
Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

550


ABSTRACT

This paper aims to investigate the ability of the proposed
Modified Cuckoo Search-Markov chain Monte Carlo
(MCS-MCMC) algorithm for two (2) types of Higher Order
Neural Networks (HONNs); Pi-Sigma Neural Networks and
Functional Link Neural Networks that will influence the
performance of searching ability, even at high numbers of
dimensions. We validated the proposed MCS-MCMC
algorithm alongside several benchmark test functions The
proposed MCS-MCMC were tested on three (3) different
time-series data; relative humidity, temperature and laser
datasets. The performance of those HONNs is benchmarked
against the performance of Multilayer Perceptron. The
simulation results shows that, by incorporating MCS-MCMC
algorithm in both HONNs can improve convergence rate and
decrease the prediction error.

Key words : MCS-MCMC, modified cuckoo search, cuckoo
search, Markov chain Monte Carlo.

1. INTRODUCTION

Artificial Neural Networks (ANNs) have been successfully
applied to a variety of real-world classification task in
industry, business and science [1, 2]. For prediction task,
ANNs needs to be “trained” to produce the desired
input-output mappings. The realism of using such gradient
base optimisation techniques has been reduced by the
difficulty of generating automatically objective functions and
their derivatives for highly non-linear engineering problems
[3-5]. Accordingly, the gradient search techniques in those
ANNs prone to easily get trapped into local minima during
training phase and may lead to poor network performance.
The most common architecture of ANNs is the multilayer
feedforward network or mostly known as multilayer
perceptron (MLP) which utilises a supervised learning
technique called backpropagation (BP) for training the
network [2, 6-8]. Thus, since the BP learning algorithm is a

gradient descent local optimisation technique, there is still
have several major problems needed to be solved. Therefore,
further investigations to improve the learning algorithm in
ANNs are still desired [2, 9].

In the era of 1950s and 1960s, researchers investigated the
prospect of applying the concepts of evolutions to a subclass
of gradient free methods [3, 4, 10]. These intelligent
mechanisms, which comprise Cuckoo Search (CS), offers
great benefits over conventional modelling, including the
proficiencies to employs high level techniques in exploring
and exploiting the search space [10]. They are simple, more
generic and robust. However, the CS will always find the
optimum if it been given enough computation. Therefore, it is
not guaranteed whether the exploration can converge faster or
not.

After all, Walton et al. introduced two (2) modifications in the
Modified Cuckoo Search (MCS) algorithm by changing the
Lévy flight step size,  and adding up the information
exchange between the top eggs to speed up convergence rate
[4]. Despite of this huge success of MCS, there are many open
problems which remain unanswered. We know how these
heuristic algorithms work, and we also partly understand why
these algorithms work. However, it is difficult to analyse
mathematically why these algorithms are so successful, and
along with others.

For all population-based metaheuristics, multiple search
agents form multiple interacting Markov chains [4, 10].
Therefore, we possibly replacing the Lévy flight found in the
MCS algorithm with Markov chain Monte Carlo (MCMC)
random walk. A major advantage of the MCMC is that it
learns better parameter automatically whilst ruling good
parameter values by little user intervention. This paper
explores the prediction capability of 2 types of HONNs;
Pi-Sigma Neural Networks and Functional Link Neural
Networks by considering the MCS-MCMC algorithm as the
learning algorithms, replacing the current backpropagation
(BP) learning, in order to reduce the prediction error.

A Modified Cuckoo Search-Markov Chain Monte Carlo: The Alternative
Gradient Free Optimisation Algorithm

Noor Aida Husaini*, Rozaida Ghazali2, Lokman Hakim Ismail3, Nureize Arbaiy4, Habib Shah5

1,2,4, 5Faculty of Computer Science and Information Technology,
3Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia,

86400 Parit Raja, Batu Pahat, Johor
*noor.aida.husaini@gmail.com, rozaida@uthm.edu.my, lokman@uthm.edu.my, nureize@uthm.edu.my,

habibshah.uthm@gmail.com

 ISSN 2278-3091
Volume 9, No.1.1, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse8991.12020.pdf

https://doi.org/10.30534/ijatcse/2020/8991.12020

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

551

The paper is mainly organised according to nine (9) sections.
In the first section, a brief introduction regarding the area of
the study is discussed. In the second part, the key concept
regarding the random walks briefly explained. The third
section comprises the network architecture of HONNs. In the
fourth and fifth sections, the MCS and MCS-MCMC
algorithm being explained. In the sixth and seventh sections,
the experimental settings and benchmark test functions are
presented. In the eighth section, simulation results are
discussed. In the last section, some conclusions and future
works are untaken.

