
Anjali Soni et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2442- 2448

2442

Impact of Varying Parameters in Improved Multi Colony Ant Optimization
Algorithm for Join Order Problem in Distributed Databases

Anjali Soni1, Dr. Swati V. Chande2

1Research Scholar, Rajasthan Technical University, Kota, Rajasthan, India, anjalisoni81@gmail.com
2Professor, Computer Science, International School of Informatics and Management, Jaipur, India, swatichande@rediffmail.com

ABSTRACT

Query Optimization in Distributed Databases is a challenging
task due to the rising size of the database. The join operation
has a great significance for the execution of queries containing
multiple relations. An optimizer may suggest many join order
for a single query and selects the best join order that executes
the query in minimum time. The current optimizers are
working well with a lesser number of relations but as the
number of relations in a query increases, execution time also
increases. To reduce this execution time, optimizers are
required to redesigned or altered. In this paper, an improved
existing algorithm is described to deal with the join order
problem in Query Optimization and is based on the Multi
Colony Ant Optimization algorithm. The performance of the
proposed algorithm depends on various parameters such as the
number of iterations, number of colonies, and Ant ratio. In this
paper, the impact of these parameters on an improved
algorithm is also described.

Kye words: Ant Ratio, Colonies, Iterations, Response Time

1. INTRODUCTION

A distributed database collects data from multiple sites to
answer any query. Data stored at these sites may be replicated
or in fragmented form. To execute a query in a distributed
environment, data are accessed from different sites. The Query
Processor translates the high-level query into a relational
algebra query. There may be many relational algebra plans for
a single high-level query. The Response Times for the
execution of these plans are very much different. In the
distributed environment, the query processing is done on all the
relevant sites that include optimization at both the global and
local level [1]. Query Optimizer is responsible for generating
different execution plans that may have different Response
Time and chooses the best one.

A Query Optimization Problem is a difficult problem. It needs
a Search Space (possible plans), Fitness Function (Cost
Estimations Technique) and an algorithm that finds the best
plan from available search space [2]. As the number of
relations participating in the query increases, it increases the
execution time of a query. The role of the Query Optimizer is

to select an effective plan that minimizes the execution time.
Therefore, if an effective plan is chosen for the execution of the
query, the result of the query will be produced faster. To find
out the solutions to the query that have more than one relation,
relations must be joined first. To find the best execution plan,
an optimizer generates different join orders. The optimizer
selects the join order plan that has the minimum Response
Time.

In the present scenario, the size of the data dispersed on various
nodes in a distributed environment is increasing and the query
submitted in Distributed Environment involves a large number
of relations. Several Query Optimization algorithms have been
proposed and they are giving encouraging solutions
[3][4][5][6]. However, due to the increasing number of
relations in a join query, the algorithms that have been
designed to deal with the problem of query optimization need
modifications. Therefore, an optimizer is required to deal with
a large number of relations in the join query.

2. REVIEW WORK

From the past many years, different algorithms have been
working on Query Optimization Problem. Deterministic
strategies work well for the number of joins less than 15 but for
a larger number of joins, the time complexity is increased. For
a larger number of queries, Randomized Strategies work better,
but due to the in-deterministic nature of Randomized
Algorithms, the execution time can never be predicted [3]. The
problem with Dynamic Programming is high memory
consumption for the storage of partial solutions. The features of
an Evolutionary Algorithm include parallelism, positive
feedback mechanism, negative feedback mechanism [7], and
the capability to deal with the query optimization problem.
Genetic Algorithm, PSO, ABC, ACO, belongs to the category
of Evolutionary Strategies. The problem with GA is that
optimal solutions are not guaranteed. The PSO can converge
prematurely [4] and ABC may give premature local solution
[5].

As discussed above, many algorithms are already working on
the Query Optimization problem, but have some limitations. It
motivates to improve an existing algorithm that produces a plan
to a given query in a minimum Response Time. Ant Colony
Optimization Algorithm works well for various Optimization
Problems including Query Optimization problem [6]-[10]. In

 ISSN 2278-3091
Volume 8, No.5, September - October 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse87852019.pdf

https://doi.org/10.30534/ijatcse/2019/87852019

Anjali Soni et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2442- 2448

2443

an ant colony, ants search their food and follow a path leaving
pheromones. Other ants follow the path led by the ants based
on pheromone values deposited by the ants. Ants find an
optimal solution from their source to the destination by taking
advantage of the knowledge of pheromone trails. [11][12].

