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ABSTRACT  
 
Query Optimization in Distributed Databases is a challenging 
task due to the rising size of the database. The join operation 
has a great significance for the execution of queries containing 
multiple relations. An optimizer may suggest many join order 
for a single query and selects the best join order that executes 
the query in minimum time. The current optimizers are 
working well with a lesser number of relations but as the 
number of relations in a query increases, execution time also 
increases. To reduce this execution time, optimizers are 
required to redesigned or altered. In this paper, an improved 
existing algorithm is described to deal with the join order 
problem in Query Optimization and is based on the Multi 
Colony Ant Optimization algorithm. The performance of the 
proposed algorithm depends on various parameters such as the 
number of iterations, number of colonies, and Ant ratio. In this 
paper, the impact of these parameters on an improved 
algorithm is also described.   
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1. INTRODUCTION 
 
A distributed database collects data from multiple sites to 
answer any query. Data stored at these sites may be replicated 
or in fragmented form. To execute a query in a distributed 
environment, data are accessed from different sites. The Query 
Processor translates the high-level query into a relational 
algebra query. There may be many relational algebra plans for 
a single high-level query. The Response Times for the 
execution of these plans are very much different. In the 
distributed environment, the query processing is done on all the 
relevant sites that include optimization at both the global and 
local level [1]. Query Optimizer is responsible for generating 
different execution plans that may have different Response 
Time and chooses the best one. 
 
A Query Optimization Problem is a difficult problem. It needs 
a Search Space (possible plans), Fitness Function (Cost 
Estimations Technique) and an algorithm that finds the best 
plan from available search space [2]. As the number of 
relations participating in the query increases, it increases the 
execution time of a query. The role of the Query Optimizer is 

to select an effective plan that minimizes the execution time. 
Therefore, if an effective plan is chosen for the execution of the 
query, the result of the query will be produced faster. To find 
out the solutions to the query that have more than one relation, 
relations must be joined first. To find the best execution plan, 
an optimizer generates different join orders.  The optimizer 
selects the join order plan that has the minimum Response 
Time. 

 
In the present scenario, the size of the data dispersed on various 
nodes in a distributed environment is increasing and the query 
submitted in Distributed Environment involves a large number 
of relations. Several Query Optimization algorithms have been 
proposed and they are giving encouraging solutions 
[3][4][5][6]. However, due to the increasing number of 
relations in a join query, the algorithms that have been 
designed to deal with the problem of query optimization need 
modifications.  Therefore, an optimizer is required to deal with 
a large number of relations in the join query. 
 
2. REVIEW WORK 
 
From the past many years, different algorithms have been 
working on Query Optimization Problem. Deterministic 
strategies work well for the number of joins less than 15 but for 
a larger number of joins, the time complexity is increased. For 
a larger number of queries, Randomized Strategies work better, 
but due to the in-deterministic nature of Randomized 
Algorithms, the execution time can never be predicted [3]. The 
problem with Dynamic Programming is high memory 
consumption for the storage of partial solutions. The features of 
an Evolutionary Algorithm include parallelism, positive 
feedback mechanism, negative feedback mechanism [7], and 
the capability to deal with the query optimization problem. 
Genetic Algorithm, PSO, ABC, ACO, belongs to the category 
of Evolutionary Strategies. The problem with GA is that 
optimal solutions are not guaranteed. The PSO can converge 
prematurely [4] and ABC may give premature local solution 
[5].  
 
As discussed above, many algorithms are already working on 
the Query Optimization problem, but have some limitations. It 
motivates to improve an existing algorithm that produces a plan 
to a given query in a minimum Response Time. Ant Colony 
Optimization Algorithm works well for various Optimization 
Problems including Query Optimization problem [6]-[10]. In 
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an ant colony, ants search their food and follow a path leaving 
pheromones. Other ants follow the path led by the ants based 
on pheromone values deposited by the ants. Ants find an 
optimal solution from their source to the destination by taking 
advantage of the knowledge of pheromone trails. [11][12].  
 