2. RANDOM WALKS

The term “random walk” was originally proposed by Karl
Pearson in 1905. It is a mathematical formalisation of a path
that consists of a succession of random steps [11, 12]. The
random walk usually deals with randomness which are
lacking aim or method and not uniform. The random walk is
assumed homogeneous, symmetric, irreducible, and having
zero mean and finite variance of jumps. The areas of random
walk includes the field of ecology [13], economics, computer
science [12] and so on. Random walks explain the observed
behaviours of processes in these fields, and thus serve as a
fundamental model for the recorded stochastic activity. Some
random walks are on graphs, others on the line, in the plane, or
in higher dimensions, while some random walks are on groups
[12].

2.1 Lévy Flight

A Lévy flight is a type of random walk that the distribution of
the step-lengths is bounded in a heavy-tailed probability
distribution. The typical properties of this kind of distribution
is the positive exponential moments are infinite (do not have
finite mean and variance). The term “Lévy flight” was
invented by Benoît Mandelbrot [14] who used this for one
specific definition of the distribution of step sizes. This gives
yet another slogan:

 “Cauchy flight”, if the distribution of step size is a Cauchy
distribution.

“Rayleigh flight”, if the distribution is a normal distribution.

“Lévy flight”, when the directions of the step sizes are in
isotropic random directions.

Those random directions is defined by the survivor function
(commonly known as the survival function) of the distribution
of step-sizes, U , as in functional notation (1):

 







 .1:
,1:1

=u>UPr
uu
u

D (1)

which says D parameter in the fractal dimension in Pareto
distribution.

The distribution of step sizes can be any distribution for which
the Lévy exponent of approximately 2 (also called power law)
can provide a higher efficiency than other exponents:

    31,   uOuUPR (2)

2.2 Markov chain Monte Carlo
MCMC methods are constructed based on a Markov chain
that has the desired distribution as its equilibrium distribution.
Due to the ability of MCMC that provides insight into large,
complex Bayesian problems, it has been one of the most
important developments in modern statistics [15]. The state of
the chain after a large number of steps is then used as a sample
of the desired distribution. The quality of the sample improves
as a function of the number of steps. Typically, the
formulation of a Markov chain with the desired properties is
not an issue. However, researchers had risen up the issues on
how to define the steps and how to minimize the number of
steps required until it converges to an equilibrium distribution.
The distribution is said to be in equilibrium state when the
process develop gradually in a random way until it reaches a
certain state, which it remains subsequently distribution [15].
As there is always some outstanding effect of the starting
position, the MCMC sampling can only approximate the
target distribution.
The MCMC sampling regularly used in calculating
multi-dimensional integrals numerically, whereas a group of
“walkers” moves around randomly. At each point where the
walker steps, the integrand value at that point is calculated
close to the integral. Then, a number of tentative steps around
the area is taken, wherever a place with reasonably have high
contribution to the integral being chose so that later on, they
may move into the next step [15].

3. THE NETWORKS

3.1 Pi-Sigma Neural Network
Pi-Sigma Neural Network (PSNN) is a form of HONNs and
was first introduced by Shin & Ghosh [16]. The mainspring
behind the network is due to the fact that a polynomial of input
variables is formed by a product (“pi”) of several weighted
linear combinations (“sigma”) of input variables. That is why
this network is called pi-sigma instead of sigma-pi. The PSNN
exhibits fast learning while greatly reducing network
complexity by utilising an efficient form of polynomials for
many input variables. This special polynomial form helps the
PSNN to dramatically reduce the number of weights in its
structure. Fig. 1 shows the architecture of PSNN:

Figure 1: Structure of j th Order PSNN

Input x is an N dimensional vector and ix is the i
th

component of x . The weighted inputs are fed to a layer of j

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

552

linear summing units; ijh is the output if the j
th summing

units for the k th output ky , viz:



















 

j
ijiij xwy  (3)

where
ijw and

ij are adjustable coefficients, and  is the

nonlinear transfer function [16]. The number of the summing
units in PSNN reflects the network order. By using an
additional summing unit, it will increase the network’s order
by 1 at the same time as preserving old connections and
maintaining network topology.

In PSNN, weights from summing layer to the output layer are
fixed to unity, resulting to a reduction in the number of
tuneable weights. Therefore, it can reduce the training time.
Sigmoid and linear functions are adopted in the summing
layer and output layer, respectively. The use of linear
summing units makes the convergence analysis of the
learning rules for the PSNN more accurate and tractable [17].

Since weights from hidden layer to the output are fixed at 1,
the property of PSNN significantly reduces the training time.
This network was successfully applied for function
approximation [18], pattern recognition, classification, and
many more.

