms, which comprise Cuckoo Search (CS), offers 
great benefits over conventional modelling, including the 
proficiencies to employs high level techniques in exploring 
and exploiting the search space [10]. They are simple, more 
generic and robust. However, the CS will always find the 
optimum if it been given enough computation. Therefore, it is 
not guaranteed whether the exploration can converge faster or 
not.  

After all, Walton et al. introduced two (2) modifications in the 
Modified Cuckoo Search (MCS) algorithm by changing the 
Lévy flight step size,   and adding up the information 
exchange between the top eggs to speed up convergence rate 
[4]. Despite of this huge success of MCS, there are many open 
problems which remain unanswered. We know how these 
heuristic algorithms work, and we also partly understand why 
these algorithms work.  However, it is difficult to analyse 
mathematically why these algorithms are so successful, and 
along with others. 

For all population-based metaheuristics, multiple search 
agents form multiple interacting Markov chains [4, 10]. 
Therefore, we possibly replacing the Lévy flight found in the 
MCS algorithm with Markov chain Monte Carlo (MCMC) 
random walk. A major advantage of the MCMC is that it 
learns better parameter automatically whilst ruling good 
parameter values by little user intervention. This paper 
explores the prediction capability of 2 types of HONNs; 
Pi-Sigma Neural Networks and Functional Link Neural 
Networks by considering the MCS-MCMC algorithm as the 
learning algorithms, replacing the current backpropagation 
(BP) learning, in order to reduce the prediction error. 
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The paper is mainly organised according to nine (9) sections. 
In the first section, a brief introduction regarding the area of 
the study is discussed. In the second part, the key concept 
regarding the random walks briefly explained. The third 
section comprises the network architecture of HONNs. In the 
fourth and fifth sections, the MCS and MCS-MCMC 
algorithm being explained. In the sixth and seventh sections, 
the experimental settings and benchmark test functions are 
presented. In the eighth section, simulation results are 
discussed. In the last section, some conclusions and future 
works are untaken.  

2. RANDOM WALKS 

The term “random walk” was originally proposed by Karl 
Pearson in 1905. It is a mathematical formalisation of a path 
that consists of a succession of random steps [11, 12]. The 
random walk usually deals with randomness which are 
lacking aim or method and not uniform. The random walk is 
assumed homogeneous, symmetric, irreducible, and having 
zero mean and finite variance of jumps. The areas of random 
walk includes the field of ecology [13], economics, computer 
science [12] and so on. Random walks explain the observed 
behaviours of processes in these fields, and thus serve as a 
fundamental model for the recorded stochastic activity. Some 
random walks are on graphs, others on the line, in the plane, or 
in higher dimensions, while some random walks are on groups 
[12]. 

2.1 Lévy Flight 

A Lévy flight is a type of random walk that the distribution of 
the step-lengths is bounded in a heavy-tailed probability 
distribution. The typical properties of this kind of distribution 
is the positive exponential moments are infinite (do not have 
finite mean and variance). The term “Lévy flight” was 
invented by Benoît Mandelbrot [14] who used this for one 
specific definition of the distribution of step sizes. This gives 
yet another slogan:  

 “Cauchy flight”, if the distribution of step size is a Cauchy 
distribution. 

“Rayleigh flight”, if the distribution is a normal distribution. 

“Lévy flight”, when the directions of the step sizes are in 
isotropic random directions.  

Those random directions is defined by the survivor function 
(commonly known as the survival function) of the distribution 
of step-sizes, U , as in functional notation (1): 

 







 .1:
,1:1

=u>UPr
uu
u

D  (1)  

which says D  parameter in the fractal dimension in Pareto 
distribution.  

