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ABSTRACT

In this paper, we investigate the existence and
uniqueness of solutions for a system of fractional
integro-differential equations with non-separated
integral coupled boundary conditions. Our results are
based on the nonlinear alternative of Leray-Schauder
type to study the existence of at least one continuous
solution to fractional integro- differential system with
non-separated integral coupled boundary conditions
and uniqueness continuous solution using the Banach’s
fixed-point theorem.The main results are well
illustrated with the aid of an example.

Key words: Caputo fractional derivative, fractional

integro-differential , integral coupled boundary
conditions, fixed-point theorem ,Leray-Schauder
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1. INTRODUCTION

Fractional differential equations arise in many
engineering and scientific disciplines as the
mathematical modeling of systems and processes in the
fields of physics, chemistry, aerodynamics, economics,
control theory, signal and image processing, blood
flow phenomena, etc. [9,10,13].The theory and
applications of the fractional differential equations
have recently been addressed by several researchers for
a variety of problems, we refer the reader to [1,4,8] and
the references cited therein. Momani and Hadid have
investigated the local and global existence theorem of
both fractional differential equation and fractional
integro-differential equations; see [7,11].

The study of a coupled system of fractional order is
also very significant because this kind of system can
often occur in applications. The reader is referred to the
papers [2,5,14,15], and the references cited therein.
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In [3], it is studied the following nonlinear problem
involving nonlinear integral conditions:
Day(t) = f(ty(t), te[0,T], 1l<a<?

y(0) +y'(0) = f g(s,y(s))ds,

y(T) +y'(T) = f h(s,y(s))ds,

Here,f ,g and h:[0,T] x E - E are given
functions that satisfy suitable assumptions and E is

a Banach space. By means of the technique associated
with measures of non-compactness and the fixed-point
theorem of Monch type, it is proved the existence of
solutions of the problem.

In [12], investigated a boundary value problem of first
order fractional differential equations with Riemann-
Liouville integral boundary conditions of different
order given by

‘Dgult) = f(t,u(®), v(®)), tel[01],
Df v(t) = g(t,u(t), v(r)), te[01],

8 _ -1
u(0) = yIPu(§) = y f %u(s)ds, 0<$6
<1
v(0) = al%v(e) = o S%v(s)ds, 0<e

<1
where °D§, , “Df , » denote the Caputo fractional
derivatives, 1l <a,B < 2,f,g € C([0,1] x
R%,RY),and p,q,y ,0 € R.

In this paper, we consider the fractional integro-
differential equation

w(t) \
pg.x(t) = £(t Bz, @), x(8), f K(t,5)(x(s) — y(s))ds)
0

o(t)
DY, () = g(t, B(x, 1), ¥(0), f R()(x() ~ y()ds) |
0
- (L1)



with  non-separated
conditions

ax(0) + bx(T) = fOT hy (v(s))ds,
cy(0) +dy(T) = [ hy(x(s))ds,

integral coupled boundary

with a+b +#0
with c+d #0

- (1.2)
forall ¢t € [0,71,a,b,c ,d € R'where °Dg, CD(‘)’+ :
denote the Caputo fractional derivatives,0 < a,y < 1,
also B(z, o) and B(z, y) are said to be special functions
provided that (Beta function).

2. PRELIMINARIES

Let us introduce the space X = {x(t)|x(¢t) € C[O, T1}
endowed with the norm [|x|| = max{|x(¢)|;t € [0, T]}
obviously, (xIl.|l) is a Banach space. Also lety =
{y@®)I|y() € C[0,T]} endowed with the norm
lyll = max{ly(t)|;t € [0,T]}. The product space
((X xY),ll1(x, )l is also Banach space with the norm
G, )= llxll + Iy ll.

Now, we call some basic useful definitions and
fundamental facts of fractional calculus

Definition 2.1 [9] For a function f given on the
interval [a, b], the Caputo fractional order derivative
of f is defined by

DO = s f (t— sy f M (s)ds . (2.1)

wheren = [a] + 1 and [a]denotes the integer part of a,
and I'(.) denotes the Gamma function,

ie.f(z) = f, e ttLdt.