3.2 Functional Link Neural Network

In forecasting, software growth effort using Functional Link
Neural Network (FLNN) architecture which is flat ANNs
involving of one input layer and an output layer. The FLNN is
basically a single layer network and the layer of hidden layer
was being detached and automatically produce the simplest
learning algorithm compared to MLP [19]. The FLNN
produces output through increasing the early inputs and then
processing to the final output layer. Each input neuron
corresponds to a component of an input vector. The output
layer consists of one output neuron that computes the software
development effort as a linear weighted sum of the outputs of
the input layer [19]. The functional expansion efficiently
growths the dimensionality of the input vector and later the
hyper planes produced by the FLNN deliver better perception
capability in the input pattern space.

Figure 2: The Structure of a Functional Link Neural Network
(FLNN)

The structure of an FLNN is presented in Fig. 2 where
ex is

the input vector and  ei xy is the output.

The FLNN model apply a single-layer ANNs structure
possessing network to overcome the higher computational
load compare to the MLP structure, by expands their input
vectors. The component of the input pattern before expansion:

  diix 1, (4)

where the component of  ix is functionally expanded as,

  Nnixn 1, (5)

while N number of expansion for every input component.
Expansion of each input pattern is stated as below:

            izfixizfixizix NN  ,,, 121  (6)

where, :d for the set of structures in the group of data.

The hidden layer implements a functional expansion on the
input data, which maps the input space of dimension

1n into a
new space of increased dimension 1nM  . The output layer
consists of m nodes, each one, in fact, a linear combiner. The
input-output connection of the FLNN as derive as below:

    miMxhwxy jejijei  1,1 (7)

where,

:ex input vector

 :ej xh weights on connection from input unit

:M nodes

  :ei xy output unit

Polynomial expansion is the most used in functional
expansion technique. Due to the case, the expansion results,
 ej xh , are a sequence of monomials of ex . Costa et al. [20]

introduced an adjustment on the model of the FLNN, where
the output set by Eq. (8) was transformed by an invertible
nonlinear activation function. The new equation as stated as
below:

    miMxhwfxy jejijei   1,11
 (8)

where 1f is an invertible nonlinear function which is, the
sigmoid function. This alteration was created to growth the
non-linear approximation capability of the FLNN. The
training of the algorithm was done using a changed output
which is the original output changed through the inverse of the
activation function, f [21].

In fact, these patterns of the expanded input are joining to the
single layer ANNs to gain the desired output paragraph. For a
certain mapping, the nonlinearity of the complex task may not
be suitable for function expansion. Some of the set of function
may not assimilate to the expansion of the input dataset.
Nevertheless, in term of dimensionality problem, it will

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

553

produce very high and aggregate the dimensionality extends
beyond expectation and resulting not a good choice [20].

Subsequently, it is preferable to select a minor group of
substitute functions, which can plot the function to the
preferred range. Therefore, Patra [21] has reserved an FLNN,
via a flat network structure that competent to produce an
arbitrarily complex result region using producing nonlinear
decision limitations. In FLNN, the unseen layers have been
removed to produce lower computational difficulty and higher
convergence speed rate compared MLP structure.

4. MODIFIED CUCKOO SEARCH

As stated by Yang and Deb [10], the CS will always find the
optimum if it been given enough computation. Basically, the
search technique in CS being done by considering the whole
area on random walks. However, it is not guaranteed whether
the exploration can converged faster or not. Typically, the
parameters  in CS are kept constant which resulting the
efficiency of the algorithm to tail off. To cope with this issue,
Walton et al. [4] created 2 modifications: 1) change the Lévy
flight step size  . In ordinary CS,  was kept constant by
employing 1 [10] and 2) adding up the information
exchange between the eggs in order to hasten up the
convergence rate. Since the exploration in the ordinary CS is
performed by their own selves, therefore, there is no
information exchange between individuals. In the MCS, the
eggs were evaluated twice. The first evaluation involves
putting a sub of the eggs with the best fitness into a group of
top eggs. For each of the top eggs, a second egg in this group
is evaluated by picking up randomly before a new egg being
generated on the line that connects these two top eggs. In
order to get the best fitness, the new location of the new egg
(distance along the line) is calculated by using the inverse of
the golden ratio   2/51  . If the same fitness value
found in both eggs, the new egg is generated at the center
point.

There are 2 parameters that need to be adjusted in the MCS,
which refer to the fraction of nests to be abandoned and the
fraction of nests to generate the top nests. An initial value of
the Lévy flight step size 1A is chosen. At each generation,
a new Lévy flight step is calculated using GA , where
G specifies the number of generation. This exploration
searching is only can be used for the fraction of nests to be
abandoned. There is a probability that, in this measurement,
the same egg is chosen twice. Therefore, by performing a
local Lévy flight search on the randomly picked nest with step
size 2GA can handle these problems.