The distribution of step sizes can be any distribution for which 
the Lévy exponent of approximately 2 (also called power law) 
can provide a higher efficiency than other exponents: 

    31,   uOuUPR  (2) 

2.2 Markov chain Monte Carlo 
MCMC methods are constructed based on a Markov chain 
that has the desired distribution as its equilibrium distribution. 
Due to the ability of MCMC that provides insight into large, 
complex Bayesian problems, it has been one of the most 
important developments in modern statistics [15]. The state of 
the chain after a large number of steps is then used as a sample 
of the desired distribution. The quality of the sample improves 
as a function of the number of steps. Typically, the 
formulation of a Markov chain with the desired properties is 
not an issue. However, researchers had risen up the issues on 
how to define the steps and how to minimize the number of 
steps required until it converges to an equilibrium distribution. 
The distribution is said to be in equilibrium state when the 
process develop gradually in a random way until it reaches a 
certain state, which it remains subsequently distribution [15]. 
As there is always some outstanding effect of the starting 
position, the MCMC sampling can only approximate the 
target distribution. 
The MCMC sampling regularly used in calculating 
multi-dimensional integrals numerically, whereas a group of 
“walkers” moves around randomly. At each point where the 
walker steps, the integrand value at that point is calculated 
close to the integral. Then, a number of tentative steps around 
the area is taken, wherever a place with reasonably have high 
contribution to the integral being chose so that later on, they 
may move into the next step [15].  

3. THE NETWORKS 

3.1 Pi-Sigma Neural Network 
Pi-Sigma Neural Network (PSNN) is a form of HONNs and 
was first introduced by Shin & Ghosh [16]. The mainspring 
behind the network is due to the fact that a polynomial of input 
variables is formed by a product (“pi”) of several weighted 
linear combinations (“sigma”) of input variables. That is why 
this network is called pi-sigma instead of sigma-pi. The PSNN 
exhibits fast learning while greatly reducing network 
complexity by utilising an efficient form of polynomials for 
many input variables. This special polynomial form helps the 
PSNN to dramatically reduce the number of weights in its 
structure. Fig. 1 shows the architecture of PSNN: 

 

Figure 1: Structure of j th Order PSNN 

Input x  is an N  dimensional vector and ix  is the i
th 

component of x . The weighted inputs are fed to a layer of j  
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linear summing units; ijh  is the output if the j
th summing 

units for the k th output ky , viz: 



















 

j
ijiij xwy   (3)  

where 
ijw  and 

ij  are adjustable coefficients, and   is the 

nonlinear transfer function [16]. The number of the summing 
units in PSNN reflects the network order. By using an 
additional summing unit, it will increase the network’s order 
by 1 at the same time as preserving old connections and 
maintaining network topology. 

In PSNN, weights from summing layer to the output layer are 
fixed to unity, resulting to a reduction in the number of 
tuneable weights. Therefore, it can reduce the training time. 
Sigmoid and linear functions are adopted in the summing 
layer and output layer, respectively. The use of linear 
summing units makes the convergence analysis of the 
learning rules for the PSNN more accurate and tractable [17]. 

Since weights from hidden layer to the output are fixed at 1, 
the property of PSNN significantly reduces the training time. 
This network was successfully applied for function 
approximation [18], pattern recognition, classification, and 
many more.  

3.2 Functional Link Neural Network 

In forecasting, software growth effort using Functional Link 
Neural Network (FLNN) architecture which is flat ANNs 
involving of one input layer and an output layer. The FLNN is 
basically a single layer network and the layer of hidden layer 
was being detached and automatically produce the simplest 
learning algorithm compared to MLP [19]. The FLNN 
produces output through increasing the early inputs and then 
processing to the final output layer. Each input neuron 
corresponds to a component of an input vector. The output 
layer consists of one output neuron that computes the software 
development effort as a linear weighted sum of the outputs of 
the input layer [19]. The functional expansion efficiently 
growths the dimensionality of the input vector and later the 
hyper planes produced by the FLNN deliver better perception 
capability in the input pattern space. 

 

Figure 2: The Structure of a Functional Link Neural Network 
(FLNN) 

The structure of an FLNN is presented in Fig. 2 where 
ex  is 

the input vector and  ei xy  is the output.  