Definition 2.2[9]Let f be a function which is defined

almost everywhere (a.e) on [a, b], for a >0, we
define
bp- b —t)*1f(t)dt 2.2

- f (b= D=If (Ot ... (22)

provided that the integral (Lebesgue) exists.

Lemma 23[9] Leta >0. Then the differential
equation (D £ (t) = 0 has solution

f(t) = co +c t+C t? + -+ ¢y 1071
CERI=012..n-1, ..(2.3)
and

19D*f(t) = f(t) + ¢, + c t+c t2 + -
+Cp gt .. (2.4)

for some ¢; eR,i =0,1,2,..n -1, n=[a]+1.
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Lemma 2.4 [6](Leray-Schauder alternative ) Let
F: E - Ebe a completely continuous operator (i.e., a
map that restricted to any bounded set in E is compact).
Let

E(F)={x € E: x = AF(x)for some 0 <A< 1}

..(2.5)

Then either the set £(F) is unbounded, or F has at least
one fixed point.

Theorem 2.5[6]((Banach fixed point theorem)

Let E be a Banach space . If T is a contraction
mapping on E, then T has one and only one fixed point
inE.

Suppose that the functions f,g € C([0,T] x Q x
D;,D,,R), Q=(0,T] x(0,1], D, and D, are
compact subset of , also w , ¢ , h; and h, are
continuous functions on  [0,T] and satisfy the
following hypotheses:

H,: There exist positive constants
ko ki ky Ly L1, Mg, and Mg, such that

“f(t!ﬁ(‘[v a)! xl!ul) - f(tvﬁ(‘[v a)! xZ!uZ)”

< M,Ba(k1”x1 = x|l + kalluy —w,ll) ... (2.6)
”g(t!ﬁ(‘[v V)yJ/1vV1) - g(tvﬁ(‘[v a)!yZ!vz)”
< Mg, (ki llyr — yall + ko llvg = v,ll) ... (2.7)
_ 1 _ 1
WherEMﬁa - rr&g)T(]B(ra) » Mgy rr&g,)T(]B(r,y) '
ko= rggx}lf(t B(z,a),0,0)|and
I, = tn}gxllg(t B(z,y),0,0)|forall€ [0,T], T €

(0, T], x;,%5,v1,y, € D; and u,,u,, vy, v, € D,.

H,: There exist positive constants p, ,p; , qo and q,
such that

1y (ye) — Ry DI < pylly4
|y (1) — Ry (eI < gqllxy

Do = tg}ggllhl(o)landqo = tg}ggllhz(o)l for all

..(2.8)
.. (2.9)

= .l
_lel

t €[0,T], t € (0, T], x1,%x5,¥1,V, € D;.

H;: The functions K (¢, s) and R(t,s) satisfy the
following conditions, there exist positive constants
Ks and Rs such that

w(t) \
[k synas < ks
0

¥® forall s,t € [0,T] L ..(2.10)
[ irce nds < rs |
0

To define the solution of the boundary value problem
(1.1) and (1.2), we need the following lemma



Lemma 2.6Let the functions f,g € C([0,T] x Q %
D,,D,,R) be continuous functions , then the solution
of the fractional integro-differential equation (1.1) with
boundary condition (1.2) is the follows

b 1

1 T
x(t) = m-f; hl(_’y(S))dS —mm

T w(s)

f(T —$)* 7 f (s, B(x, a),X(S),f K(s, ) (x(w) — y(u))du) ds
0

0

3 w(s)
+ %Of(t —5)*1f(s, B(x, a),x(s),J; K(s, 1) (x()
— y(1))dp) ds . (211)
and
1 T d 1
y(t) = m}; hy (x(s))ds ~ v dTo)

T o)

f (T = )1 £ (s, B(x, 1), ¥(5), f R(s, 1) (x () — y(u))dg) ds
0

0

1 ( 0(s)
+ Ty)of(t - S)V—lf(s,ﬂ(‘r, )/),y(s),-L R(S,,u)(x(’u)

—y(u))dy) ds . (212)

Proof: By Lemma 2.3, we reduce the problem (1.1)
and (1.2) to an equivalent integral equation

x(t) = §If(t) + ¢, and y(t) = §I" g(t) +c,
..(2.13)