ACO helps in finding the solution to the join query, but it 
suffers from premature convergence [13]. After analyzing the 
application of ACO for different problems, many variations 
have been suggested. One of these variations is the method that 
implements ACO in parallel to better utilize its properties 
[7][9]. A variation of ACO, where several colonies try to solve 
the problem simultaneously is known as Multi Colony Ant 
Optimization (MCAO). MCAO algorithm is an extension of 
ACO that works with multi ant colony instead of a single ant 
colony, in parallel. It exchanges the pheromone information 
between colonies that helps in avoiding the premature 
convergence problem of ACO. In the past many years, the 
algorithm has been widely used for many problems such as 
Unmanned Aerial Vehicle (UAV) path planning [14], dynamic 
Travelling Salesman Problem [15], Quadratic Assignment 
Problem [16], Location Routing Problem [17] and has been 
compared with ACO. It has been analyzed that the performance 
of MCAO is better than ACO [14]-[16].  
 
The parallel implementation of ACO was  recommended in the 
form of the modified Ant colony [18][19]. In MACO-
AVG [20] multi ant colonies were implemented to solve 
combinatorial optimization problems and it was analyzed that 
multi colony outperforms single colony. The Parallel ACO [21] 
was applied to the problem of query optimization and was 
compared with ACO, Particle Swam Optimization (PSO), and 
Artificial Bee Colony (ABC). After analyzing the results 
received from experiments it was observed that Parallel ACO 
gives better results for join order problem. 
 
Various algorithms are working for the Query Optimization 
problem but for the increasing number of relations, an 
optimizer is required that gives an optimal join order to execute 
the query in minimum time. In this paper, an improved 
optimization algorithm is proposed to find out the solution to 
the multi join query in minimum time.  
 
3. PROPOSED ALGORITHM  
 
The objective of creating an optimization algorithm is to 
generate a plan through available search space that minimizes 
the fitness function. In the Multi Colony Ant Optimization 
algorithm, the parameter values are exchanged between 
multiple colonies of a site. In the proposed algorithm, the 
pheromone values are exchanged between colonies as well as 
within sites to improve the quality of solutions produced by 
different sites. The local pheromone update was applied to 
avoid the problem of local convergence. The MCAO is 
improved by applying the global pheromone update method to 
the MCAO problem i.e. the pheromone values are exchanged 
between multiple colonies as well as among multiple sites. The 
global pheromone update shares the pheromone information 
among multiple sites to improve the output produced by 
MCAO.  

In this research, Improved Multi colony ant optimization is 
proposed for the solution of the Query Optimization problem in 
Distributed Databases, and named as MCAA-QODD (Multi 
Colony Ant Algorithm for Query Optimization in Distributed 
Databases).  
In MCAA-QODD, the Query Generating Site (QGS) is the site 
where a query is received initially. The query is distributed 
uniformly to apply join on four sites due to full replication. At 
each Receiving Site (RS), multiple colonies of ants find the 
optimal join order and exchange the pheromone values to 
obtain better solutions. After generating an optimal join order 
at each RS, local optimal solutions are then sent back to Query 
Generating Site where again multiple colonies can find the 
optimal join order. The pheromone values of best colonies that 
generate the optimal join order are also exchanged between 
different sites to achieve the global optimal solution.   
 
4. EFFECT OF PARAMETERS ON PROPOSED 

ALGORITHM 
 
The output of the MCAA-QODD algorithm depends on 
different parameters such as Information heuristic factor (α), 
Expectation heuristic factor (β), Pheromone evaporation factor 
(ρ), Pheromone Strength (Q), Number of Ants, Number of 
Iterations, Number of Colonies, etc. These parameters have a 
significant range of values that affect the performance and 
efficiency of MCAO. The value of Information heuristic factor 
(α), Expectation heuristic factor (β), Pheromone evaporation 
factor (ρ), and Pheromone Strength (Q) are adopted by Multi 
Colony Ant Optimization [15][22]. The parametric setting of 
the number of ants, iterations, and colonies are determined by   
analyzing the different values of these parameters on the join 
order problem.  
 