The FLNN model apply a single-layer ANNs structure 
possessing network to overcome the higher computational 
load compare to the MLP structure, by expands their input 
vectors. The component of the input pattern before expansion: 

  diix 1,        (4) 

where the component of  ix  is functionally expanded as, 

  Nnixn 1,                (5) 

while N  number of expansion for every input component. 
Expansion of each input pattern is stated as below: 

            izfixizfixizix NN  ,,, 121   (6) 

where, :d  for the set of structures in the group of data. 

The hidden layer implements a functional expansion on the 
input data, which maps the input space of dimension 

1n  into a 
new space of increased dimension 1nM  . The output layer 
consists of m  nodes, each one, in fact, a linear combiner. The 
input-output connection of the FLNN as derive as below:  

    miMxhwxy jejijei  1,1      (7) 

where,  

:ex  input vector  

 :ej xh weights on connection from input unit  

:M nodes 

  :ei xy  output unit  

Polynomial expansion is the most used in functional 
expansion technique. Due to the case, the expansion results, 
 ej xh , are a sequence of monomials of ex . Costa et al. [20] 

introduced an adjustment on the model of the FLNN, where 
the output set by Eq. (8) was transformed by an invertible 
nonlinear activation function. The new equation as stated as 
below: 

    miMxhwfxy jejijei   1,11
       (8) 

where 1f  is an invertible nonlinear function which is, the 
sigmoid function. This alteration was created to growth the 
non-linear approximation capability of the FLNN. The 
training of the algorithm was done using a changed output 
which is the original output changed through the inverse of the 
activation function, f  [21]. 

In fact, these patterns of the expanded input are joining to the 
single layer ANNs to gain the desired output paragraph. For a 
certain mapping, the nonlinearity of the complex task may not 
be suitable for function expansion. Some of the set of function 
may not assimilate to the expansion of the input dataset. 
Nevertheless, in term of dimensionality problem, it will 
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produce very high and aggregate the dimensionality extends 
beyond expectation and resulting not a good choice [20]. 

Subsequently, it is preferable to select a minor group of 
substitute functions, which can plot the function to the 
preferred range. Therefore, Patra [21] has reserved an FLNN, 
via a flat network structure that competent to produce an 
arbitrarily complex result region using producing nonlinear 
decision limitations. In FLNN, the unseen layers have been 
removed to produce lower computational difficulty and higher 
convergence speed rate compared MLP structure. 

4. MODIFIED CUCKOO SEARCH 

As stated by Yang and Deb [10], the CS will always find the 
optimum if it been given enough computation. Basically, the 
search technique in CS being done by considering the whole 
area on random walks. However, it is not guaranteed whether 
the exploration can converged faster or not. Typically, the 
parameters   in CS are kept constant which resulting the 
efficiency of the algorithm to tail off. To cope with this issue, 
Walton et al. [4] created 2 modifications: 1) change the Lévy 
flight step size  . In ordinary CS,   was kept constant by 
employing 1  [10] and 2) adding up the information 
exchange between the eggs in order to hasten up the 
convergence rate. Since the exploration in the ordinary CS is 
performed by their own selves, therefore, there is no 
information exchange between individuals. In the MCS, the 
eggs were evaluated twice. The first evaluation involves 
putting a sub of the eggs with the best fitness into a group of 
top eggs. For each of the top eggs, a second egg in this group 
is evaluated by picking up randomly before a new egg being 
generated on the line that connects these two top eggs. In 
order to get the best fitness, the new location of the new egg 
(distance along the line) is calculated by using the inverse of 
the golden ratio   2/51  . If the same fitness value 
found in both eggs, the new egg is generated at the center 
point. 