1 t
A0=;@5f&—sy”f@ﬁ@ﬂlﬂﬂ,

w(s)
f K(s,1)(x() — y(u))du) ds + ¢

and

y(t) =

1 t
Ty)!(t =) f(s,B(z,¥), ¥(s), ds

o(s)
f Rs, 1) (x() — y())dp) ds + ¢,

Applying the boundary condition (1.2), we find that

1 T b 1
CVJ:ELM@®W“G:zﬁa

T w(s)
f (T — )1 (s, B(z, @), x(5), f K (s, (x()
— y(1))dp) ds
and
1 T d 1
cL = o d_L hz(x(S))dS —mTy)

r o(s)
f (T — )1 (s, BT 1), ¥(5). f Rs 1) (x(10)

— y(1))dp) ds
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Substitute ¢, and ¢, in (2.13) , we get the solutions
(2.11) and (2.12).

3. MAIN RESULTS

First, we define the operator Ty,: X XY — X XY by
T, (x, t
Ty (o) (©) = (20 0)

T, (x, y)(t)
1 T b 1
mfo hy (y(s))ds T @
H w(s)
f (T = )% f (s, (z, @), x(s), f K (s, 0) (x(2) — y())dpe) ds +
0
0

1 t w(s)
o f (t - )1 f (5, B(x, @), x(5), f K(s, ) (x() — y(u))dp) ds

d 1

1 T
mfo hz(x(s))ds - mm

T o)

f (T = )1 (s, B(x, 1), y(5), f R(s, ) (x(u) — y(u))dy) ds +
0

0

1 ‘ » @(s)
o f (€= 6 AED YO, [ RGE (D - y()d) ds
- (2.14)
Theorem 3.1 Assume that the functions f,g €

C([0,T] x Q= D,,D,,R) be continuous functions and
satisfy H, ,H, ,H; and

Hy:Let Q,, © X xY be bounded, there exist positive
constants M, L, P and Q such that

If (e, 8@z, a), x, Wl < Mg, M,

If (¢, B(r @)y, 2)|l < Mp, L

and

IR I < P A, (Il < @

where

M; = min {1 — M;m, + m3 + M;Mg, L,R; ,
1-Mym,+m; + MlMBaszs }

Then the boundary value problems (1.1) and (1.2) has

at least one solution.

Proof: First, we show that the operator Ty,: X XV —
X x Y is completely continuous, by continuity of the
functions f, g, hy, h, ,w and ¢, then the operator Ty,
is continuous.

Let Q,, © X %Y be bounded, there exist a positive
constants M and L such that

If (e, B, a), x, Wl < Mg M

If (¢, B(zr @)y, 2)|l < Mp, L

and

IR I < P IIh, (Il < @

Then for any (x,y) € Q,, , we have



1 T
17, DO = gy | IOl

b ‘ .
* |a+b|F(a)0f(T_S) '

w(s) 1
|f(5,ﬁ(fy0!),X(s),f0 ds_Fm
d w(s)
f(t =) f(s. B a),x(s),f K(s, ) (x(w)

)
0
So that
TP |b] T*Mp M
<
11O = g (e ) s
+ Mg MM,

“la+bl
Similarly, we get

TQ |d| T Mgy L
< + +
1T, Ce, y) (@Il < lc+d| <|C+d| 1>F(y+1)

<tomat MerlMs

Thus, it follows from the above inequalities that that
operator Ty 4is uniformly bounded.

Next, we show that T, is equicontinuous, let
0<t <t, <T,then we have

||T1 (x(tz)y Y(tz)) -T; (x(t1)y Y(t1)) ” <

w(s)

%J‘(tz —$)@ 1 f(s, B(x, a),x(s),L K(s, 1)

() = y@)adas - = [ (& = )=

r@]

w(s)
£(5,B(z, @), x(s), f K (s, 1) (x() — y())du) ds

< ’ﬁﬁ(a ; ( f ((ty — )1 = (t, — ) V)ds + f (t; — 5)* 1ds>

M M a
SF( +1)(t2_t1)

Also, we have

||T2 (x(tz) Y(tz)) T, (x(t1) Y(tl))”