ACO helps in finding the solution to the join query, but it
suffers from premature convergence [13]. After analyzing the
application of ACO for different problems, many variations
have been suggested. One of these variations is the method that
implements ACO in parallel to better utilize its properties
[7][9]. A variation of ACO, where several colonies try to solve
the problem simultaneously is known as Multi Colony Ant
Optimization (MCAO). MCAO algorithm is an extension of
ACO that works with multi ant colony instead of a single ant
colony, in parallel. It exchanges the pheromone information
between colonies that helps in avoiding the premature
convergence problem of ACO. In the past many years, the
algorithm has been widely used for many problems such as
Unmanned Aerial Vehicle (UAV) path planning [14], dynamic
Travelling Salesman Problem [15], Quadratic Assignment
Problem [16], Location Routing Problem [17] and has been
compared with ACO. It has been analyzed that the performance
of MCAO is better than ACO [14]-[16].

The parallel implementation of ACO was recommended in the
form of the modified Ant colony [18][19]. In MACO-
AVG [20] multi ant colonies were implemented to solve
combinatorial optimization problems and it was analyzed that
multi colony outperforms single colony. The Parallel ACO [21]
was applied to the problem of query optimization and was
compared with ACO, Particle Swam Optimization (PSO), and
Artificial Bee Colony (ABC). After analyzing the results
received from experiments it was observed that Parallel ACO
gives better results for join order problem.

Various algorithms are working for the Query Optimization
problem but for the increasing number of relations, an
optimizer is required that gives an optimal join order to execute
the query in minimum time. In this paper, an improved
optimization algorithm is proposed to find out the solution to
the multi join query in minimum time.

3. PROPOSED ALGORITHM

The objective of creating an optimization algorithm is to
generate a plan through available search space that minimizes
the fitness function. In the Multi Colony Ant Optimization
algorithm, the parameter values are exchanged between
multiple colonies of a site. In the proposed algorithm, the
pheromone values are exchanged between colonies as well as
within sites to improve the quality of solutions produced by
different sites. The local pheromone update was applied to
avoid the problem of local convergence. The MCAO is
improved by applying the global pheromone update method to
the MCAO problem i.e. the pheromone values are exchanged
between multiple colonies as well as among multiple sites. The
global pheromone update shares the pheromone information
among multiple sites to improve the output produced by
MCAO.

In this research, Improved Multi colony ant optimization is
proposed for the solution of the Query Optimization problem in
Distributed Databases, and named as MCAA-QODD (Multi
Colony Ant Algorithm for Query Optimization in Distributed
Databases).
In MCAA-QODD, the Query Generating Site (QGS) is the site
where a query is received initially. The query is distributed
uniformly to apply join on four sites due to full replication. At
each Receiving Site (RS), multiple colonies of ants find the
optimal join order and exchange the pheromone values to
obtain better solutions. After generating an optimal join order
at each RS, local optimal solutions are then sent back to Query
Generating Site where again multiple colonies can find the
optimal join order. The pheromone values of best colonies that
generate the optimal join order are also exchanged between
different sites to achieve the global optimal solution.

4. EFFECT OF PARAMETERS ON PROPOSED

ALGORITHM

The output of the MCAA-QODD algorithm depends on
different parameters such as Information heuristic factor (α),
Expectation heuristic factor (β), Pheromone evaporation factor
(ρ), Pheromone Strength (Q), Number of Ants, Number of
Iterations, Number of Colonies, etc. These parameters have a
significant range of values that affect the performance and
efficiency of MCAO. The value of Information heuristic factor
(α), Expectation heuristic factor (β), Pheromone evaporation
factor (ρ), and Pheromone Strength (Q) are adopted by Multi
Colony Ant Optimization [15][22]. The parametric setting of
the number of ants, iterations, and colonies are determined by
analyzing the different values of these parameters on the join
order problem.