There are 2 parameters that need to be adjusted in the MCS, 
which refer to the fraction of nests to be abandoned and the 
fraction of nests to generate the top nests. An initial value of 
the Lévy flight step size 1A  is chosen. At each generation, 
a new Lévy flight step is calculated using GA , where 
G  specifies the number of generation. This exploration 
searching is only can be used for the fraction of nests to be 
abandoned. There is a probability that, in this measurement, 
the same egg is chosen twice. Therefore, by performing a 
local Lévy flight search on the randomly picked nest with step 
size 2GA  can handle these problems. 

5. MODIFIED CUCKOO SEARCH-MARKOV CHAIN 
MONTE CARLO ALGORITHM 

The CS will always find the optimum if it been given enough 
computation [10]. Even though the searching process in CS is 
based on whole area on random walks, there is no assurance 
that the algorithm might converge faster as usual. Based on 

this problem, 2 modifications has been created in the MCS, 
with the aim to increase the convergence rate, that will make 
the method more practical for a wider range of application 
without losing the attractive features of original method [22]. 

Therefore, we extend the work of Walton et al. [10] by 
substituting the Lévy flight in the MCS with Markov chain 
Monte Carlo (MCMC) random walk. The motivation of using 
MCMC in the MCS algorithm is because the MCMC have the 
capability to performs full-dimensional jumps at each 
iteration. It also has higher polynomial rates of convergence 
due to the existence of central limit theorem (CLT) for higher 
moment. The MCMC is involved 2 parts. In this step, we 
apply the MCMC random walk due to the benefits: higher 
polynomial convergence rates due to the existence of CLT for 
higher moment [23]. This is because, MCMC use local moves 
based on certain types of target density thus leading to 
qualitatively better algorithms. The step-by-step processes in 
the MCMC are presented in Algorithm 1. 

pSizeMaxLevySteA    
oGoldenRati  

Initialise a population of n  nests  nixi ,,2,1    

FOR ix , do 

Calculate fitness  ki xfF   
ENDFOR 
Generation number 1G   
WHILE  

valuationsMaxNumberEationsctiveEvaluNumberObje  , do 
1 GG  

Sort nests by order of fitness 
FOR all nests to be abandoned, do 
Current position 

ix  

Calculate MCMC random walk 
Perform MCMC random walk from ix  to generate new egg 

kx  

ki xx   

 ki xfF   
ENDFOR 
FOR all of the top nests do 
Current position ix  
Pick another nest from the top nests at random 

jx  

IF ji xx   then 

Calculate MCMC random walk 
Perform MCMC random walk from ,ix to generate new 
egg ,kx )( kk xfF   

Choose a random nest l from all nests 
IF )( lk FF   do 

kl

kl

FF

xx




 

ENDIF 
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ELSE 
/ji xxdx   

Move distance dx
 
from the worst nest to the best nest to find 

,kx )( kk xfF   
Choose a random nest l from all nests 
IF )( lk FF   then 

kl

kl

FF

xx




 

ENDIF 
    ENDIF 
ENDFOR 
ENDWHILE 

Algorithm 1: MCS-MCMC 

 

The MCS-MCMC is operated by the following steps [23]: 

At first, we generate the initial value,   that satisfies   0f , 
by considering the target probability density function (PDF):  

  





 

 




2
exp.. 2/ a

Cp n  (9)  

where 5n  and 4a . 

There are 2 parameters, number of samples (iterations) and 
samples drawn from the target PDF,  p . For the number of 
samples, we set the value as the same as the dimension of each 
test function. Then, we marked-out U  from a uniform 
distribution at random, and accept   subject to PU   where 

,1P .  

For the procedure, we calculate the density ratio at the 
candidate point,   and current points, 1t , 

 
 

 
 11 


tt f

f

p

p
P







  (10)  

We can summarise that the sampling as first computing, and 
then accept the probability, P  

 
  1,min

1


tf

f
P



  (11) 

6. EXPERIMENTAL SETTINGS 

We developed the standard MCS and MCS-MCMC algorithm 
in MATLAB. We then replaced the Lévy flight found in the 
standard MCS algorithm with MCMC random walk. Then, we 
run the code to get d dimensional points based on 
dimensionality of the benchmark test functions. 

