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ABSTRACT 
Smartphone proliferation today, have up-scaled user adoption 
of Internet-based processing activities. These include (not 
limited to) e-learning, e-commerce, mobile-banking and 
others – all aimed at better performance, service delivery at 
improved execution speed, greater portability, flexibility and 
accessibility ease. Thus, necessitating growth expansion in 
mobile-app development across varying platforms that are 
poised to help users accomplish processing tasks while 
harnessing the benefits of the technology. Conversely, these 
techs have also allowed users to be constantly besieged by 
threats and security breaches. In lieu of residence, sensitive 
and proprietary – users have become bothered with 
smartphone exposure to possible data loss and theft – if they 
are to further adopt these new paradigms. With doubt in their 
minds, trust levels in user adoption continues to reduce. We 
seek to investigate social-engineered threats and attacks 
amongst undergraduates in Nigerian Universities. Result 
shows that phishing hits a higher success rate against 
smartphone users in Nigeria, which has decreased client’s 
trust level in Internet-based services. 
 
Key words: Social engineering, Phishing, Fraud, Education, 
CyberSecurity, Transactions, Spam 
 
1. INTRODUCTION 

Information and communication technology (ICT) as a 
new paradigm – continues its rise with sophisticated 
improvements as well as its poise to ease exponentially today, 
our society’s dependence and reliance on it. Its adoption, 
reliance and heavy dependence can be attributed to its ease of 
use, ubiquity in nature, low transaction cost, portability, ease 
in accessibility, mobility, flexibility and trust-level in the 
communication channel and/or medium. All of these, 
continues to advance their popularity, flexibility in 
adaptation, and ease in adoption cum usage [1]. These 

 
 

adoption have further eased transaction between clients, 
permeated into our lives via its use in personal, biz and 
recreational feats. A sine-qua-non effect is the myriad of 
breaches that seeks to exploit the inherent challenges and 
vulnerabilities in ICT, which manifests in various forms 
presenting itself as misleading items of benefits to 
unsuspecting users, aimed at defrauding a user [2-3]. These, 
have attracted adversaries who eavesdrop on user 
transaction(s) and hijacks such for personal gains. Many 
adversaries have successfully perpetrated and continues to do 
so via the social engineering techniques called spam [4-6]. 

Spams are well-organized, carefully crafted and unsolicited 
messages sent to a network user without their consent, whose 
merchandise is unsolicited adverts aimed at making money. 
Its risen trend continues to pose concern to security experts 
the world over [7, 8, 9]. When spams are targeted at personal 
gains, it is simply fraud. Criminals seek to exploit potential 
victims since they are aware that businesses heavily depends 
on trust. Though, the high investment in security addresses 
some issues, it fails to adequately curb vulnerability threats 
and deception of network users – as criminals evolve their 
techniques to evade detection and the control measures in 
place as they successfully trick unsuspecting victims [10]. 

Spams have been defined by many researchers in relation to 
how they differ from genuine messages (or hams). The 
shortest among these, describes the spam as unsolicited bulk 
message [11]. They are ‘unsolicited messages sent 
indiscriminately, and often where the sender has no relationship 
with the unsuspecting user [12]. One of the widely accepted 
definitions is that spams are unsolicited messages sent as part 
of a larger collection, having substantially identical content. 
They aim to advertise goods and services with dedicated 
percentage that change over time [13]. This changeability has 
become a big challenge used by social engineers, especially in 
the local nature relating to concept drift in spam [14]. This 
issue has become an imperative concern as spams constitute 
over 80% of total messages in form of emails and SMS 
received by users. This consequently result in direct financial 
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losses via the misuse of traffic, storage space, and computational 
power [15, 16, 17]. 

Spams wastes processor time, leads to the loss in 
productivity and violation of privacy rights. It also has caused 
various legal issues via pornographic advert, Ponzi-schemes 
etc [18]. Total worldwide financial losses caused by spam 
estimated by Ferris Research Analyzer Information Service 
were over $50 billion as of 2018 [19]. Phishing are special 
cases of spamming activity found to be dangerous and 
difficult to control – because it particularly hunts for sensitive 
data (such as passwords, credit card numbers, etc.) by 
imitating requests from trusted authorities such as banks, server 
administrators or service providers [10]. Social engineering 
attack is on the rise, and this calls for a growth finding(s) to 
address the features of spamming and offer feasible controls. 
 