To determine the value of these parameters, the experiments
are conducted in .net framework 4.5 under Visual Studio 2010
Package. C++ language is selected for simulation of the
algorithm due to its object-oriented approach. Queries with a
different number of relations are then given as input to this
algorithm and then the comparison is made with another
existing algorithm. The fitness function returns the cardinality
of path traversed by ants that perform join operation on all
relations on that site also called as cost. For every number of
relation, a decision is made based on the value of Response
Time and cost. The query is generated in a fully replicated
environment.

The MCAA-QODD generates the join order in minimum
Response Time with minimum cost. The number of sites
assumed is four in Distributed Environment. The optimizer will
give the join order of relations from all the four sites
simultaneously. For distribution of relations, a query must have
minimum nine relations as the distribution of relation is done
equally by dividing the number of relations by four if the
number of relations are multiple of four. Otherwise, modulus
function is applied to number of relations for distribution. If the
number of relations is less than or equal to eight then
distribution of relations to different sites is not required. For
example, if the number of relations in a join query is eight, then
the distribution of relations on all four sites will be 2, 2, 2, 2 on

Anjali Soni et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2442- 2448

2444

each site respectively. There is no need to find out the join
order for two relations on each site. Therefore, minimum nine
relations are considered for distribution of relations on sites.

In the other case, when number of relations are less than or
equal to eight, the join order will be find out only at Query
Generating Site (QGS). In this case, two conditions may hold.
First, if the number of relations is less than or equal to four, the
join order will be find out for four relations in easy manner.
Second, for number of relations greater than four in a query,
the relations will be considered in a pairs. For example, if the
number of relations in a join query is seven (Rel1, Rel2, Rel3,
Rel4, Rel5, Rel6, Rel7) then first two relations will form a pair
showing the order of join as Rel1 join Rel2. Likewise, Rel3 and
Rel4 will form a join order. Moreover, Rel5 and Rel6 is the
another pair. At QGS, the join order will be find out for these
pairs and the last remaining relation Rel7. For these three pairs
and last relation, there will be total 4! possibilities. The
optimizer at QGS is responsible for finding the join order with
minimum cost. To check the quality of the result, Response
Time, as well as cost, is recorded for relations 8, 12,
16……….120.

To implement the MCAA-QODD, impact of various
parameters is analyzed. In this paper, total four experiments are
shown that contribute for the selection of specific values from
the range of varying values of parameters and for the
verification of algorithm by comparing it with other existing
algorithm. The first experiment focuses on to find out the ratio
of ants that gives an optimal output in minimum time. The
second experiment finds out the number of colonies in MCAA-
QODD that produces the join order in minimal time. The third
experiment focuses on to find out the number of iterations that
produces an optimal join order in minimum time. The fourth
experiment records the Response time for the different number
of relations in a query and then compare it with the existing
Query Optimization algorithm. The Response Time is recorded
by taking into consideration the elapsed time in the selection of
join order out of n! available options.

4.1 Experiment 1: Ant Ratio

The first experiment of MCAA-QODD was implemented to
find the number of ants required for execution. The experiment
is carried out with four ratios of ants in contrast with relations.
The experiment was done on the different percentages of ants
with the number of relations i.e. 25%, 50%, 75%, and 100%.
Each ratio of ants is executed twenty-five times with the
number of joins from 9, 12, 16, …., 120. The Response Time is
recorded with each set of ants and relations. Before deciding on
the selection of this ant ratio, the cost is also calculated which
helps in deciding the ant ratio.

Table 1: Response Time for different Ant Ratios

Ants
Percentage/
Relations 100 75 50 25

8 .00848 .00788 .0172 .0148
9 0.04224 0.03172 0.022 0.0232

12 0.05024 0.0318 0.02404 0.0248
16 0.047 0.04452 0.0232 0.0224
20 0.0528 0.0472 0.0232 0.0242
24 0.05788 0.05392 0.0272 0.02772
28 0.0718 0.04944 0.02764 0.03868
32 0.08236 0.07508 0.06432 0.06108
36 0.1032 0.07824 0.0672083 0.06328
40 0.1332 0.10756 0.07892 0.06768
44 0.16892 0.10584 0.1069167 0.0692
48 0.22668 0.14752 0.11448 0.074
52 0.2924 0.14796 0.13976 0.07928
56 0.37916 0.23208 0.19104 0.09128
60 0.48144 0.31712 0.2264 0.1028
64 0.64548 0.40188 0.29964 0.14844
68 0.72812 0.4816 0.35396 0.17496
72 0.88432 0.61248 0.47224 0.2044
76 1.28876 0.78168 0.55408 0.23196
80 1.30204 0.93512 0.72292 0.32976
84 1.6686 1.11412 0.80912 0.38288
88 1.9198 1.35104 1.01912 0.44272
92 2.3846 1.6264 1.14936 0.48532
96 2.92752 1.93216 1.44864 0.66768