The experiment consists of 2 main runs. Firstly, we tested the 
standard MCS and MCS-MCMC to all benchmark test 

functions. During the experiments, 15 host nests with an egg 
survival probability of 0.25 were used. The maximum 
iterations for all the algorithms are set to 100 with a total of 30 
simulation runs on each function. Average and standard 
deviation is used to find any variations in the average trial 
values. The less indicates the better.  

Secondly, we apply the datasets into seven (7) different 
network architectures which is; standard PSNN, PSNN-MCS, 
PSNN-MCMC, standard FLNN, FLNN-MCS, 
FLNN-MCMC and standard MLP to see the performance on 
various ranges of data. Those models were trained and tested 
using time-series data; relative humidity, temperature and 
laser data collected from National Forecast Office, Malaysian 
Meteorological Department (MMD) and benchmark data 
from USCI. Each data signal was divided into 3 parts; 60 % 
training, 20% testing and 20% validation. Table 1 shows the 
number of data points used for each signal. 

Table 1: Portion of Training, Testing and Validation Set 
 

Dataset Relative 
Humidity 

Temperature Laser 

Training Set 30,504 1087 2384 
Training Set 10,168 363 794 
Validation 

Set 
10,168 363 794 

Total 50, 840 1813 3972 

The training set aids the model for training purposes, so, it 
must be larger and adequate compared to two other datasets. 
The training encompasses the weights adjustment by testing 
the initial set of weights against each input vector. If an input 
vector is found for which the recognition fails, weights are 
adjusted to suit the certain input vector. During the training 
process, the actual and predicted outputs are compared and 
weights are adjusted by using the BP algorithm [24] (for 
PSNN, FLNN and MLP), MCS algorithm (for PSNN-MCS 
and FLNN-MCS) and MCS-MCMC algorithm (for 
PSNN-MCMC and FLNN-MCMC), to a satisfactory level 
with proper network setup.  

Despite of that, the testing set is use to evaluate the network 
performances and to preserve some features for adjustment 
purpose [25], for the purpose of producing appropriate outputs 
for those input samples which were not encountered during 
training. 

Meanwhile, the validation set has dual-function: 1) to 
implement an early stopping in order to prevent the training 
data from overfitting and 2) to select the best predictions from 
a number of ANNs’s simulations.  

7. BENCHMARK TEST FUNCTIONS 

Test functions are important to validate and compare 
optimisation algorithms, especially newly developed 
algorithms. For this purpose, we compile thirteen (13) 
benchmark test functions with diverse properties in terms of 
modality, separability, and valley landscape [10]. Table 2 
present the average and standard deviation of number of 
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function evaluation of both runs for all benchmark test 
functions.  

