
Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2090

ABSTRACT
The future is always been shaped and refocused via Sci-Tech.
Info and communication technology – has continued to shape
today’s society as an inevitable driving force because we are
now heavily dependent on digitally transmitted and processed
data. This, is consequent upon the fact that individuals and
organizations are seeking improve means to process data
more effectively and efficiently. We thus, propose hybrid
Genetic Algorithm trained Modular Neural Network to detect
network anomaly cum malicious packets. GA was used due to
its flexibility cum elitist mode. MNN is used as a learning
paradigm for modular learning components. Model
validation return a confusion matrix with these values: TP =
50, TN = 2, FN = 5, FP = 3. These values were subsequently
applied to obtain sensitivity, specificity and accuracy of
model. Model portrays a sensitivity value of 93%, specificity
value of 25% and an accuracy value of 89%.

Key words: deep learning, anomaly-based networks, IDS,
intelligent systems, genetic algorithm, memetic, hybrid

1. INTRODUCTION

Overtime, information has become a crucial element that
aids many organizations and businesses for effective decision
making. Thus, it determines their survival, navigational skills
on the frontiers of service delivery, production efficiency, and
effectiveness all-round in other respects. Information has
thus, today become the bedrock of our society, as enhanced
through the rich faculties and plethora of info and
communication tech (ICT) supported-devices [1-2].

Information advanced as knowledge – has continued to
foster resources development, growth and productivity [3-4] –
and overtime, its availability has been eased with a plethora of
ICT devices that allow for an efficient/effective dissemination
over network medium. These medium has also from
inception being besieged by threats and attacks of varying
magnitude and veracity as promulgated by daredevil
unauthorized users often referred to as adversaries cum
attackers [5-8]. They often employ penetrative means to

compromise a user’s system, which in turn leads to
compromised data integrity, availability, and confidentiality
[9-12]. Cyber-attacks have indeed become the largest threat to
global resources such as proprietary data, organization
networks, and intellectual properties [13] and the extension
cum expansion of ICT and technology in general has
continued to heighten the fastidious intent of these
adversaries as they seek to exploit user resources and data for
personal and financial gains [14].

For many reasons, businesses now employ forensic systems
to dissuade adversaries from unauthorized access to their data
[15]. Although, these schemes had been successful earlier, the
brazing efforts to reinvent the wheel has continued to further
equip them with the means to evade detection [16-17]. This
can simply be a function of the fact that most systems
designed to keep such adversaries out are rippled with flaws
that these adversaries also seek to exploit [18]. The
fundamental issue thus, becomes that of accurate detection
and prompt response cum measures designed as outcome in
the event the system of detection of an adversary. These
challenges and inherent dilemmas have thus, encouraged the
adoption of software solutions for predicting network
anomalies [19-20]. In recent times, the adoption and usage of
software implementation has improved in its monitor
capabilities [21-23].

Intrusion are action(s) of an unauthorized users who seeks
to gain access to a network so as to compromise integrity,
confidentiality, and availability of network resources. An
intruder (or adversary) is any user(s) who initiates an
intrusive action [2] on a network system to exploit its
resources. Thus, an Intrusion Detection System (IDS) is
modeled to generate an alert as it observes potentially
malicious and abusive traffic. It monitors network
connections and determines an intrusive activity. If an
intrusive action is detected, the IDS performs one of these: (a)
logs an audit data that is later analyzed, (b) alerts
administrator, and (c) ends the connection (as measures for
the IDS, amongst other functions [11, 12]. Many dataset have
successfully classified connection observations into normal
and intrusive connections. Intrusive connections are
classified into various attack types: (a) denial of service
(DoS), (b) user to root (U2R), (c) probe, (d) root to local (R2L)
[1, 9].