5. MODIFIED CUCKOO SEARCH-MARKOV CHAIN
MONTE CARLO ALGORITHM

The CS will always find the optimum if it been given enough
computation [10]. Even though the searching process in CS is
based on whole area on random walks, there is no assurance
that the algorithm might converge faster as usual. Based on

this problem, 2 modifications has been created in the MCS,
with the aim to increase the convergence rate, that will make
the method more practical for a wider range of application
without losing the attractive features of original method [22].

Therefore, we extend the work of Walton et al. [10] by
substituting the Lévy flight in the MCS with Markov chain
Monte Carlo (MCMC) random walk. The motivation of using
MCMC in the MCS algorithm is because the MCMC have the
capability to performs full-dimensional jumps at each
iteration. It also has higher polynomial rates of convergence
due to the existence of central limit theorem (CLT) for higher
moment. The MCMC is involved 2 parts. In this step, we
apply the MCMC random walk due to the benefits: higher
polynomial convergence rates due to the existence of CLT for
higher moment [23]. This is because, MCMC use local moves
based on certain types of target density thus leading to
qualitatively better algorithms. The step-by-step processes in
the MCMC are presented in Algorithm 1.

pSizeMaxLevySteA 
oGoldenRati

Initialise a population of n nests  nixi ,,2,1 

FOR ix , do

Calculate fitness  ki xfF 
ENDFOR
Generation number 1G
WHILE

valuationsMaxNumberEationsctiveEvaluNumberObje  , do
1 GG

Sort nests by order of fitness
FOR all nests to be abandoned, do
Current position

ix

Calculate MCMC random walk
Perform MCMC random walk from ix to generate new egg

kx

ki xx 

 ki xfF 
ENDFOR
FOR all of the top nests do
Current position ix
Pick another nest from the top nests at random

jx

IF ji xx  then

Calculate MCMC random walk
Perform MCMC random walk from ,ix to generate new
egg ,kx)(kk xfF 

Choose a random nest l from all nests
IF)(lk FF  do

kl

kl

FF

xx





ENDIF

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

554

ELSE
/ji xxdx 

Move distance dx

from the worst nest to the best nest to find

,kx)(kk xfF 
Choose a random nest l from all nests
IF)(lk FF  then

kl

kl

FF

xx





ENDIF
 ENDIF
ENDFOR
ENDWHILE

Algorithm 1: MCS-MCMC

The MCS-MCMC is operated by the following steps [23]:

At first, we generate the initial value,  that satisfies   0f ,
by considering the target probability density function (PDF):

  





 

 




2
exp.. 2/ a

Cp n (9)

where 5n and 4a .

There are 2 parameters, number of samples (iterations) and
samples drawn from the target PDF,  p . For the number of
samples, we set the value as the same as the dimension of each
test function. Then, we marked-out U from a uniform
distribution at random, and accept  subject to PU  where

,1P .

For the procedure, we calculate the density ratio at the
candidate point,  and current points, 1t ,

 
 

 
 11 


tt f

f

p

p
P







 (10)

We can summarise that the sampling as first computing, and
then accept the probability, P

 
  1,min

1


tf

f
P



 (11)

6. EXPERIMENTAL SETTINGS

We developed the standard MCS and MCS-MCMC algorithm
in MATLAB. We then replaced the Lévy flight found in the
standard MCS algorithm with MCMC random walk. Then, we
run the code to get d dimensional points based on
dimensionality of the benchmark test functions.

The experiment consists of 2 main runs. Firstly, we tested the
standard MCS and MCS-MCMC to all benchmark test

functions. During the experiments, 15 host nests with an egg
survival probability of 0.25 were used. The maximum
iterations for all the algorithms are set to 100 with a total of 30
simulation runs on each function. Average and standard
deviation is used to find any variations in the average trial
values. The less indicates the better.

Secondly, we apply the datasets into seven (7) different
network architectures which is; standard PSNN, PSNN-MCS,
PSNN-MCMC, standard FLNN, FLNN-MCS,
FLNN-MCMC and standard MLP to see the performance on
various ranges of data. Those models were trained and tested
using time-series data; relative humidity, temperature and
laser data collected from National Forecast Office, Malaysian
Meteorological Department (MMD) and benchmark data
from USCI. Each data signal was divided into 3 parts; 60 %
training, 20% testing and 20% validation. Table 1 shows the
number of data points used for each signal.

Table 1: Portion of Training, Testing and Validation Set

Dataset Relative
Humidity

Temperature Laser

Training Set 30,504 1087 2384
Training Set 10,168 363 794
Validation

Set
10,168 363 794

Total 50, 840 1813 3972

The training set aids the model for training purposes, so, it
must be larger and adequate compared to two other datasets.
The training encompasses the weights adjustment by testing
the initial set of weights against each input vector. If an input
vector is found for which the recognition fails, weights are
adjusted to suit the certain input vector. During the training
process, the actual and predicted outputs are compared and
weights are adjusted by using the BP algorithm [24] (for
PSNN, FLNN and MLP), MCS algorithm (for PSNN-MCS
and FLNN-MCS) and MCS-MCMC algorithm (for
PSNN-MCMC and FLNN-MCMC), to a satisfactory level
with proper network setup.