Table 2: Comparison of Standard MCS and MCS-MCMC 
 

Functions Standard MCS MCS-MCMC 
Ackley’s  0.62211 ± 0.18207 0.10891 ± 0.019736 

Rosenbrock’s  68.553 ± 93.7092 36.0144 ± 46.4826 
Bohachevsky  5.06E-07 ± 

0.00000258 
0.000000624 ± 

2.64E-08 
Matyas  7.07E-09 ± 

22.394E-09 
1.00E-09 ± 
2.6477E-09 

Booth  5.11E-07 ± 
1.82E-06 

4.11E-07 ± 
1.41E-06 

Three-Hump 
Camel  

5.01E-10 ± 
20.461E-10 

1.03E-10 ± 
4.42E-10 

Eggholder  -19.2085 ± 
9.56E-08 

-19.2085 ± 
3.31E-08 

Himmelblau  2.34E-07 ± 6.6002 3.84E-08 ± 
0.00000710116 

Schaffer N. 2 12.521E-11 ± 
5.00E-10 

2.98E-11 ± 
1.37E-10 

Styblinski-Tang  -78.3323 ± 
2.71E-08 

-78.3323 ± 
1.82E-08 

Rastrigin  1.82E-08 ± 
4.29E-08 

6.21E-09 ± 
2.24E-08 

Schwefel  735.1754 ± 
235.1188 

574.1585 ± 
184.4498 

McCormick  -1.9105 ± 8.64E-06 -1.9105 ± 6.87E-06 

From all the test results tabularised in Table 2, the average 
functions evaluations of the MCS-MCMC are smaller than 
those obtained by the standard MCS. It indicates that the 
initialisation of MCS algorithm using MCMC had improved 
its searching steps. Using this result, the improvement also 
can be seen in the test result of the high dimensional input 
space functions such as the Ackley’s 120-dimensions 
benchmark test function. For the Ackley’s, the function 
evaluation average for MCS-MCMC outperformed standard 
MCS by 23.2% reduction.  

To put the result into a more detailed perspective, Fig. 3 
presents an example of the Fitness Value of Number of 
Generation for 120 dimensional Ackley’s. As demonstrated in 
Fig. 3, the standard MCS (blue line) converge quickly at first 
10-points but the MCS-MCMC (red line) converged quickly 
to its optimal solution. For Rosenbrock’s, MCS-MCMC 
overtook standard MCS by 45.9% (refer to Fig. 4). Generally, 
the combination of MCS with MCMC had clearly leaded to 
better results in all benchmark test functions. It means that the 
fitness value is considerably closer to global optima. 

 

Figure 3: The Fitness Value of Number of Generation 
(Ackley, d=120) 

 
Figure 4: The Fitness Value of Number of Generation 

(Bohachevsky) 

8. SIMULATION RESULTS 

Designing the right architecture involves several steps: 
selecting the number of layers, the amount of neurons to be 
used in each layer and choosing the appropriate neurons’ 
transfer function. Therefore, the parameter are set to be; the 
networks combination of five (5) different numbers of input 
nodes ranging from 5 to 7 [26], hidden layer/higher order 
terms from 2 until 5 and a single neuron for the output layer 
[17]. The performance of the MCS-MCMC algorithm are 
evaluated in 7 different network architectures which is; 
standard PSNN, PSNN-MCS, PSNN-MCMC, standard 
FLNN, FLNN-MCS, FLNN-MCMC and standard MLP. 

Referring to Tables 3 to 5, the MSE results for relative 
humidity Inputs 5 to 7 are tabulated. According to the results, 
we can see that for Input 5, FLNN-MCMC, PSNN-MCMC 
and PSNN-MCS lead the ranking. For Input 6, PSNN-MCMC, 
PSNN-MCS and FLNN-MCMC lead the ranking. As for 
Input 7, the ranking goes to PSNN-MCMC, PSNN-MCS and 
FLNN-MCMC, respectively. Seemingly, based on the results, 
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the performances of the network in which the learning method 
had been replaced by MCMC algorithm are much preferable 
compared to the networks with standard MCS algorithm. 

Table 3: MSE for Relative Humidity 5 Inputs 

Networks Rank Iteration MSE 
PSNN 7 14 0.0475 

PSNN-MCS 3 6 0.001621 
PSNN-MCMC 2 5 0.001621 

FLNN 6 91.2 0.0046 
FLNN-MCS 4  100 0.00183 

FLNN-MCMC 1 23 0.001323 
MLP 5 21 0.0044 

Table 4: MSE for Relative Humidity 6 Inputs 

Networks Rank Iteration MSE 
PSNN 7 19 0.2263 

PSNN-MCS 2 7 0.000606 
PSNN-MCMC 1 6 0.000606 

FLNN 6 19 0.0044 
FLNN-MCS 4 95 0.000943 

FLNN-MCMC 3 10 0.000859 
MLP 5 23 0.0042 

Table 5: MSE for Relative Humidity 7 Inputs 

Networks Rank Iteration MSE 
PSNN 7 100 0.2421 

PSNN-MCS 2 8 0.000486 
PSNN-MCMC 1 7 0.000486 

FLNN 6 156.6 0.0013 
FLNN-MCS 4 96 0.001579 

FLNN-MCMC 3 10 0.001296 
MLP 5 150 0.0013 

Fig. 5 graphically shows the performance comparison for all 
the networks on relative humidity for 5 inputs. According to 
the results, we clearly see that FLNN-MCMC shows the least 
MSE and minimum iteration compared to all networks 
generated or inversely, PSNN pointed the error to 0.0475 
stopped at 14th iteration. 