100 3.17836 2.24048 1.62712 0.77304
104 4.0672 2.65396 1.9974 0.84388
108 4.6566 3.11916 2.23948 0.93976
112 5.23868 3.66032 2.70552 1.22152
116 6.04592 4.068 2.96496 1.33944
120 6.61092 4.76536 3.59856 1.52564

It can be observed with the above Table 1 that the one-fourth
ant ratio gives the optimal join order in minimum time.
However, before deciding on the selection of this ant ratio, the
cost is also calculated that shows the higher values for the one-
fourth ant ratio. Table 2 shows the values received from cost
for executing the query for finding out the optimal join order
with different ant ratios.

Anjali Soni et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2442- 2448

2445

Table 2: Cost for different Ant Ratios

Ant Ratio /
Relations 25 50 75 100

4 431 354 435 559
9 460 435 469 451

12 485 430 302 369
16 599 504 575 805
20 953 573 896 1023
24 830 739 697 896
28 1060 837 769 894
32 1225 965 907 963
36 1606 1309 1078 1147
40 1820 1118 1137 1253
44 1907 504 1618 1694
48 2373 1587 1631 1594
52 2314 1927 1729 1802
56 2662 1641 1859 1945
60 2500 1580 1678 1866
64 2550 2096 2247 2315
68 3043 2643 2638 2723
72 3399 2647 2741 2840
76 3571 2905 3200 2922
80 3520 3223 3166 3232
84 4454 3319 3353 3638
88 3792 3360 3382 3715
92 4183 3516 3744 3797
96 4412 3387 3673 3797

100 4747 3667 3724 3908
104 5282 3572 4392 4413
108 5355 3698 4080 4543
112 5344 4659 4668 4882
116 5756 5140 5144 5567
120 6222 4810 5183 5758

A line graph is shown in Figure 1 to show the cost achieved
with each ant ratio.

Figure 1: Fitness value (Cost) for Ant Ratios

It can be observed by the values taken from the experiments
that the cost decreases by increasing the ant ratio from 25% to
50%. It again increases with an increasing ant ratio from 50%
to 75% and again from 75% to 100%. Ant ratio 50% are giving
the minimum cost for almost each join query containing
relations 4,8,12,……,120 that is better than 25% ant ratio. So
in this experiment, the ant ratio has been fixed to 50%.

4.2 Experiment 2: Number of Colonies

After distributing the query on each site by QGS, each site
produces the local solution. At each site, the processor has
multiple cores [23][24]. The MCAA-QODD is based on
multiple colonies so the number of colonies affects the
performance of MCAA-QODD. These colonies work on
different cores on these processors on each site. So making a
decision on number of colonies will affect the number of cores
working on that processor. The second experiment of MCAA-
QODD was carried out to decide on the number of colonies in
MCAA-QODD. Four inputs were taken into consideration i.e.
2 colonies, 4 colonies, 6 colonies, and 8 colonies. After
conducting experiments on different sets of relations in a join
query, it can be analyzed from Table 3 that four colonies are
generating results in minimum time for most of the occurrences
in the table. However, the cost is the same for all colonies.
Therefore, four colonies were taken into consideration as it
produces an optimal join order in minimum time.

Table 3: Response time for different number of colonies

Colonies/
Relations 2 4 6 8

10 0.02296 0.02164 0.0228 0.02284

20 0.02724 0.0264 0.0268 0.0272

30 0.057 0.03768 0.04192 0.0388

40 0.06684 0.07892 0.0712 0.0688

50 0.13404 0.13336 0.13444 0.13344

60 0.22604 0.2264 0.22636 0.2254

70 0.4136 0.39056 0.40752 0.40768

80 0.7066 0.72292 0.70036 0.71932

90 1.1552 1.14012 1.15256 1.146

100 1.63384 1.62712 1.65152 1.64672

110 2.46164 2.42404 2.42792 2.4578

120 3.59384 3.59856 3.57956 3.59348

 4.3 Experiment 3: Number of Iterations

An important parameter for producing an optimal join order in
MCAA-QODD is the number of iterations. In this experiment,
MCAA-QODD is executed for a different number of iterations.
The number of iterations that were taken into consideration for
the experiment is 10, 20 30 and 40. The significance of
increasing number of iterations is to achieve the minimum cost
as it gives the optimal join order in minimum time. After
conducting this experiment, it was observed that the twenty