<7 )<f (6 = 53 = (6 = ) s + f(tz—s)a 1ds>
Mg, L
By a_ ja
SToen T H
Therefore the operator Ty,(x,y) is completely
continuous, as a consequence of steps together with
Arzela-Ascoli theorem, we find that the operator
Trq(x,y) is equicontinuous. Finally, it will be verified
that the set
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&(Trg) ={(x,y) € X xYI(x,y)
= AT;4(x,y) for some 0 <2
< 1}
is bounded, let (x,y) € &(Ty,) then (x,y) =
AT;q(x,y) , forany t € [0, T], we have
x(t) = AT, (x,y)andy(t) = A T,(x,y) , so that

T(p1lly(®)l + po) Te ]
ol < P2 +F(a+1)<|a+b| 1)
(Mﬁa(klllx(t)” + ko K (X @1 + ly(OID) + ko)
< M1m2||x(t)|| + (m1 + M1Mﬁak2Ks)”3’(t)” + M, kg

Tp,
la+ bl
and
T(q@lx®ll +q) T |d|
ly@®l < — 2 +1
lc+d] ry+\lc+d]

(Mg, (Llly@OI + LR Ux@l + ly©)ID) + L)
< (my + M3Mpg, 1, R Mx(@)l + Mym,lly (Il + Mz,
Tq,
Tle+al

which implies
(@)l + Lyl < (Mym, +mg
+M3Mﬁyl2Rs)”x(t)”
+(M3m4 +my + M1Mﬁak2Ks)”J/(t)” + Mk,
Tpo Tqy
la+b| |c+d|
Consequently
@Il + llyOll <
Do
T(|a+b|+ )+M1k°+ M3l
Mg

+ Ml +

|c+d]|

which proves that £(Ts,) is bounded, thus by lemma
2.4, the operator Ty, has at least one fixed point. Hence

the boundary value problem (1.1) and (1.2) has at least
one solution.

Theorem 3.2 Assume that the functions f,g €
Cc([0,T] x Q= D,,D,,R) be continuous functions and
satisfy H, ,H, and H,. In addition assume that
(my + myM,) + (m3 + myM;) <1
where

Tp, Tq,
la+bl’

my = my = Mpg (ky + kyKg) my =

le+d|
re |bl L
F(a+1)<|a+b|+1) |

__ <ﬂ . 1) I
T+ D\lc+d] )
..(2.15)
Then the fractional integro-differential equations (1.1)
with boundary conditions (1.2) has a unique solution.

my = Mg, (I; + [,R) \M; =

and M,
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Proof. Since H, ,H, and H; are satisfy and we have

TPo
r> la+b| lc +d|
1—[Mym, +my + Mym, +mjg]

+M1k0+ -+ Mgl

First, we show that Ty, B, c B, , where

B.={(x,y) e X xY:|l(x,»Il <)}
For (x,y) € B, , we have

1 T b
TGO g [ ImOOds+ s
T w(s)
f (T = )% | (s, Bz, @), x(5), f K (5.2 (x()
— y())dp)| ds

w(s)
Fpma o) [ KW

1 .
+m0f(t—s)

— y())dp)| ds

1 (T b .
< mfo Iy (v(5))ds +mofa —s)

w(s)
£(s. Bz, @).x(s), f K (s, ) (i) — y(1)) dpe)
- f(S’ﬁ(T’ a)’ O’O)
+ f(s,B(1,),00)

ds +

1
r(a)
w(s)

K (s, ) (x(w)

£(s, BT a).x(s), f

— y())dp) — £ (s, B(z,@),0,0)
+ f(s, B(r,),0,0)

f(t_s)a 1

ds

So that

11,6 )01 1y u YOI+ o)
+7|b|T“ x

la+b|l'(a+1)
(Mg (ks I (Il + ko K ()| + [y (O)) + )

Ta

TTa+D >
(Mpo (e llx @I + k2 K (1x () + Ny (D)) + ko)
From (2.15), we can get

[T (e, )OI < <| b +%)

T® bl
Ta+D <|a b ) (Mpa (ks + koK) + ko)

In the same way, we can obtain that

IT,(x, )OI < <| +b| +|c7:|-id|)

rv |d]
T +D <m+ )(Mﬁy(ll + LRI +1,)
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Tqy
e +d|
Consequently,

Tpo
| g (x, ) ()] < (m17” + m) + M, (m,r + ko)