As indicated by the blue line in Fig. 6, PSNN-MCMC 
partaking the smallest minimum error 0.000606, in which the 
error is on the par with PSNN-MCS. From Fig. 7, 
FLNN-MCMC shows the least minimum error 0.000502 with 
100 iterations. Based on these 2 figures, we can conclude that 
the presence of MCMC in the network assist in minimising 
the error, indirectly able to network to converge faster. 

 

Figure 5: Performance Comparison on Relative Humidity for 
5 Inputs 

 

Figure 6: Performance Comparison on Relative Humidity for 
6 Inputs 

 

Figure 7: Performance Comparison on Relative Humidity for 
7 Inputs 

As can be noticed from Tables 6 to 8, the networks with the 
presence of MCMC algorithm (FLNN-MCMC and 
PSNN-MCMC) made the least MSE for ranges of inputs for 
temperature data when compared to other network models. As 
for example, for 5 inputs, FLNN-MCMC outperforms other 
network models by 93.67% while PSNN-MCMC takes 
91.92%. All the networks show a very small degree of 
deviation from the means, as the indicator that they produce 
consistent behaviour. The largest value of error found in MLP 
with the value of 0.0061. 
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Table 6: MSE for Temperature 5 Inputs 

Networks Rank Iteration MSE 
PSNN 4 100 0.0059 

PSNN-MCS 7 100 0.006026 
PSNN-MCMC 2 100 0.002551 

FLNN 5 1000 0.0059 
FLNN-MCS 3 100 0.003101 

FLNN-MCMC 1 6 0.001999 
MLP 6 551 0.0061 

Table 7: MSE for Temperature 6 Inputs 

Networks Rank Iteration MSE 
PSNN 5 100 0.0059 

PSNN-MCS 4 100 0.00406 
PSNN-MCMC 3 78 0.003975 

FLNN 6 1000 0.0059 
FLNN-MCS 2 99 0.002758 

FLNN-MCMC 1 67 0.002162 
MLP 7 390 0.006 

Table 8: MSE for Temperature 7 Inputs 

Networks Rank Iteration MSE 
PSNN 5 100 0.0059 

PSNN-MCS 4 94 0.004903 
PSNN-MCMC 3 98 0.003677 

FLNN 7 1000 0.0061 
FLNN-MCS 2 99 0.001066 

FLNN-MCMC 1 100 0.000502 
MLP 6 733 0.006 

 

Figure 8: Performance Comparison on Temperature for 5 
Inputs 

Fig. 8 graphically shows the performance comparison for all 
the networks on temperature for 5 inputs. According to the 
results, the FLNN-MCMC indicates 0.001999 while 
PSNN-MCMC gives 0.002551 for the MSEs (blue line in Fig. 
8). From this figure, we can roughly say, by plug-in the 
MCS-MCMC into both networks might help in minimising 
the error rate thus helping the network to converge faster. 

 

Figure 9: Performance Comparison on Temperature for 6 
Inputs 

The performance comparison for all the networks on 
temperature for 6 inputs are tabulated in Fig. 9. As it has been 
pointed out, FLNN-MCMC shows the least MSE, 0.002162 
compared to all networks generated. Thus, by having the least 
MSE, it incorporates both the variance of the estimator and its 
bias on how far off the average estimated value is from the 
truth. 