Deep Learning Network Anomaly-Based Intrusion Detection

Ensemble For Predictive Intelligence To Curb Malicious
Connections: An Empirical Evidence

Arnold Adimabua Ojugo1, Elohor Ekurume2
1Department of Computer Science, Federal University of Petroleum Resources Effurun, Delta State, Nigeria

ojugo.arnold@fupre.edu.ng, arnoldojugo@gmail.com, maryarnoldojugo@gmail.com
2Department of Computer Science, Delta State University Abraka, Delta State, Nigeria. elohorogaga@gmail.com

ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse841032021.pdf

https://doi.org/10.30534/ijatcse/2021/851032021

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2091

An Intrusion Detection System (i.e. from a software view)
is a component that track system anomalies and reports
feedback via an audit trail with measures aimed at stopping
the attack [24] so that such anomalies can be further
investigated. The IDS monitors and report attacks based on
predefined policies and procedures stipulated by the system.
The categorization of IDS cut across environmental issues,
usage and application, making its implementation cutting
across a large range of networked systems [19].

2. LITERATURE REVIEW

Very often, intrusion are large-scale, coordinated attack on
provisioned services to network resource(s) or victim system,
launched indirectly via a number of compromised computers
[25]. Prior an attack, an adversary holds up the resource of a
large number of vulnerable machines under his control. He
then exploits their weaknesses by inserting malicious code(s)
using technique such as HTTP, SYN and UDP flooding – so
that a server is overwhelmed by their service requests [2]. The
magnitude of an attack depends on size of the botnet – so that
the larger the botnet, the more severe and disastrous such
attack [21]. Intrusion attacks seek to exhaust target resources
and denying services to legitimate users. When detected, the
problem is fixed by manually disconnecting the affected
system from the network. DDoS attacks denies users access to
network resources such as CPU power, bandwidth, memory,
processing time. The goal of any intrusion detection scheme is
to detect the attack as soon as possible and stop them as near
as possible to their sources [2-8].

2.1. Intrusion and Intrusive Activities

IDS has 3-main parts namely: (a) sensors/network probes
which tracks data traffic, system behaviour and log files by
translating data into events usable as the IDS monitors and
taps in to access all network connections, (b) analysis console
which takes sensor output as input connections, analyses it for
intrusive acts (as critical component to decide whether or not,
a connection is intrusive), and (c) policy control generates
measures based on outcome of an analysis. If analysis console
flags a connection as intrusion, control met out actions based
on policies, set by the network administrator [26-27]. Such
actions include logout of a particular connection, alerting the
administrator via e-mail etc. It also handles action(s) to be
taken when an intrusion is detected [1, 26] as in Figure 1.

Figure 1. Generalized Framework of the IDS

Intrusion (activities) is either initiated externally or internally
[1-2] resulting in two (2) types of adversaries: (a) external
adversaries that have unauthorized (or no) access to resources
– but, attacks a network via means of penetration. They
usually employ the use of malware; and (b) internal
adversaries that resides on the said network and thus, have
authorized network access to resources [8]. The
implementation of security tools have their various demerits
and bottlenecks – some of which hampers network
performance and in some cases, compromise the network
security also [9].

2.2. Related Literature

Resources are often regarded as a stream of hardware,
software and other events that can be checked on the backdrop
of predefined attack rules. With socially-engineered threats
and attacks, businesses, individuals and organizations now
can formulate policies that can effectively and efficiently
detect known attacks occurrences using either of the signature
and/or anomaly evaluation schemes, self-organizing maps,
and state transition analysis etc.

Thomas et al [28] used a NetBouncer to distinguish
between uncompromised and compromised clients via its
maintenance of a regularly updated client list that grants the
requisite access to network resources. New clients are verified
for legitimacy via their requests and data packets. Where a
client passes the test, he is added to the legitimacy list and
thus, granted access to resources until the window for
legitimacy expires. With the list’s expiration, clients are
revalidated.