To determine the value of these parameters, the experiments 
are conducted in .net framework 4.5 under Visual Studio 2010 
Package. C++ language is selected for simulation of the 
algorithm due to its object-oriented approach. Queries with a 
different number of relations are then given as input to this 
algorithm and then the comparison is made with another 
existing algorithm. The fitness function returns the cardinality 
of path traversed by ants that perform join operation on all 
relations on that site also called as cost. For every number of 
relation, a decision is made based on the value of Response 
Time and cost. The query is generated in a fully replicated 
environment.  

 
The MCAA-QODD generates the join order in minimum 
Response Time with minimum cost. The number of sites 
assumed is four in Distributed Environment. The optimizer will 
give the join order of relations from all the four sites 
simultaneously. For distribution of relations, a query must have 
minimum nine relations as the distribution of relation is done 
equally by dividing the number of relations by four if the 
number of relations are multiple of four. Otherwise, modulus 
function is applied to number of relations for distribution. If the 
number of relations is less than or equal to eight then 
distribution of relations to different sites is not required. For 
example, if the number of relations in a join query is eight, then 
the distribution of relations on all four sites will be 2, 2, 2, 2 on 
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each site respectively. There is no need to find out the join 
order for two relations on each site. Therefore, minimum nine 
relations are considered for distribution of relations on sites.  

 
In the other case, when number of relations are less than or 
equal to eight, the join order will be find out only at Query 
Generating Site (QGS). In this case, two conditions may hold. 
First, if the number of relations is less than or equal to four, the 
join order will be find out for four relations in easy manner. 
Second, for number of relations greater than four in a query, 
the relations will be considered in a pairs. For example, if the 
number of relations in a join query is seven (Rel1, Rel2, Rel3, 
Rel4, Rel5, Rel6, Rel7) then first two relations will form a pair 
showing the order of join as Rel1 join Rel2. Likewise, Rel3 and 
Rel4 will form a join order. Moreover, Rel5 and Rel6 is the 
another pair.  At QGS, the join order will be find out for these 
pairs and the last remaining relation Rel7. For these three pairs 
and last relation, there will be total 4! possibilities. The 
optimizer at QGS is responsible for finding the join order with 
minimum cost. To check the quality of the result, Response 
Time, as well as cost, is recorded for relations 8, 12, 
16……….120.  
 
To implement the MCAA-QODD, impact of various 
parameters is analyzed. In this paper, total four experiments are 
shown that contribute for the selection of specific values from 
the range of varying values of parameters and for the 
verification of algorithm by comparing it with other existing 
algorithm.  The first experiment focuses on to find out the ratio 
of ants that gives an optimal output in minimum time. The 
second experiment finds out the number of colonies in MCAA-
QODD that produces the join order in minimal time.  The third 
experiment focuses on to find out the number of iterations that 
produces an optimal join order in minimum time. The fourth 
experiment records the Response time for the different number 
of relations in a query and then compare it with the existing 
Query Optimization algorithm. The Response Time is recorded 
by taking into consideration the elapsed time in the selection of 
join order out of n! available options.  
 
4.1 Experiment 1: Ant Ratio 
 
The first experiment of MCAA-QODD was implemented to 
find the number of ants required for execution. The experiment 
is carried out with four ratios of ants in contrast with relations. 
The experiment was done on the different percentages of ants 
with the number of relations i.e. 25%, 50%, 75%, and 100%.  
Each ratio of ants is executed twenty-five times with the 
number of joins from 9, 12, 16, …., 120. The Response Time is 
recorded with each set of ants and relations. Before deciding on 
the selection of this ant ratio, the cost is also calculated which 
helps in deciding the ant ratio. 