0

1000

2000

3000

4000

5000

6000

7000

4 24 44 64 84 10
4

A
v
e
r
a
g
e

c
o
s
t

Relations Cost Ratio

Ants 25%

Ants 50%

Ants 75%

Ants 100%

Anjali Soni et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2442- 2448

2446

iterations give the optimal join order in minimum Response
time.

The second experiment is carried out to find the feasible
number of iterations for MCAA-QODD. MCAA-QODD is
executed with Different number of iterations i.e. 10,20,30 and
40 iterations. Each iteration number is then executed for 25
times with the number of relations from 10,20,30,………120.
The cost and Average Response time are then calculated to
check the performance of each option. The Average Response
time for each iteration number and the number of relations is
given in Table 4.

By considering Table 4, it can be analyzed that the Response
time is minimum for ten iterations but after considering the cost
associated with each iteration number (Table 5), it was realized
that the cost for ten iterations is more than the value achieved
from 20 iterations. At few places, cost achieved from 30
iterations is also less but the occurrence of this situation is very
less. So after analyzing Table 5, the number of iterations is
selected as 20 for MCAA-QODD.

Table 4 : Response Time for different number of iterations

Iteration/
Relations 10 20 30 40

10 0.0232 0.02404 0.02484 0.0236

20 0.02004 0.0264 0.0288 0.02692

30 0.038 0.06432 0.05156 0.05388

40 0.046 0.07892 0.09316 0.11276

50 0.0804 0.1324 0.15916 0.2438

60 0.12724 0.2264 0.3216 0.43064

70 0.25216 0.40672 0.58348 0.78412

80 0.35904 0.72292 1.05224 1.38828

90 0.59376 1.13936 1.69328 2.25044

100 0.82888 1.62712 2.51956 3.26184

110 1.37556 2.43756 3.61168 5.07584

120 1.80444 3.59856 6.124 7.1536

Table 5: Cost for different number of iterations

Iteration/
Relation 10 20 30 40

10 386 266 238.5 278
20 623 513.5 543 562
30 1183.5 836 954 880.5
40 1526.5 1478 1654.5 1517.5
50 1987 1825.5 1626 1743.5
60 2258.5 2214.5 2398 2149
70 2794.5 2718 2719.5 2631.5
80 3425 3009 3062 3028
90 3946 3452.5 3754 3535.5

100 4069 3578.5 3967 4004.5
110 4947 4329.5 4522 4449.5
120 4957.5 4630.5 4794.5 4991.5

4.4 Experiment 4: Response Time of MCAA-QODD and
Parallel ACO

Researchers that applied the variant of ACO, PACO (Parallel
ACO) gave a solution to query optimization [21]. In PACO,
ants of different colonies communicate between different
iterations to produce better results by exchanging pheromone
values in between them. One of the reasons to choose Parallel
ACO is the formula used for calculation of probability to
choose the next node and for pheromone update. Another
reason is that both of these algorithms apply the same fitness
function.

The Parallel ACO algorithm was proposed to deal with the
local convergence problem of ACO. It executes the query on
57 colonies and exchanges the value of pheromone between
colonies of ants to avoid the problem of local convergence. To
compare the algorithms, the Response time of MCAA-QODD
and PACO is recorded in Distributed Environment with four
sites.

After analyzing the Response time taken by MCAA-QODD
and Response time taken by PACO, it can be observed that the
time taken by MCAA-QODD is less as compared to PACO.
The Difference Percentage indicates that MCAA-QODD
provides join order in around 15 percent to 27 percent less time
for relations 4, 8, 12, 16……52 less time than PACO. (Table 6)
By analyzing Figure 2, it is clear that MCAA-QODD is
generating results in less Response Time as compared to
PACO. So MCAA-QODD can be considered as a better
solution than PACO for join query optimization.