Conversely, Gil and Poletto [29] used a Multi-Level Tree to
monitor traffic feats. To detect attacks, the system aggregates
packet statistics at various levels to successfully detect attacks
via a disproportional difference between data rates in/out of a
network. Ring et al. [30] Attackers can evade such detection
mode by randomizing the source address IP for such
malicious data. They presented a Host-Based IDS using a
Blue-Box. The system specifies a set of rules (polices) to
regulate resources access via an intuitive language to define
security boundaries. The system was designed to minimize
kernel changes and performance impact.

Akella et al. [31] used as Adaptive Neuro-Fuzzy Inference
System (ANFIS) network-based IDS that sought to address
the failure of data uncertainty, vagueness and imprecision in
most predictive models. Their study was born-out of
adaptation of model tools, target output, solution lacking
fuzziness and also the nature of training. With ANFIS, their
overall result was improved in detecting attacks. Munivara et
al. [32] presented a novel anomaly-IDS via a hybrid
behavioral model, Bayes net, recursive log-likelihood and
entropy gain with unsupervised learning between current and
reference behavior. Entropy and log-likelihood measures
performance degradation. The model had improved
classification of packets.

Santos et al. [28] sought detection and prevention with a
rule-based network anomaly and state-wise protocol IDS. The
system eliminated false and positive errors – creating rules

 IDS
SENSOR

ANALYSIS
CONSOLE

POLICY
CONTROL

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2092

and alert logs if a rule is violated. Chia-Mei et al. [3] employ
the Hidden Markov Model to detect network anomaly
emanating from detection errors and sensor input diversity.
The study yields a sequence of attack corresponding to states
attacks with potential to identify attacks efficiently. Nguyen
[33] surveyed intrusion methods, attacks types, varied tools.
His result was IDS with sensor (for packet and anomaly
signature), backend (to record database), and frontend (for
user interface, control and commands). The system addressed
denial of services and synchronization.

Ojugo and Yoro [1] presented a deep learning approach to
distinguish between benign exchange of data and malicious
attacks from data traffic using anomaly-based IDS dataset.
Result shows consequent success that effectively
differentiates between genuine and malicious packets as well
as detection of the Denial of service attacks.

2.3. Study Motivation

Study is motivated by the following reasons [1-2, 7, 34-36]:
1. The inherent gains has continued to ensure such studies are

inevitable. These attacks will continue to rise at alarming
rate with malicious activities guised to exploit users –
causing great financial loss. To efficiently tackle
malicious packets, most of such studies are often
‘inconclusive’ task being hampered in performance both
by the technique used by adversaries, feature selection and
adopted model – all of which, can result in model
overfitting, over-training and over-parameterization.

2. We seek to validate Ojugo and Eboka [2] and Ojugo and
Yoro [1] that posits feat selection, their adoption of deep
neural network amongst others, as being a focal
component in the success of a good fitness function as well
as good classification by the model adopted.

3. Even with great results consistently reported irrespective of
the heuristic method adopted, many such frameworks also
yields a corresponding acceptable rate of false-positive
and true-negative results in detecting malicious packets.

4. Careful diagnosis of network is often time-wasting. It also
often yields inconclusive results for evolving signature
strings, all of which will amount to increased
false-positive and true-negative results.

5. Design of effective detection scheme has continued to
suffer setback(s) due to the fact that malicious packets by
design, are poised to evade detection. Its character size
and limited available dataset continues to cripple its
detection. Thus, we use feat selection in training to resolve
impediment in size of parameters to be trained (though
this, also can lead to poor learning of feature and in turn,
poor classification).

To overcome shortfalls in the adoption of machine

learning schemes to handle malicious traffics, we compare
various machine learning techniques to reduce on traffic
packets and enhance adequate classification.