 
 
 
 
 
 
 
 
 

Table 1: Response Time for different Ant Ratios 
 

Ants 
Percentage/ 
Relations 100 75 50 25 

8 .00848 .00788 .0172 .0148 
9 0.04224 0.03172 0.022 0.0232 

12 0.05024 0.0318 0.02404 0.0248 
16 0.047 0.04452 0.0232 0.0224 
20 0.0528 0.0472 0.0232 0.0242 
24 0.05788 0.05392 0.0272 0.02772 
28 0.0718 0.04944 0.02764 0.03868 
32 0.08236 0.07508 0.06432 0.06108 
36 0.1032 0.07824 0.0672083 0.06328 
40 0.1332 0.10756 0.07892 0.06768 
44 0.16892 0.10584 0.1069167 0.0692 
48 0.22668 0.14752 0.11448 0.074 
52 0.2924 0.14796 0.13976 0.07928 
56 0.37916 0.23208 0.19104 0.09128 
60 0.48144 0.31712 0.2264 0.1028 
64 0.64548 0.40188 0.29964 0.14844 
68 0.72812 0.4816 0.35396 0.17496 
72 0.88432 0.61248 0.47224 0.2044 
76 1.28876 0.78168 0.55408 0.23196 
80 1.30204 0.93512 0.72292 0.32976 
84 1.6686 1.11412 0.80912 0.38288 
88 1.9198 1.35104 1.01912 0.44272 
92 2.3846 1.6264 1.14936 0.48532 
96 2.92752 1.93216 1.44864 0.66768 

100 3.17836 2.24048 1.62712 0.77304 
104 4.0672 2.65396 1.9974 0.84388 
108 4.6566 3.11916 2.23948 0.93976 
112 5.23868 3.66032 2.70552 1.22152 
116 6.04592 4.068 2.96496 1.33944 
120 6.61092 4.76536 3.59856 1.52564 

 
It can be observed with the above Table 1 that the one-fourth 
ant ratio gives the optimal join order in minimum time. 
However, before deciding on the selection of this ant ratio, the 
cost is also calculated that shows the higher values for the one-
fourth ant ratio. Table 2 shows the values received from cost 
for executing the query for finding out the optimal join order 
with different ant ratios. 
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Table 2: Cost for different Ant Ratios 
 

Ant Ratio /  
Relations   25 50 75 100 

4 431 354 435 559 
9 460 435 469 451 

12 485 430 302 369 
16 599 504 575 805 
20 953 573 896 1023 
24 830 739 697 896 
28 1060 837 769 894 
32 1225 965 907 963 
36 1606 1309 1078 1147 
40 1820 1118 1137 1253 
44 1907 504 1618 1694 
48 2373 1587 1631 1594 
52 2314 1927 1729 1802 
56 2662 1641 1859 1945 
60 2500 1580 1678 1866 
64 2550 2096 2247 2315 
68 3043 2643 2638 2723 
72 3399 2647 2741 2840 
76 3571 2905 3200 2922 
80 3520 3223 3166 3232 
84 4454 3319 3353 3638 
88 3792 3360 3382 3715 
92 4183 3516 3744 3797 
96 4412 3387 3673 3797 

100 4747 3667 3724 3908 
104 5282 3572 4392 4413 
108 5355 3698 4080 4543 
112 5344 4659 4668 4882 
116 5756 5140 5144 5567 
120 6222 4810 5183 5758 

 
A line graph is shown in Figure 1 to show the cost achieved 
with each ant ratio. 
 

 
 

Figure 1: Fitness value (Cost) for Ant Ratios 
 

 
It can be observed by the values taken from the experiments 
that the cost decreases by increasing the ant ratio from 25% to 
50%. It again increases with an increasing ant ratio from 50% 
to 75% and again from 75% to 100%. Ant ratio 50% are giving 
the minimum cost for almost each join query containing 
relations 4,8,12,……,120 that is better than 25% ant ratio. So 
in this experiment, the ant ratio has been fixed to 50%. 
 