Despite of that, the testing set is use to evaluate the network
performances and to preserve some features for adjustment
purpose [25], for the purpose of producing appropriate outputs
for those input samples which were not encountered during
training.

Meanwhile, the validation set has dual-function: 1) to
implement an early stopping in order to prevent the training
data from overfitting and 2) to select the best predictions from
a number of ANNs’s simulations.

7. BENCHMARK TEST FUNCTIONS

Test functions are important to validate and compare
optimisation algorithms, especially newly developed
algorithms. For this purpose, we compile thirteen (13)
benchmark test functions with diverse properties in terms of
modality, separability, and valley landscape [10]. Table 2
present the average and standard deviation of number of

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

555

function evaluation of both runs for all benchmark test
functions.

Table 2: Comparison of Standard MCS and MCS-MCMC

Functions Standard MCS MCS-MCMC
Ackley’s 0.62211 ± 0.18207 0.10891 ± 0.019736

Rosenbrock’s 68.553 ± 93.7092 36.0144 ± 46.4826
Bohachevsky 5.06E-07 ±

0.00000258
0.000000624 ±

2.64E-08
Matyas 7.07E-09 ±

22.394E-09
1.00E-09 ±
2.6477E-09

Booth 5.11E-07 ±
1.82E-06

4.11E-07 ±
1.41E-06

Three-Hump
Camel

5.01E-10 ±
20.461E-10

1.03E-10 ±
4.42E-10

Eggholder -19.2085 ±
9.56E-08

-19.2085 ±
3.31E-08

Himmelblau 2.34E-07 ± 6.6002 3.84E-08 ±
0.00000710116

Schaffer N. 2 12.521E-11 ±
5.00E-10

2.98E-11 ±
1.37E-10

Styblinski-Tang -78.3323 ±
2.71E-08

-78.3323 ±
1.82E-08

Rastrigin 1.82E-08 ±
4.29E-08

6.21E-09 ±
2.24E-08

Schwefel 735.1754 ±
235.1188

574.1585 ±
184.4498

McCormick -1.9105 ± 8.64E-06 -1.9105 ± 6.87E-06

From all the test results tabularised in Table 2, the average
functions evaluations of the MCS-MCMC are smaller than
those obtained by the standard MCS. It indicates that the
initialisation of MCS algorithm using MCMC had improved
its searching steps. Using this result, the improvement also
can be seen in the test result of the high dimensional input
space functions such as the Ackley’s 120-dimensions
benchmark test function. For the Ackley’s, the function
evaluation average for MCS-MCMC outperformed standard
MCS by 23.2% reduction.

To put the result into a more detailed perspective, Fig. 3
presents an example of the Fitness Value of Number of
Generation for 120 dimensional Ackley’s. As demonstrated in
Fig. 3, the standard MCS (blue line) converge quickly at first
10-points but the MCS-MCMC (red line) converged quickly
to its optimal solution. For Rosenbrock’s, MCS-MCMC
overtook standard MCS by 45.9% (refer to Fig. 4). Generally,
the combination of MCS with MCMC had clearly leaded to
better results in all benchmark test functions. It means that the
fitness value is considerably closer to global optima.

Figure 3: The Fitness Value of Number of Generation
(Ackley, d=120)

Figure 4: The Fitness Value of Number of Generation

(Bohachevsky)

8. SIMULATION RESULTS

Designing the right architecture involves several steps:
selecting the number of layers, the amount of neurons to be
used in each layer and choosing the appropriate neurons’
transfer function. Therefore, the parameter are set to be; the
networks combination of five (5) different numbers of input
nodes ranging from 5 to 7 [26], hidden layer/higher order
terms from 2 until 5 and a single neuron for the output layer
[17]. The performance of the MCS-MCMC algorithm are
evaluated in 7 different network architectures which is;
standard PSNN, PSNN-MCS, PSNN-MCMC, standard
FLNN, FLNN-MCS, FLNN-MCMC and standard MLP.

Referring to Tables 3 to 5, the MSE results for relative
humidity Inputs 5 to 7 are tabulated. According to the results,
we can see that for Input 5, FLNN-MCMC, PSNN-MCMC
and PSNN-MCS lead the ranking. For Input 6, PSNN-MCMC,
PSNN-MCS and FLNN-MCMC lead the ranking. As for
Input 7, the ranking goes to PSNN-MCMC, PSNN-MCS and
FLNN-MCMC, respectively. Seemingly, based on the results,

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

556

the performances of the network in which the learning method
had been replaced by MCMC algorithm are much preferable
compared to the networks with standard MCS algorithm.