Table 6: Response Time of MCAA-QODD and PACO

Number
of
Relations

Parallel
ACO

MCAA-
QODD Difference Difference

Percentage

4 0.0204 0.0172 0.0032 15.69
8 0.026 0.022 0.004 15.38

12 0.0288 0.02404 0.00476 16.53
16 0.0308 0.02562 0.00518 16.82
20 0.032 0.0264 0.0056 17.5
24 0.0344 0.0272 0.0072 20.93
28 0.03632 0.02764 0.00868 23.9
32 0.08468 0.06432 0.02036 24.04
36 0.08772 0.06692 0.0208 23.71
40 0.10396 0.07892 0.02504 24.09
44 0.142 0.106917 0.03508 24.7
48 0.15364 0.11448 0.03916 25.49
52 0.19076 0.13976 0.051 26.74

Anjali Soni et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2442- 2448

2447

Figure 2: Response Time of MCAA-QODD than PACO

5.CONCLUSION AND FUTURE WORK

As explained above, an improved Optimization algorithm
MCAA-QODD performs well for small as well as a large
number of relations in a join query. In this paper, the Response
Time of MCAA-QODD is compared with another existing
algorithm to show the significance of the algorithm. It can be
easily observed that the proposed algorithm is reducing around
99 percent Response Time. To validate the effect of parameters
on MCAA-QODD, different experiments were conducted. The
parameter values are adjusted to receive the optimal solution to
the query. The values derived from these experiments help in
improving the quality of the result.

MCAA-QODD works well for replicated data. In the future, it
can be implemented for fragmented data too. A Modified form
of other Swarm Optimization Algorithms such as Particle
Swarm Optimization, Artificial Bee Colony, etc. can also be
applied to the Join Query Optimization problem.

REFERENCES

[1] A. Kumar and S. Singh. Improvement of the Performance
of a Query Optimization for Distributed System,
International Journal of Advanced Research in Computer

Science and Software Engineering Vol. 4, Issue 11, pp. 970-
975, November 2014.
[2] S. Chaudhuri. An overview of query optimization in
relational systems,” in Proc. seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database
systems - PODS 98, 1998.
https://doi.org/10.1145/275487.275492
[3] P. G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price. Access Path Selection in a Relational Database
Management System, in Proc. 1979 ACM SIGMOD
international conference on Management of data, Boston,
1979, pp. 23-34.
https://doi.org/10.1145/582095.582099
[4] C. Qiao and H. Wang. The Further Research on the
Application of ABC to the Optimization and Control of
Project, Engineering Management Research, Vol. 1, no. 2,
2012.
https://doi.org/10.5539/emr.v1n2p96
[5] P. Civicioglu and E. Besdok. A conceptual comparison of
the Cuckoo-search, particle swarm optimization,
differential evolution and artificial bee colony algorithms,
Artificial Intelligence Review, Vol. 39, no. 4, PP. 315–346, Jun.
2011.
https://doi.org/10.1007/s10462-011-9276-0
[6] N. Li, Y. Liu, Y. Dong, and J. Gu. Application of Ant
Colony Optimization Algorithm to Multi-Join Query
Optimization, Advances in Computation and Intelligence
Lecture Notes in Computer Science, pp. 189–197, 2008.
https://doi.org/10.1007/978-3-540-92137-0_21
[7] L. Golshanara, S. M. T. Rouhani Rankoohi, and H. Shah-
Hosseini. A multi-colony ant algorithm for optimizing join
queries in distributed database systems, Knowledge and
Information Systems, Vol. 39, no. 1, pp. 175–206, 2013.
[8] A. Hogenboom, E. Niewenhuijse, F. Hogenboom, and F.
Frasincar. RCQ-ACS: RDF Chain Query Optimization
Using an Ant Colony System, In Proc. IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent
Agent Technology, 2012.
[9] A. Soni and S.V. Chande. Multi Colony Ant
Optimization: A New Approach to Query Optimization in
Distributed DBMS, International Journal of Research in
Computer Application and Management, Vol. 8(10), pp.1–3,
2018.
[10] N. Ahmad, R. H. Salimin, I. Musirin, N. M.S. Honnoon
and N Aminuddin. Solving Economic Load Dispatch for
Power Generation Using Genetic Algorithm Techniques,
International Journal of Advanced Trends in Computer Science
and Engineering, vol. 8(1.3), pp. 337 -344, 2019.
https://doi.org/10.30534/ijatcse/2019/6181.32019
[11] Y. Jhang, P. Agarwal, V. Bhatnagar, S. Balochian, and J.
Yan. Swarm Intelligence and Its Applications, The Scientific
World Journal , pp. 43-78, 2013.
[12]D. Hema Latha and P. Premchand. Estimating Software
Reliability Using Ant Colony Optimization Technique with
Salesman Problem for Software Process, International
Journal of Advanced Trends in Computer Science and
Engineering, vol. 7(2), pp. 20-29, 2018.
https://doi.org/10.30534/ijatcse/2018/04722018
[13] S..V. Chande and P. Tiwari. Optimization of Distributed
Database Queries Using Hybrids of Ant Colony