3. METHODOLOGY
We adopt a methodology that first seeks a proposed system

broken-down into 2-phases: (a) training, and (b) testing as in
figure 2. For our proposed system (see figure 3) as detailed
workings of the proposed system in view of figure 2. We thus
adopt the methodology as below [37-40]:

3.1. Proposed Experimental Hybrid Framework

For the study, our hybrid framework is divided into three (3)
components: (a) a supervised Cultural Genetic Algorithm, (b)
an unsupervised modular neural network, and (c) decision
support system, and (d) a knowledge-base.
 Supervised Genetic Algorithm (GA): GA model is inspired

by Darwinian evolution of survival of fittest, it consists of
a chosen population with potential solutions to specific
task. Each potential optimal solution is found via four
operators and individuals with genes close to its optimal,
are said to be fit. Fitness function determines how close an
individual is to optimal solution. The basic operators of
GA includes initialize, fitness function and select,
crossover and mutation [37]. Our GA is a variant, which
has some belief spaces defined thus: (a) normative belief
(has specific value ranges to which an individual is
bound), (b) domain belief (has data about task domain),
(c) temporal belief (has data about events’ space is
available), and (d) spatial belief (has topographical data).
In addition, an influence function mediates between belief
space and the pool – to ensure and alter individuals in the
pool to conform to belief space. CGA is chosen to yield a
pool that does not violate its belief space and helps reduce
number of possible individuals GA generates till an
optimum is found [42-43].

 Unsupervised Modular Neural Network (MNN) in [44] is

an improved deep learning net with modular learning of
feats of independent series and intermediary components
functioning under a particular architecture. It advances a
model that receive a module’s output as input, to compute
final output via tangent activation function. The MNN is
divided into potentially, smaller and more manageable
network [37] with enhanced efficiency via connected units
that exponentially increase, as independent networks are
added. This complicates the network structure; But, also
improves computational efficiency, reduces convergence
time on individual task assigned to segmented modules,
and allows tasks to be executed in parallel with module
that are re-organized to improve flexibility and
adaptability [45]. The network enhances intelligence and
increases time efficiency by reducing network’s learning
time – achieved via an independent training algorithms
applied at each module with training dataset implemented
independently and more quickly. This makes the model
more flexible, adaptable and robust as rules can be re-used
independently at various networks. Re-usability of rules is
quite a tedious experienced with such large and complex
networks. But, with appropriate data encoding and
carefully selected feats – network experiences improved

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2093

performance, improves flexibility via compartmentalizing
and removes partitions of interfaces to eliminate
redundancy [46]. The MNN is a large network of
modularized networks that allows for easy learning and
understandability of feats of interest. It grants a model
greater flexibility via task execution parallelism via
compartmentalization, is flexible, eases code reuse and
adaptability [47]. Data is passed via task decomposition
and training modules that support effective classification.
MNN can be easily implemented using the multilayered
perceptron, adaptive resonance theory and self-organizing
maps. The network is trained either through the
supervised, unsupervised and/or reinforcement learning
approach [29].

 Knowledgebase – as in figure 1, as explained in the section

below for the supervised genetic algorithm and the
Kohonen self-organizing map neural network.

3.2. Data Sample / Feature Selection
For the study, we use Australian Defense Force Academy

(ADFA 2014) dataset available and retrieved [online] from:
http://cloudstor.aarnet.edu.au/plus/index.php/s/f2fgM0lG1A
MBKpu. We split into: training (70%) and testing (30%) and
use 7-parameters to adjust weights in table 1.

3.3. Training Phase

With feats selected as in table 1 – they are sent to GA-unit
as input to perform: Encoder, Assigner, Selector, and
Operators (Swapper and Changer).