Table 3: MSE for Relative Humidity 5 Inputs

Networks Rank Iteration MSE
PSNN 7 14 0.0475

PSNN-MCS 3 6 0.001621
PSNN-MCMC 2 5 0.001621

FLNN 6 91.2 0.0046
FLNN-MCS 4 100 0.00183

FLNN-MCMC 1 23 0.001323
MLP 5 21 0.0044

Table 4: MSE for Relative Humidity 6 Inputs

Networks Rank Iteration MSE
PSNN 7 19 0.2263

PSNN-MCS 2 7 0.000606
PSNN-MCMC 1 6 0.000606

FLNN 6 19 0.0044
FLNN-MCS 4 95 0.000943

FLNN-MCMC 3 10 0.000859
MLP 5 23 0.0042

Table 5: MSE for Relative Humidity 7 Inputs

Networks Rank Iteration MSE
PSNN 7 100 0.2421

PSNN-MCS 2 8 0.000486
PSNN-MCMC 1 7 0.000486

FLNN 6 156.6 0.0013
FLNN-MCS 4 96 0.001579

FLNN-MCMC 3 10 0.001296
MLP 5 150 0.0013

Fig. 5 graphically shows the performance comparison for all
the networks on relative humidity for 5 inputs. According to
the results, we clearly see that FLNN-MCMC shows the least
MSE and minimum iteration compared to all networks
generated or inversely, PSNN pointed the error to 0.0475
stopped at 14th iteration.

As indicated by the blue line in Fig. 6, PSNN-MCMC
partaking the smallest minimum error 0.000606, in which the
error is on the par with PSNN-MCS. From Fig. 7,
FLNN-MCMC shows the least minimum error 0.000502 with
100 iterations. Based on these 2 figures, we can conclude that
the presence of MCMC in the network assist in minimising
the error, indirectly able to network to converge faster.

Figure 5: Performance Comparison on Relative Humidity for
5 Inputs

Figure 6: Performance Comparison on Relative Humidity for
6 Inputs

Figure 7: Performance Comparison on Relative Humidity for
7 Inputs

As can be noticed from Tables 6 to 8, the networks with the
presence of MCMC algorithm (FLNN-MCMC and
PSNN-MCMC) made the least MSE for ranges of inputs for
temperature data when compared to other network models. As
for example, for 5 inputs, FLNN-MCMC outperforms other
network models by 93.67% while PSNN-MCMC takes
91.92%. All the networks show a very small degree of
deviation from the means, as the indicator that they produce
consistent behaviour. The largest value of error found in MLP
with the value of 0.0061.

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

557

Table 6: MSE for Temperature 5 Inputs

Networks Rank Iteration MSE
PSNN 4 100 0.0059

PSNN-MCS 7 100 0.006026
PSNN-MCMC 2 100 0.002551

FLNN 5 1000 0.0059
FLNN-MCS 3 100 0.003101

FLNN-MCMC 1 6 0.001999
MLP 6 551 0.0061

Table 7: MSE for Temperature 6 Inputs

Networks Rank Iteration MSE
PSNN 5 100 0.0059

PSNN-MCS 4 100 0.00406
PSNN-MCMC 3 78 0.003975

FLNN 6 1000 0.0059
FLNN-MCS 2 99 0.002758

FLNN-MCMC 1 67 0.002162
MLP 7 390 0.006

Table 8: MSE for Temperature 7 Inputs

Networks Rank Iteration MSE
PSNN 5 100 0.0059

PSNN-MCS 4 94 0.004903
PSNN-MCMC 3 98 0.003677

FLNN 7 1000 0.0061
FLNN-MCS 2 99 0.001066

FLNN-MCMC 1 100 0.000502
MLP 6 733 0.006

Figure 8: Performance Comparison on Temperature for 5
Inputs

Fig. 8 graphically shows the performance comparison for all
the networks on temperature for 5 inputs. According to the
results, the FLNN-MCMC indicates 0.001999 while
PSNN-MCMC gives 0.002551 for the MSEs (blue line in Fig.
8). From this figure, we can roughly say, by plug-in the
MCS-MCMC into both networks might help in minimising
the error rate thus helping the network to converge faster.

Figure 9: Performance Comparison on Temperature for 6
Inputs

The performance comparison for all the networks on
temperature for 6 inputs are tabulated in Fig. 9. As it has been
pointed out, FLNN-MCMC shows the least MSE, 0.002162
compared to all networks generated. Thus, by having the least
MSE, it incorporates both the variance of the estimator and its
bias on how far off the average estimated value is from the
truth.