2. LITERATURE REVIEW 

Social engineering threats is not a new paradigm. But, it 
has steadily grown with no-end-in-sight. Its continued 
growth, borders on human nature of trust instincts and 
emotions, which adversaries manipulate and ultimately 
exploit to steal user data. Common methods adopted here 
includes (not limited to) phishing, vishing, etc [20-24]. These 
attacks are mostly targeted at Internet-based connected 
devices, which has tripled with the adoption of smartphone. 
Smartphones have increased user access to Internet from 
42.5% in 2013 to about 92% by 2018 [25]. Its choice over the 
personal computers is due to its portability, functionality, 
design, mobility etc. In turn, it has significantly increased the 
threats with a range of complications to work-related and 
business issues that often exposes sensitive data to adversaries 
[26-27, 3]. 

Social engineering threat simply employ technical 
subterfuge to defraud an online account holder of their 
financial data by posing as a trusted identity. Phishing 
employs multiple means like spoofed emails, web link 
manipulation and forgeries, man-in-middle chat, phone calls, 
covert redirect etc – to convince a user to divulge confidential 
data or indulge in fraudulent transactions. A more effective 
favored variant of phishing is spear phishing – in which 
targeted mails are sent to a victim, whom are cleverly 
persuaded via access links redirecting them to spoofed 
websites containing malware that aim to siphoned and 
compromise a user data. Another variant of phishing is the 
short messages (SMS) phishing also called Smishing that 
tricks a user into downloading a malware unto his cellular 
phone or other mobile device [10]. 

Vishing seeks to steal payment card data via calls or SMS 
with the fraudster posing as a bank’s representative in order to 
convince victims into divulging their data, which is either 
used for card-not-present transactions (e.g. online shopping), 
or data is re-coded onto new card for card-present 
transactions (e.g. purchase goods or cash withdrawal from 
teller machines). Other attacks redirect a site’s traffic to 
another fake site, by either changing the hosts file on a 
victim’s device, or by exploiting the vulnerability in the 
domain name service server software. Thus, it allows an 

adversary install malware unto a user device and redirects the 
user to a fraudulent site without their consent and/or 
knowledge [3]. 

Zaini et al [28] investigated the effectiveness of machine 
learning in the classification of phishing attacks. Their study 
compared five classifiers to find the best machine learning 
classifiers in detecting phishing attacks. In identifying the 
phishing attacks, it demonstrates that random forest is able to 
achieve high detection accuracy with true positive rate value 
of 94.79% using website features. Their results indicate that 
random forest is the most effective classifiers for detecting 
phishing attacks. Many other studies have been reported to 
examine the increasingly, sophisticated tactic of deception 
fraud – so as to proffer actionable suggestions for effective 
risk mitigation. 

2.1. The University Frontiers, Footprints and Experience 
Undergraduates in Nigeria, have both become the target of 

phishing and also, the perpetrators of these social engineering 
attacks. Crave for wealth, continues to bedevil Nigeria with 
sprees of fraudulent practices robbing her of opportunities and 
progress. Fraud is a criminal act, perpetrated via 
embezzlement, and theft in which a criminal uses falsehood 
to benefit from an unassuming victim (usually aimed at a 
financial transaction). Transaction is the exchange of goods 
and services for gains or money deliverables [29-31]. With 
advances in ICT beaming continually its potentials on users 
across the world, its sine-qua-non effect is the myriad of 
threats that exploit inherent vulnerabilities in the associated 
techs. These threats manifest in various forms or ways – 
presenting itself as misleading items of benefits to 
unsuspecting users, aimed at defrauding them [2, 5]. 

[23] examined threats people experience by focusing on the 
comparison between the effectiveness of phishing and vishing 
methods, sampling 772-Thai undergrad students with age 
ranges between 18-to-23 years old. Their result suggests that 
phishing problem tends to get higher success rate than 
vishing. Some other factors, such as gender also has an 
impact on the success rate of each technique. 

[32] deployed a client-trusted detection framework for 
e-banking on the android smartphone platform as it sought 
for a dependable, mobile banking to address threats via 
transaction authenticity and message authorization. The 
framework notably increased clients’ trust level against social 
engineering threats targeted at smartphones with about 
72percent for mobile online-banking applications (ported on 
a community-cloud). They attempted to examine threats 
experienced by smartphone users by focusing on the 
comparison between the effectiveness of phishing and vishing 
techniques. He sampled 600-respondents in the South-South 
and South-East Geo-Zone of Nigeria. Results indicated that 
phishing poses more of a problem with higher success rate 
than vishing. 
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3. METHODOLOGY 