Tq,
|c +dl
Now, from (x;,y,),(x,,y,) € X x Y and for any
te [0,T], we have

||T1(vaYZ)(t) - T1(x1vY1)(t)|| <
1 T
e fo |1 (72(5)) = ha (71(5)) | ds +

< <m3r+ )+M3(m4r+ lo)

+ (m3r + ) +My(myr+1) <r

w(s)
K(s,1)

b T
b | T e pE s,

(x2() — 2 (w))dp) —
w(s)
£ (5B, a), %, (5), f

ds +

K(s, 1) (e, (1) — v, () dp)
o f (T — )| (s B(z. @), x3(s),

w(s)
f K(s,12) (22 G0) = y2 (1)) )

w(s)
£(s BT @) x, (s), f K (5,12) (2 () — 2 () )| dis

TPy =yl + e

(eqllxey () — %, (I + sz (”xz(t) -x @)+
ly2(€) = y.(OI) + F( " 1) (Feyllx, (£) — x, (O +
N A EAGEFAG] RS VAGESRA])))

_I +b|

ly, (&) —y: @Il

MBaT |b|
+ +1
I'(a+1)\|a+ b|
((ky + kK)o (€) — %1 (O +
kK lly, () =y, (Ol
From (2.15), we find that

”Tl(xeYZ)(t) - T1(x1,3’1)(t)|| < Mymyllx, () — x, (0|

_I +b|

+(my + Mk Ky, (8) =y (DI ... (2.16)
Similarly, we get
T T + MerT”
|| 2(x2 YZ)(t) - Z(xl YI)(t)“ = (|C+d| F()/+ 1)
ld|
<|c+ it 1) LR)I(E) = x: (DIl +

Mg, TY |d]

F()/ + 1) <|C + dl +1 (ll + lZRs)HYZ(t) - }’1(75)”

< (m3 + M3LR)||lxy (8) — x, (O] +

Mamy|ly,(¢) —y (DIl - (217)



It follows from (2.16) and (2.17) that
”ng(vaYZ)(t) - ng(x1vY1)(t)|| <
[my + M, (kK + my) + my + M3([,R; + m,)] %
llx, () — 2, (Ol + [ly,(€) =y (D) ... (2.18)
Since

my + M (kK +m,) + mg + M3([,R; +m,) < 1

Therefore, T, is contraction operator, so by Banach
fixed point, which is the unique solution of the
boundary value problems (1.1) and (1.2). This
completes the proof.

4. EXAMPLE

Consider the following system of fractional integro-
differential equation

‘D x(t) = m (et +sin(x(t)),

+ft(t +35)2(x(s) — y(s))ds) te€[0.2],

12, bl
26 15 et L+ (O

+%Lt (t +5)3(x(s) — y(s))ds) t€[0,2]

. (41)
‘DPx(t) =

with non-separated integral coupled boundary
condition

20x(0) + x(2) = f 1

5L+ D™
30(0) + y(2) =

where

P =pen = | s

\
L -(42)
ds,)l

|| aorom
o (10+x(s))

means thatMg, = =0.75 = Mg,

Q(g)z(]ﬁ(f,a)
Here T=2, a=y=05,a=20,c=30,b=
d=1, w@)=t ,e()=1t?,

K(t.s) = (t+5)s, R(ts)=(t+5s)3.

h(y(0)) = hy(x(8)) = e

1
5L +[y@®Dh (10 +[x(s)D)

we obtain that K, = 5.3333, R, =12,

k, =k, =0.01,l, =0.0556,1, =0.01,

k, = 0.0554, [, =005, p,=p, =02,
q, =01, g, =0.01,m, =0.019 ,

m, = 0.0475, my; = 0.00065 m, = 0.1317 ,
M; =16718 , M; =1.6472

Therefore
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my + M, (kK +m;) + mz + Ms(l,R; + m,)
=0.6028<1

By Theorem 3.2, the coupled boundary value problem
(4.1) and (4.2) has at least one solution.

5. CONCLUSION

In this paper, we have investigated the existence results
for a system of nonlinear fractional integro-differential
equations with coupled non-separated integral
boundary conditions (1.1.) and (1.2) by using the
Leray—Schauder fixed point theorem and uniqueness
results for that system by using the Banach contraction
principle and. Finally, we give example to demonstrate
our results.
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