 

Figure 10: Performance Comparison on Temperature for 7 
Inputs 

Tables 9 to 11 shows that the average values of MSE for laser 
data for Inputs 5 to 7. Indubitably, MCS-MCMC has shown to 
learn the data with a comparable network size with FLNN and 
PSNN, with a smaller size when compared to other networks.  

Table 9: MSE for Laser 5 Inputs 

Networks Rank Iteration MSE 
PSNN 6 100 0.0082 

PSNN-MCS 5 97 0.006033 
PSNN-MCMC 3 9 0.005118 

FLNN 7 1000 0.0082 
FLNN-MCS 2 97 0.001761 

FLNN-MCMC 1 97 0.001072 
MLP 4 211 0.0059 
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Table 10: MSE for Laser 6 Inputs 

Networks Rank Iteration MSE 
PSNN 6 67 0.008 

PSNN-MCS 7 94 0.008745 
PSNN-MCMC 3 6 0.00798 

FLNN 4 1000 0.0069 
FLNN-MCS 2 96 0.000748 

FLNN-MCMC 1 96 0.000428 
MLP 5 99 0.0073 

Table 11: MSE for Laser 7 Inputs 

Networks Rank Iteration MSE 
PSNN 5 64 0.0073 

PSNN-MCS 7 10 0.009606 
PSNN-MCMC 6 5 0.009606 

FLNN 4 1000 0.0061 
FLNN-MCS 2 100 0.001699 

FLNN-MCMC 1 13 0.000669 
MLP 3 585 0.0046 

Fig. 11 to 13 depict the performance comparison for all the 
networks on laser data inputs ranging from 5 to 7. Throughout 
the results, the FLNN-MCMC shows the least MSE for the 3 
input combinations. This way, we can iterate that instead of 
that the MSE are able to assess the quality of sample data to an 
estimate of a function mapping arbitrary inputs to a sample of 
values of some random variables. 

 
Figure 11: Performance Comparison on Laser for 5 Inputs 

 

Figure 12: Performance Comparison on Laser for 6 Inputs 

 

 
Figure 13: Performance Comparison on Laser for 7 Inputs 

Table 12. Overall Rank on all Networks 

Data 
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FL
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M
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Relative 
Humidity 

5 7 3 2 6 4 1 5 
6  7 2 1 6 4 3 5 
7  7 2 1 6 4 3 5 

Temperat
ure 

5 4 7 2 5 3 1 6 
6 5 4 3 6 2 1 7 
7 5 4 3 7 2 1 6 

Laser 
5 6 5 3 7 2 1 4 
6 6 7 3 4 2 1 5 
7 5 7 6 4 2 1 3 

Mean 
Rank  

5.
9 

4.
6 

2.
7 

5.
7 

2.
8 

1.
4 

5.
1 

Overall 
Rank  6 7 3 6 3 1 5 

Referring to Table 12, it is plain to see that, on average, 
FLNN-MCMC performed better compared to the other 
networks. This is then followed by PSNN-MCMC. 
Consequently, we may conclude that the existence of 
MCS-MCMC algorithm as the learning algorithm might help 
the network to converge faster and reduce the error rate.  

9. CONCLUSION AND FUTURE WORKS 

The current research includes trials of MCS with MCMC on 
various benchmark test functions. From the outcomes, it is 
proven that, in this research, it is affirmative that the networks 
with MCS-MCMC generalised well and showed least error 
compared to other network, which is able in representing 
nonlinear function. The presence of MCS-MCMC as the 
learning algorithm that substitutes the current BP learning 
algorithm, allowed fast and rapid training. A significant 
advantage of the MCS-MCMC is the fact that the learning 
algorithm can tune better parameter automatically in finding 
good parameter values with little user intervention. This 
process can be achieved by Markov chain mixing and 
integrated autocorrelation of a functional of interest. 
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A further extension of the MCS-MCMC algorithm needs to 
address multiobjective optimisation problems more naturally 
and more efficiently instead of focusing on the optimisation 
with a single objective or a few criteria with linear and 
nonlinear constraints. 
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