3.1. Data Gathering and Sampling 
The study adopts a survey design with chosen samples 

(biased with the knowledge of social engineering attacks) to 
help analyze selected data. Dataset was collected through 
stratified sampling across the six (6) Geo-Political zones in 
Nigeria. Selected targets includes: The University of Abuja 
(North-North zone), Federal University of Petroleum 
Resources Effurun (South-South), University of Lagos 
(South-West), University of Nigeria Nssukka (East zone), the 
randomly selected targets. 3-Universities, 3-Polytechnics and 
2-Colleges of Education were selected at random from the six 
(6) geo-zones in Nigeria. Samples retrieved from the Nigeria 
Universities Commission, Nigeria Board of Technical 
Commission and The Nigerian Commission for Colleges of 
Education website. A hundred and twenty (120) students were 
each chosen from various department(s) in the selected 
institutions. The study design had about 5,760-questionnaires 
administered. The achieved co-efficient r = 0.73, accounts for 
the reliability of instrument (questionnaire) used; while, the 
figures 1 – 3 depicts a summary of the collected data. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Target list by Social Engineering Attacks 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Targeted Biz by Social Engineering Attacks 
 

3.2. Procedure for Data Collection 

In a phishing experiment, it is important to make 
interaction look like phishing, without actually 

compromising credentials. A conductive study such as 
carrying out phishing attacks, in the academic environ is 
especially difficult for reasons that include attaining the 
University’s approval and for her ICT personnel(s) to carry 
out such attacks. In our experiments, we illustrated methods 
to avoid having to handle credentials, but still being able to 
verify whether they were correctly entered. This was achieved 
by obtaining feedback from a server log files we had access to. 
Undergraduates in the selected tertiary institutions were 
invited via email to participate in a short-web survey about 
student message usage and info on their future plan to pursue 
a graduate studies. Webpage was designed and used to collect 
the data [33-39]. We provided a link to webpage with misspelt 
URL (Uniform Resource Locator) to the targets. Web pages 
were designed similar to the genuine site and replicated from 
the official institution website were designed. All menus and 
functions are similar to the official institution website. We 
used the dot.com domain as it is cheaper than other host; And, 
it seems to be the most effective for phishing as adopted from 
Chanvarasuth [23] and Ojugo and Eboka [10]. 

Step of phishing technique appears when the targets 
receive phishing e-mail that contains the link to the phisher 
website. First, the targets will see the login page on this page, 
the targets are asked to login by using their own student ID 
and password on the registration page. The website also asks 
each student to fill their information such as name, last name, 
age, e-mail, and others. Our questionnaire is adapted from 
Wang et al [30] dividing the survey into: demographic, scale 
of awareness, and risk caused by phishers. After acquiring the 
data from social engineering techniques, we use victim’s data 
to analyze/compare the effectiveness of these techniques. This 
study seeks to compare effectiveness between phishing and 
vishing techniques among other techniques. Then, use a 
paired sample t-test to compare means of same for 
comparison between 2-sample groups; And, One-Way 
ANOVA to analyze the data which has more than two groups 
of sample results. 
 

 
Figure. 3. Social Engineering Attacks over Smartphone from 

2011 – 2019  
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3.3. Statement of Problem 
Money serves as great motivation. It mobilizes the mind to 

great inventions, helping it allocate various resources to 
productive uses, facilitates exchange and risk management. 
The hypotheses for the study includes: 
a. Ho1: Is phishing is the most effective of all the social 

engineering technique available?  
b. Ho2: What is the success rate of phishing? 
 

The objective of this study is to: (a) compare the 
effectiveness between phishing, vishing, pharming and 
whaling techniques of social engineering threats on Nigeria 
Undergraduates in relation to exploring how human traits 
affect these threats and the use of specific techniques. 
 
4. FINDINGS / DISCUSSION 
 

The study obtained responses from 5,231-participants. For 
phishing, email was sent to all 5,760-participnts and 
5,231-respondents were attained to represent approximately 
91% of sample population. In table 1, we retrieved 
3714-respondents (representing 71%) of the total population 
of 5231-respondents as obtained for phishing data were male; 
while 1517 (about 29%) of the sample population for phished 
clients were female. Conversely, 3766-respondents 
representing 72% of vished-respondents are male; while, 
1465-respondents representing 38% of the 
vished-respondents were female; And so on. 