4.2 Experiment 2: Number of Colonies 
 
After distributing the query on each site by QGS, each site 
produces the local solution. At each site, the processor has 
multiple cores [23][24]. The MCAA-QODD is based on 
multiple colonies so the number of colonies affects the 
performance of MCAA-QODD. These colonies work on 
different cores on these processors on each site. So making a 
decision on number of colonies will affect the number of cores 
working on that processor. The second experiment of MCAA-
QODD was carried out to decide on the number of colonies in 
MCAA-QODD. Four inputs were taken into consideration i.e. 
2 colonies, 4 colonies, 6 colonies, and 8 colonies. After 
conducting experiments on different sets of relations in a join 
query, it can be analyzed from Table 3 that four colonies are 
generating results in minimum time for most of the occurrences 
in the table. However, the cost is the same for all colonies. 
Therefore, four colonies were taken into consideration as it 
produces an optimal join order in minimum time. 
 

Table 3: Response time for different number of colonies 
 

Colonies/ 
Relations 2 4 6 8 

10 0.02296 0.02164 0.0228 0.02284 

20 0.02724 0.0264 0.0268 0.0272 

30 0.057 0.03768 0.04192 0.0388 

40 0.06684 0.07892 0.0712 0.0688 

50 0.13404 0.13336 0.13444 0.13344 

60 0.22604 0.2264 0.22636 0.2254 

70 0.4136 0.39056 0.40752 0.40768 

80 0.7066 0.72292 0.70036 0.71932 

90 1.1552 1.14012 1.15256 1.146 

100 1.63384 1.62712 1.65152 1.64672 

110 2.46164 2.42404 2.42792 2.4578 

120 3.59384 3.59856 3.57956 3.59348 
 
 4.3 Experiment 3: Number of Iterations 
 
An important parameter for producing an optimal join order in 
MCAA-QODD is the number of iterations.  In this experiment, 
MCAA-QODD is executed for a different number of iterations. 
The number of iterations that were taken into consideration for 
the experiment is 10, 20 30 and 40. The significance of 
increasing number of iterations is to achieve the minimum cost 
as it gives the optimal join order in minimum time. After 
conducting this experiment, it was observed that the twenty 
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iterations give the optimal join order in minimum Response 
time.  
 
The second experiment is carried out to find the feasible 
number of iterations for MCAA-QODD. MCAA-QODD is 
executed with Different number of iterations i.e. 10,20,30 and 
40 iterations. Each iteration number is then executed for 25 
times with the number of relations from 10,20,30,………120. 
The cost and Average Response time are then calculated to 
check the performance of each option. The Average Response 
time for each iteration number and the number of relations is 
given in Table 4. 
 
By considering Table 4, it can be analyzed that the Response 
time is minimum for ten iterations but after considering the cost 
associated with each iteration number (Table 5), it was realized 
that the cost for ten iterations is more than the value achieved 
from 20 iterations. At few places, cost achieved from 30 
iterations is also less but the occurrence of this situation is very 
less. So after analyzing Table 5, the number of iterations is 
selected as 20 for MCAA-QODD.  
 

 
Table 4 : Response Time for different number of iterations 

 
Iteration/ 
Relations 10 20 30 40 

10 0.0232 0.02404 0.02484 0.0236 

20 0.02004 0.0264 0.0288 0.02692 

30 0.038 0.06432 0.05156 0.05388 

40 0.046 0.07892 0.09316 0.11276 

50 0.0804 0.1324 0.15916 0.2438 

60 0.12724 0.2264 0.3216 0.43064 

70 0.25216 0.40672 0.58348 0.78412 

80 0.35904 0.72292 1.05224 1.38828 

90 0.59376 1.13936 1.69328 2.25044 

100 0.82888 1.62712 2.51956 3.26184 

110 1.37556 2.43756 3.61168 5.07584 

120 1.80444 3.59856 6.124 7.1536 
 

Table 5: Cost for different number of iterations 
 

Iteration/ 
Relation 10 20 30 40 

10 386 266 238.5 278 
20 623 513.5 543 562 
30 1183.5 836 954 880.5 
40 1526.5 1478 1654.5 1517.5 
50 1987 1825.5 1626 1743.5 
60 2258.5 2214.5 2398 2149 
70 2794.5 2718 2719.5 2631.5 
80 3425 3009 3062 3028 
90 3946 3452.5 3754 3535.5 