3.3.1. Encoder

Unformatted data are often rippled with noise, ambiguous
and partial truth. Encoding seeks to filter the dataset,
mapping unto the required format a model easily understand.
To encode the selected feats, we transform our dataset using
selected feats as in table 1. We employ data type in Pandas
Library displayed by listing 1 algorithm [29, 48-53].
Input: Selected Feature: Output: Converted Feature Data type
1. Select Feature
2. For each Selected Feature
3. If Selected Feature is Non-Numerical then
4. Generate Category Data type
5. End if: End For each

Listing 1: Algorithm to Convert Data type to Category

Like Ojugo et al. [26] Each chromosome becomes a rule used
for training. Within each individual are seven connection
feats and an attack-type encoded. We encode using the direct
value. Each rule (If-Then) clause has a “condition” and
“outcome”. A rule has 7-feats as in Table 1, connected with
logical AND. The feat “Attack name” is for classification (at
training); And, for connection (during test) if the “condition”
part is matched.

Table 1. Selected Features and Representation
Features Format Data Types Number of Genes
Source IP a.b.c.d Object 4

Source Port Numeric Integer 1
Destination IP a.b.c.d Object 4

Destination Port Numeric Float 1
Protocol String Object 1
Duration H:M:S Float 3

Attack Name / Type String Object 1

3.3.2. Assigner / Fitness Function

Model measures each rule’s “goodness” as to how many
attacks it can detect. A rule is good if it can correctly classify
attacks in the training data; Else, it is bad and is not selected
for processing. The more attacks a rule detects, the higher its
fitness value assigned. We adopt support-confidence mode as
in Eq. (1-3) [26]:
support = |A and B| / N (1)
confidence = |A and B| / |A| (2)
fitness = w1 * support + w2 * confidence (3)

N = Total number of network connection, |A| = Number of net
connections matching the condition A, |A and B| = Number of
network connections that matches the rule if A then B; and
w1, w2 = weights balance between the two terms. A critical
merit here is that changing the weights w1/w2, can be used to
either identify intrusions with w1 = 1 and w2 = 0; Or, to
classify the types of intrusions with w1 = 0 and w2 = 1 for the
latter case.

3.3.3. Selector

Accepts input from assigner and apply tournament
selection to distinctly separate high-from-low optimal ruleset
feats. We compute probability to determine the chance of
selecting a rule from the pool; We compute the cumulative
probability that yields the probability of accuracy on the pool
range to ensure that all values assigned are accurate; And
thus, we perform the tourney selection to obtain optimal feats.
We used tournament method for its flexibility to deal with
premature convergence. The tournament algorithm is given
as in listing 2.
Input: Population of chromosome
Output: Selected Chromosome to carry out crossover
1. Randomly select 3 chromosomes from given population
2. Pick out top 2-chromosomes based on their fitness value
3. Return the selected two chromosome
Listing 2. Tournament Selection Algorithm

3.3.4. Operator (Swapper / Changer)

The operator routine consist of swapper and changer. With
the tourney selection, it chooses 3 or more rules from current
pool cum generation; And, afterwards – selects the best
2-rules from the selected three (3) as parents to create new
offspring. This scheme was specifically selected based on its
reputation of maintaining population diversity. The goal here
is to create elitists rules and not just one best rule (global
optimum); But, to create a set of rules that are good enough to
detect intrusion (local optimums). Thus, to maintain pool
diversity – we used the tournament selection. This in

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2094

furtherance will also grant us greater flexibility to adopt cum
adapt the two (2) swapper (or crossover).

3.3.5. Modular Neural Network

Our MNN is constructed from the feedforward multi-layer
perceptron network Ghale [44]. It receives optimized rule(s)
as in Figure 2 [1-2] and propagates the If-Then (selected)
rules into the varying classes for detection. Rules are modeled
as a production system of 4-components: (i) rule-set pattern of
how rule(s) and operation(s) are applied, (b) databank of
(If-Then) rules as selected data feats, (c) control strategy to
specify how the rules are compared to those in the
knowledgebase to find a match and ways to resolve conflicts if
several rules match at the same time, and (d) rule applier.
MNN yields self-learning ability and acts as the principal
component analyzer with rules optimized by GA’s swapper
and changer (mutation) so that the trained model can
effectively, autonomously classify dataset into either the
normal or attack classes [54-55].