Figure 10: Performance Comparison on Temperature for 7
Inputs

Tables 9 to 11 shows that the average values of MSE for laser
data for Inputs 5 to 7. Indubitably, MCS-MCMC has shown to
learn the data with a comparable network size with FLNN and
PSNN, with a smaller size when compared to other networks.

Table 9: MSE for Laser 5 Inputs

Networks Rank Iteration MSE
PSNN 6 100 0.0082

PSNN-MCS 5 97 0.006033
PSNN-MCMC 3 9 0.005118

FLNN 7 1000 0.0082
FLNN-MCS 2 97 0.001761

FLNN-MCMC 1 97 0.001072
MLP 4 211 0.0059

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

558

Table 10: MSE for Laser 6 Inputs

Networks Rank Iteration MSE
PSNN 6 67 0.008

PSNN-MCS 7 94 0.008745
PSNN-MCMC 3 6 0.00798

FLNN 4 1000 0.0069
FLNN-MCS 2 96 0.000748

FLNN-MCMC 1 96 0.000428
MLP 5 99 0.0073

Table 11: MSE for Laser 7 Inputs

Networks Rank Iteration MSE
PSNN 5 64 0.0073

PSNN-MCS 7 10 0.009606
PSNN-MCMC 6 5 0.009606

FLNN 4 1000 0.0061
FLNN-MCS 2 100 0.001699

FLNN-MCMC 1 13 0.000669
MLP 3 585 0.0046

Fig. 11 to 13 depict the performance comparison for all the
networks on laser data inputs ranging from 5 to 7. Throughout
the results, the FLNN-MCMC shows the least MSE for the 3
input combinations. This way, we can iterate that instead of
that the MSE are able to assess the quality of sample data to an
estimate of a function mapping arbitrary inputs to a sample of
values of some random variables.

Figure 11: Performance Comparison on Laser for 5 Inputs

Figure 12: Performance Comparison on Laser for 6 Inputs

Figure 13: Performance Comparison on Laser for 7 Inputs

Table 12. Overall Rank on all Networks

Data

In
pu

ts

PS
N

N

PS
N

N
-M

C
S

PS
N

N
-M

C
M

C

FL
N

N

FL
N

N
-M

C
S

FL
N

N
-M

C
M

C

M
LP

Relative
Humidity

5 7 3 2 6 4 1 5
6 7 2 1 6 4 3 5
7 7 2 1 6 4 3 5

Temperat
ure

5 4 7 2 5 3 1 6
6 5 4 3 6 2 1 7
7 5 4 3 7 2 1 6

Laser
5 6 5 3 7 2 1 4
6 6 7 3 4 2 1 5
7 5 7 6 4 2 1 3

Mean
Rank

5.
9

4.
6

2.
7

5.
7

2.
8

1.
4

5.
1

Overall
Rank 6 7 3 6 3 1 5

Referring to Table 12, it is plain to see that, on average,
FLNN-MCMC performed better compared to the other
networks. This is then followed by PSNN-MCMC.
Consequently, we may conclude that the existence of
MCS-MCMC algorithm as the learning algorithm might help
the network to converge faster and reduce the error rate.

9. CONCLUSION AND FUTURE WORKS

The current research includes trials of MCS with MCMC on
various benchmark test functions. From the outcomes, it is
proven that, in this research, it is affirmative that the networks
with MCS-MCMC generalised well and showed least error
compared to other network, which is able in representing
nonlinear function. The presence of MCS-MCMC as the
learning algorithm that substitutes the current BP learning
algorithm, allowed fast and rapid training. A significant
advantage of the MCS-MCMC is the fact that the learning
algorithm can tune better parameter automatically in finding
good parameter values with little user intervention. This
process can be achieved by Markov chain mixing and
integrated autocorrelation of a functional of interest.

Noor Aida Husaini et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 550– 559

559

A further extension of the MCS-MCMC algorithm needs to
address multiobjective optimisation problems more naturally
and more efficiently instead of focusing on the optimisation
with a single objective or a few criteria with linear and
nonlinear constraints.

ACKNOWLEDGEMENT

The authors would like to thank Universiti Tun Hussein Onn
Malaysia (UTHM) and Ministry of High Education (MOHE)
for financially supporting this research under Fundamental
Research Grant Scheme (FRGS), Vote No 1641.

REFERENCES

[1] Collobert, R. and J. Weston, A unified architecture for
natural language processing: deep neural networks
with multitask learning, in Proceedings of the 25th
international conference on Machine learning. 2008,
ACM: Helsinki, Finland.

[2] Rumelhart, D.E., B. Widrow, and M.A. Lehr, The
basic ideas in neural networks. Commun. ACM, 1994.
37(3): p. 87-92.
https://doi.org/10.1145/175247.175256

[3] Wang, H., et al., Development of metamodeling based
optimization system for high nonlinear engineering
problems. Advances in Engineering Software, 2008.
39(8): p. 629-645.