100 4069 3578.5 3967 4004.5 
110 4947 4329.5 4522 4449.5 
120 4957.5 4630.5 4794.5 4991.5 

 

4.4 Experiment 4: Response Time of MCAA-QODD and 
Parallel ACO 
 
Researchers that applied the variant of ACO, PACO (Parallel 
ACO) gave a solution to query optimization [21]. In PACO, 
ants of different colonies communicate between different 
iterations to produce better results by exchanging pheromone 
values in between them. One of the reasons to choose Parallel 
ACO is the formula used for calculation of probability to 
choose the next node and for pheromone update. Another 
reason is that both of these algorithms apply the same fitness 
function. 
 
The Parallel ACO algorithm was proposed to deal with the 
local convergence problem of ACO. It executes the query on 
57 colonies and exchanges the value of pheromone between 
colonies of ants to avoid the problem of local convergence. To 
compare the algorithms, the Response time of MCAA-QODD 
and PACO is recorded in Distributed Environment with four 
sites.  
 
After analyzing the Response time taken by MCAA-QODD 
and Response time taken by PACO, it can be observed that the 
time taken by MCAA-QODD is less as compared to PACO. 
The Difference Percentage indicates that MCAA-QODD 
provides join order in around 15 percent to 27 percent less time 
for relations 4, 8, 12, 16……52 less time than PACO. (Table 6) 
By analyzing Figure 2, it is clear that MCAA-QODD is 
generating results in less Response Time as compared to 
PACO. So MCAA-QODD can be considered as a better 
solution than PACO for join query optimization. 

 
Table 6: Response Time of MCAA-QODD and PACO 

 

Number 
of 
Relations 

Parallel 
ACO 

MCAA-
QODD Difference Difference 

Percentage 

4 0.0204 0.0172 0.0032 15.69 
8 0.026 0.022 0.004 15.38 

12 0.0288 0.02404 0.00476 16.53 
16 0.0308 0.02562 0.00518 16.82 
20 0.032 0.0264 0.0056 17.5 
24 0.0344 0.0272 0.0072 20.93 
28 0.03632 0.02764 0.00868 23.9 
32 0.08468 0.06432 0.02036 24.04 
36 0.08772 0.06692 0.0208 23.71 
40 0.10396 0.07892 0.02504 24.09 
44 0.142 0.106917 0.03508 24.7 
48 0.15364 0.11448 0.03916 25.49 
52 0.19076 0.13976 0.051 26.74 
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Figure 2: Response Time of MCAA-QODD than PACO 
 
 
 
5.CONCLUSION AND FUTURE WORK 
 
As explained above, an improved Optimization algorithm 
MCAA-QODD performs well for small as well as a large 
number of relations in a join query. In this paper, the Response 
Time of MCAA-QODD is compared with another existing 
algorithm to show the significance of the algorithm. It can be 
easily observed that the proposed algorithm is reducing around 
99 percent Response Time. To validate the effect of parameters 
on MCAA-QODD, different experiments were conducted. The 
parameter values are adjusted to receive the optimal solution to 
the query. The values derived from these experiments help in 
improving the quality of the result.  
  
MCAA-QODD works well for replicated data. In the future, it 
can be implemented for fragmented data too.  A Modified form 
of other Swarm Optimization Algorithms such as Particle 
Swarm Optimization, Artificial Bee Colony, etc. can also be 
applied to the Join Query Optimization problem. 
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