3.3.6. Training Result

Table 2 shows the top 22-rules generated at training phase
having almost same fitness value of between 0.80-to-0.8065.
Thus, top rules are above 80% good enough to be used for
intrusion detection in testing phase. Results shows we have a
set of good rules. For example, rule 14 (bold and italics) states
that any connection with any number of hours, 0 minutes, any
number of seconds, any protocol, with source port of 1023,
with any destination port, a source IP address of
192.168.1.30, and destination IP address of 192.168.0.-1 (i.e.
which means the last octet of this address could be anything
from 0 to 255) is regarded as an intrusion. We can interpret
other rules used thus. Also, we note that 10-of-the-22 rules
have destination port as -1. This infers that most of the rules
looks out for network connection from any destination port
(i.e. -1). Thus, increasing the chances of detecting intrusion
on any port in the network as well as improves generality of
rules [56-58].

Table 2. Top 22-Generated Rules with Fitness Function Value

Time Prot Source
Port

Dest
Port

Source IP Dest. IP Attack FF

-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 PG 0.8063

-1,0,23 -1 -1 -1 192.168.1.30 192.-1.0.20 PC 0.8063

0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 PS 0.8063

0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 PS 0.8063

-1,0,23 telnet -1 23 192.-1.1.30 192.168.0.20 PC 0.8063

0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 ARS 0.8063

-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 ICMP 0.8063

0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 NP 0.8063

0,0,23 telnet -1 -1 192.168.1.30 192.168.0.20 PA 0.8063

-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 FA 0.8063

0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 FA 0.8063

-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 ARS 0.8063

0,0,-1 -1 1023 1021 192.-1.1.30 -1.168.0.20 PODA 0.8031

-1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 PODA 0.8031

0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 PA 0.8031

0,0,14 -1 -1 513 192.168.1.30 192.168.0.20 SR 0.8031

0,0,14 -1 -1 513 -1.168.1.30 192.168.0.20 SH 0.8031

0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 RA 0.8031

-1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 DN 0.8031

0,0,5 -1 -1 23 192.168.1.30 192.168.0.20 IPS 0.8031

-1,0,-1 -1 1023 -1 192.168.1.30 192.168.-1.20 PODA 0.8031

0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 ICMP 0.8031

The rule generator used a population size of 400, and went
through 5000 evolutions, with 0.05 probability of a gene to be
mutated. The weight parameters (i.e. w1 and w2) used for this
run was 0.2 and 0.8 respectively. Taking the first rule from
table 2 as a case study, we have that:

If(duration=“-1:0:23” and protocol=“telnet” and
sourceport=-1 and destinationport=23 and source
IP=“192.168.1.30” and destination IP =“192.168.0.20)
then {log network connection as an Intrusion}

Furthermore, figure 4 shows the training phase scatter-graph
in support of the Table 3 below – which shows the training
result for the hybrid Genetic Algorithm trained Modular
Neural Network framework. The key for the table 3 includes:
ICMP – Internet Control Protocol Packet Internet Groper
(ICMP PING), NP – Network Ping, PS – Port Scanning
Utility, PAS – Packet Sniffer, PA – Protocol Analyser, PG –
Password Guessing Attack, PC – Password Cracking
Program, SH – Session Hijack, SR – Session Replay, IPS – IP
Spoofing, DN – Domain Name Attack, RA – Rerouting
Attack, FA – Flood Attack, ARS – Address Resolution
Spoofing, and PODA – Ping of Death respectively.

Figure 4. Training Phase Result

4. FINDINGS / DISCUSSION

4.1. Model Performance

We use misclassification rate and improvement
percentages for the adopted model(s) in comparison in both

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2095

training and test data given by Eq. 1 and 2 respectively;
While, tables 2 and 3 yields summary of obtained values.