[4] Walton, S., et al., Modified cuckoo search: A new
gradient free optimisation algorithm. Chaos, Solitons
& Fractals, 2011. 44(9): p. 710-718.

[5] Shah, H., R. Ghazali, and N. Mohd Nawi. Hybrid ant
bee colony algorithm for volcano temperature
prediction. in International Multi Topic Conference.
2012: Springer.

[6] Leung, H. and S. Haykin, The complex
backpropagation algorithm. IEEE Transactions on
Signal Processing, 1991. 39(9): p. 2101-2104.

[7] Yadav, A.K. and S.S. Chandel, Solar radiation
prediction using Artificial Neural Network
techniques: A review. Renewable and Sustainable
Energy Reviews. 33: p. 772-781.
https://doi.org/10.1016/j.rser.2013.08.055

[8] Basheer, I.A. and M. Hajmeer, Artificial neural
networks: fundamentals, computing, design, and
application. Journal of Microbiological Methods,
2000. 43(1): p. 3-31.

[9] Law, R., Back-propagation learning in improving the
accuracy of neural network-based tourism demand
forecasting. Tourism Management, 2000. 21(4): p.
331-340.

[10] Yang, X.S. and S. Deb. Cuckoo search via Levy
flights. in Proceedings of the World Congress on
Nature & Biologically Inspired Computing (NaBIC
'09. 2009. India: IEEE Publications.

[11] Pearson, K., The problem of the random walk. Nature,
1905. 72(1865): p. 294.

[12] Rogel-Salazar, J., First Steps in Random Walks: From
Tools to Applications, by J. Klafter and I.M. Sokolov.
Contemporary Physics, 2012. 53(4): p. 369-370.

[13] Bergman, C.M., J.A. Schaefer, and S. Luttich,
Caribou movement as a correlated random walk.
Oecologia, 2000. 123(3): p. 364-374.

[14] Mandelbrot, B.B., The Fractal Geometry of Nature.
Updated and augm. ed. 1982, New York: W. H.
Freeman.

[15] University, L. Markov Chain Monte Carlo. Available
from:
http://www.lancaster.ac.uk/pg/jamest/Group/stats3.html.

[16] Shin, Y. and J. Ghosh, The Pi-Sigma Networks: An
Efficient Higher-Order Neural Network for Pattern
Classification and Function Approximation.
Proceedings of International Joint Conference on
Neural Networks, 1991. 1: p. 13-18.

[17] Husaini, N.A., et al. The effect of network parameters
on pi-sigma neural network for temperature
forecasting. in International Journal of Modern
Physics: Conference Series. 2012: World Scientific.
https://doi.org/10.1142/S2010194512005521

[18] Ghazali, R. and D. al-Jumeily, Application of
Pi-Sigma Neural Networks and Ridge Polynomial
Neural Networks to Financial Time Series Prediction,
in Artificial Higher Order Neural Networks for
Economics and Business, M. Zhang, Editor. 2009, IGI
Global: Hershey, New York. p. 271-293.

[19] Pao, Y.H. and Y. Takefuji, Functional-link net
computing: theory, system architecture, and
functionalities. Computer, 1992. 25(5): p. 76-79.

[20] Costa, A.C., et al., A Hybrid Neural Model for he
Optimization of Fed-batch Fermentetions. Brazilian
Journal of Chemical Engineering, 1999. 16: p. 53-63.

[21] Patra, J.C. and R.N. Pal, A functional link artificial
neural network for adaptive channel equalization.
Signal Processing, 1995. 43(2): p. 181-195.

[22] Walton, S., et al., Modified cuckoo search: A new
gradient free optimisation algorithm. Chaos, Solitons
& Fractals, 2011. 44(9): p. 710-718.

[23] Husaini, N.A., R. Ghazali, and I.T.R. Yanto.
Enhancing modified cuckoo search algorithm by using
MCMC random walk. in Science in Information
Technology (ICSITech), 2016 2nd International
Conference on. 2016: IEEE.

[24] Rumelhart, D.E., G.E. Hinton, and R.J. Williams,
Learning Representations by Back-Propagating
Errors. Nature, 1986. 323(9): p. 533-536.

[25] Shrestha, R.R., S. Theobald, and F. Nestmann,
Simulation of Flood Flow in a River System using
Artificial Neural Networks. Hydrology and Earth
System Sciences, 2005. 9(4): p. 313-321.

[26] Lendasse, A., et al., Non-linear Financial Time Series
Forecasting - Application to the Bel 20 Stock Market
Index. European Journal of Economic and Social
Systems, 2000. 14(1): p. 81-91.
https://doi.org/10.1051/ejess:2000110