 
Table 1. Number of Respondents by Gender 

Attacks Sex  Percent Count  Total  
 
Phishing  

Male  71 3714  
5231 Female  29 1517 

Vishing  Male  72 3766  
5231 Female  28 1465 

Pharming etc Male  67 3504  
5231 Female  33 1727 

Whalling Male  67 3504 5231 
Female  33 1727  

Smishing Male  82 4289 5231 
Female  18 942  

 
On the hypothesis: we used an awareness factor to 
ascertain if students are more aware of phishing than any 
other technique. Our result notes that respondents 
(undergraduate students) are more familiar with phishing 
than any other social engineering attack. From our 
finding, it can be concluded that undergraduate students 
are more vulnerable to phishing than vishing. Thus, we 
note that success rate of phishing is higher than vishing, 
pharming and whaling. We obtained students’ first-name, 
last name, and some other details, to count as success; 
While, for vishing and others, the needed info is name, 
last name, and student ID. The study unveils that 
undergraduate students are more vulnerable to phishing 
technique than any other technique and thus, it agrees 
with the works in [40-43]. 

Table 2. Comparison on Effectiveness of Attacks 
No Hypothesis F-critical F-Statistics Significance  

 
H03 

Home 1.732 1.360 0.688 
Private  1.437 1.360 0.647 
Mobile 2.716 1.360 0.070 

p < 0.05 
 
 
5. CONCLUSION 

Some recommendations and actionable suggestions to 
mitigate risks of deception and fraud losses [10, 44-47]: 
1. Training: (a) keep employees informed on type of scams 

being perpetrated, (b) provide anti-fraud training on how 
to recognize attacks and report suspicious activities that 
violate coy policies and procedures, (c) train employees 
on what information is confidential and what should 
never be released unless approved by management, (d) 
train employees to slow down if the message conveys a 
sense of urgency, intimidation, or high pressure sales 
tactics, (e) train employees not to forward, respond to, or 
access attachments or links within unsolicited emails, (f) 
hold employees accountable but also create a culture 
where they are rewarded for verifying suspicious activity. 

2. Provide Internal Controls by: (a) authenticating changes to 
users’ contact and internal bank data, (b) require 
supervisor sign-off on any changes to vendor and client 
information, (c) validate requests from users, (d) validate 
all internal requests to transfer data, (e) limit transfer 
permissions to specific employees, (f) guard against 
unauthorized physical access (theft of keys, access cards, 
ID badges etc.), (g) keep physical documents locked and 
secured and shred documents not in use, (h) monitor the 
use of social media, (i) develop reporting and tracking 
programs that document incidences of deception fraud or 
attempts of deception fraud, (j) keep cyber security 
software up to date, (k) implement mobile device security 
procedures, (l) use 2-factor authentications on your 
organizations computer platform(s). 

3. Organizations should continually monitor effectiveness of 
their education, training, and internal controls by 
conducting third party penetration testing. These fake 
hacks provide valuable information on how to focus 
training and educational efforts. 

4. The client-trusted security model for smartphones in 
mobile banking [23] yields a dependable framework to 
help with transaction authenticity and message 
authorization. Result of study shows framework is 
capable of increasing client’s trust level in relation to 
social engineering attacks with 72% as implemented over 
their firewall by the banks (ported on a 
community-cloud) for user access. 

5. Exchange of fraud detection data is a prerequisite for 
curbing the menace and though, these data if often 
limited and sometimes, experts deem it unwise to 
describe as well as share such data over public domain 
(since an extensive knowledge of fraud detection 
techniques in great detail) will consequently arm 
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intruders on evasive techniques to curb detection. Thus, 
as a dual effect, it will further equip users and hackers 
with adequate data required to combat as well as evade 
significant detection (for hackers).   

 
The increasing and evolved sophistication in the methods 

that phishers use to attack clients and evade detection is quite 
alarming. As phishers continues to develop new means to 
execute their attacks, research must stay ahead of scammers 
in terms of the phishing strategies implemented for detection 
– to proffer up-to-date knowledge defense against these 
attacks; And in turn, protect both users and their data [1, 23, 
33-38].  

The study examines the differences on phishing 
technique from spoofing website, vishing and other social 
engineering attacks. Result reveals that no matter the method 
employed, both techniques notes that the targets always loses 
sensitivity data amongst other properties. Thus, user 
awareness is a safe haven to combat against phishing. Also, 
phishing is more effective than any other technique as it 
yields a higher response and success rate. Women are easier 
to get phished more than men. Also, an academic major is not 
a factor affecting the effectiveness of phishing technique. We 
also found that the type of incoming phone call seems to have 
an impact on phishing’s success rate. Our finding agrees with 
[24] that women are phished easier than men, but disagree 
with [39-42] that gender does not have any effect on phishing. 
Finally, our findings also agree with the study by [21] that 
academic majors do not have any effect on phishing at all. 
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