Table 3. Misclassification Rate of Each model

Model

Classification Errors
Training

Data
Testing Data

PHMM 13.7% 10.2%
GANN 21.3% 19.7%
Hybrid Genetic Algorithm
Modular Neural Network

1.29% 1.09%

Table 4. Improvement Percentage

Model

Improvement %
Training

Data
Testing
Data

PHMM 56.03% 64.16%
GANN 42.79% 34.09%
Hybrid Genetic Algorithm
Modular Neural Network

75.89% 92.01%

Tables 3 and 4 indicates that PHMM outperforms GANN –
with a misclassification rate of 13.7% (false-positives and
true-negatives). It also has a classification accuracy of 87.3%;
While, promising an improvement of about 56%. In contrast,
GANN has a misclassification rate of 21.3% (false-positives
and true-negatives error rate) and promises an improvement
of 42.79%. Both PHMM and GANN underperformed against
the proposed hybrid Genetic algorithm trained Modular
neural network as seen in tables 3 and 4 respectively.

4.2. Findings and Discussion

Model distinctively predicted the various attacks namely:
RA – Reconnaissance Attack, EA – Eavesdropping Attacks,
AA – Access Attacks, DAM – Data Manipulation Attack, SA
– Session Attack, and DOSA – Denial of Service Attack. Our
test dataset consists of 60 samples to determine the veracity in
predicting the attacks. The confusion matrix (TP, TN, FP and
FN) was computed in that of-the-60-cases, model accurately
predicted Fifty-Two (52) cases (TP = 50, TN = 2); While,
eight (8) cases of (FN = 5, FP = 3) were inaccurately
predicted.

Figure 5 shows model sensitivity, specificity and accuracy.
Sensitivity (93%) shows the capability of HGAMNN to detect
occurrence of all attacks when exhibited. Also, Specificity
(25%) shows the capability of HGAMNN to detect occurrence
of all attacks when not exhibited or present sample case;
While, Accuracy (71%) yields the degree of truth for which
the model HGAMNN detects the presence and absence of any
and all attacks.

Figure 5. Categories of Prediction

4.3. Result Trade-offs
Several trade-off were noticed during result compilation and
they fall under these [46-51]:
a. Result Presentation – researchers often display flawed

results, modify and/or build new models rather than
re-test limitations, biasness and inabilities of existing
ones. Also, some researchers fail to report negative
results thinking they are less valuable. We employ such
data driven model to curb the non-linearity and
dynamism in observed datasets used to train and test
model, unlike knowledge models.

b. Efficiency – modelers use figure to show how good and
well their simulations are, in agreement with observed
data (even with their limited and squeezed data) with
graphs that are often not easily distinguishable. Some
researchers do not even provide the dataset used. Yet,
their model is in ‘agreement’. Some measure of goodness
does not provide the relevant knowledge for the task at
hand.

c. Insufficient Test – Validation compares simulated versus
observed values, and many studies suffer from
inadequate data. If a model seeks to simulate results, such
capability cannot be demonstrated with
unfounded/misleading result from limited data and
misleading conclusions.

d. Model validation is a scientific dialogue – impeded by
improper applications and ambiguous results.

Figure 6. Test Phase Scatter-Graph

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2096

5. CONCLUSION
The unpredictability of attack patterns and the noisy nature

of its many features, will continue to thrust researchers into
the adoption of deep learning models to address cyber-attacks.
The variance associated with machine learning dataset has
also made the possibility of optimization of training sample a
must if heighten predictability is to be achieved. We propose
hybrid Genetic Algorithm trained Modular Neural Network
to detect network anomaly cum malicious packets. The use of
GA was due to its flexibility cum elitist mode; While, MNN is
used as a learning paradigm for modular learning
components. Model validation return a confusion matrix with
these values: TP = 50, TN = 2, FN = 5, FP = 3. These values
were subsequently applied to obtain sensitivity, specificity
and accuracy of the model. HGAMNN shows sensitivity value
of 93%, specificity value of 25% and an accuracy value of
89%.