0

0.05

0.1

0.15

0.2

0.25

4 12 20 28 36 44 52

R
e
s
p
o
n
s
e

T
i

m
e

Relations

PACO vs MCAA-QODD

PACO

MCAA-
QODD

Anjali Soni et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2442- 2448

2448

Optimization Algorithm, International Journal of Advanced
Research in Computer Science and Software Engineering, Vol.
3, Issue 6, June 2013.
[14] U. Cekmez, M. Ozsiginan, and O. K. Sahingoz. Multi
colony ant optimization for UAV path planning with
obstacle avoidance, In Proc. International Conference on
Unmanned Aircraft Systems (ICUAS), 2016.
[15] M. Mavrovouniotis, S. Yang, and X. Yao. Multi-colony
ant algorithms for the dynamic travelling salesman
problem, 2014 IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments
(CIDUE), 2014.
https://doi.org/10.1109/CIDUE.2014.7007861
[16] M. Middendorf, F. Reischle and H. Schmeck. Multi
colony ant algorithms, Journal of Heuristics, Vol. 8(3), pp.
305-320, 2002
[17] C. J. Ting and C. H. Chen. A multiple ant colony
optimization algorithm for the capacitated location routing
problem, International Journal of Production Economics, Vol.
141, no. 1, pp. 34–44, 2013.
https://doi.org/10.1016/j.ijpe.2012.06.011
[18] R. Vodák, M. Bíland Z. Krivankova. A modified ant
colony optimization algorithm to increase the speed of the
road network recovery process after disasters, International
Journal of Disaster Risk Reduction, Vol. 31, pp. 1092–1106,
2018.
https://doi.org/10.1016/j.ijdrr.2018.04.004
[19] S. Chowdhury, M. Marufuzzaman, H. Tunc, L. Bian, and W.
Bullington. A modified Ant Colony Optimization algorithm to
solve a dynamic traveling salesman problem: A case study with
drones for wildlife surveillance, Journal of Computational Design
and Engineering, Vol. 6, no. 3, PP. 368–386, 2019.
https://doi.org/10.1016/j.jcde.2018.10.004
[20] A. Aljanaby, K. K. Mahamud and N. M.Norwawi. Optimizing
Large Scale Combinatorial Problems Using Multiple Ant Colonies
Algorithm Based on Pheromone Evaluation Technique,
International Journal of Computer Science and Network Security,
Vol.8 No.10, October 2008.
[21] W. Zheng, X. Jin, F. Deng, S. Mo, Y. Qu, Y. Yang, X. Li, S.
Long, C. Zheng, J. Liu, and Z. Xie. Database Query Optimization
Based on Parallel Ant Colony Algorithm, In Proc. 2018 IEEE 3rd
International Conference on Image, Vision and Computing (ICIVC),
2018, pp. 653-656.
https://doi.org/10.1109/ICIVC.2018.8492789
[22] E. Chen and X. Liu. Multi-Colony Ant Algorithm, Ant Colony
Optimization - Methods and Applications, April 2011, pp. 3-12.
https://doi.org/10.5772/13991
[23] S. Alam, R. Barrett, J. Kuehn, P. Roth and J. Vetter.
Characterization of Scientific Workloads on Systems with Multi-
Core Processors, 2006 IEEE International Symposium on
Workload Characterization, pp. 225-235.
https://doi.org/10.1109/IISWC.2006.302747