REFERENCES
1. A.A. Ojugo., R.E. Yoro., Forging a deep learning neural

network intrusion detection framework to curb distributed
denial of service attack, Int. J. Elect. Computer Engr., Vol. 11,
No. 2, pp 128-138, 2021

2. A.A. Ojugo., A.O. Eboka., Empirical evaluation on
comparative study of machine learning techniques in
detection of DDoS, J. Applied Sci. Eng. Tech. & Edu., Vol. 2,
No. 1, pp18–27, 2020, doi: 10.35877/454RI.asci2192

3. C. Chia-Mei., G. Dah-Jyh., H. Yu-Zhi., O. Ya-Hui., Anomaly
Network Intrusion Detection Using Hidden Markov Model,
Int. J. Innovative Computing, Info. and Control International,
Vol. 12, No. 2, pp.569-580

4. I.P. Okobah., A.A. Ojugo., Evolutionary memetic models for
malware intrusion detection: a comparative quest for
computational solution and convergence, IJCAOnline Int. J.
Comp. Application. Vol.179, No. 39. pp34–43, 2018

5. A.A. Ojugo., A.O., Eboka., E.O. Okonta., R.E. Yoro., F.O.
Aghware., Genetic algorithm rule-based intrusion detection
system, J. of Emerging Trends in Computing Information
System, Vol. 3, No. 8, pp.1182-1194, 2012

6. P.J. Criscuolo., Distributed Denial of Service, Tribe Flood
Network, Stacheldraht CIAC-2319. Department of Energy
Computer Incident Advisory Capability (CIAC), 2010

7. H. Monowar., H. Bhuyan, H. Kashyap, D. K. Bhattacharyya., J.
K. Kalita., Detecting Distributed Denial of Service Attacks:
Methods, Tools and Future Directions, The Computer
Journal, pp. 3-19, 2012

8. A.A. Ojugo., A.O. Eboka., Signature-based malware
detection using approximate Boyer Moore string matching
algorithm, Int. J. of Math. Sciences & Computing, 3(5):
pp49-62, doi: 10.5815/ijmsc.2019.03.05, 2019

9. M. Dadkhah, T. Sutikno., Phishing or hijacking? Forgers
hijacked DU journal by copying content of another
authenticate journal. Indonesian J. of Elect. Engr., & Info.,
Vol. 3, No. 3. Pp. 119-120, 2015

10. A.A. Ojugo., E. Ben-Iwhiwhu, O.D. Kekeje., M. Yerokun., I.
Iyawah., Malware propagation on time varying networks:
comparative study, Int. J. Modern Edu. Comp. Sci., Vol. 6,
No. 8, pp. 25-33, doi: 10.5815/ijmecs.2014.08.04, 2014

11. V. Paxson., An Analysis of Using Reflectors for Distributed
Denial-of-Service Attacks. Vol. 31, No. 3, pp. 38-47, 2001.

12. A.A. Ojugo, A.O. Eboka., Memetic algorithm for short
messaging service spam filter text normalization and
semantic approach, Int. J. of Info. & Comm. Tech., Vol. 9, No.
1, pp. 13 – 27, doi: 10.11591/ijict.v9i1.pp9-18, 2020

13. E. Ahmed., A. Clark, G. Mohay, A novel sliding window
based change detection algorithm for asymmetric traffic,
IEEE Computer Society. 2010, Washington, DC, USA.

14. A.A. Ojugo, A.O. Eboka., Comparative evaluation for high
intelligent performance adaptive model for spam phishing
detection, Digital Tech., Vol. 3, No.1: pp. 9-15, doi:
10.1269/dt-3-1-1, 2018

15. K.K. Vasan., B. Surendiran., Dimensionality reduction using
principal component analysis for network intrusion
detection. Perspectives in Science, Vol. 8, pp. 510-512, 2016

16. P.R. Mirkovic., A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms, Vol. 34, No. 2, pp. 39-53, 2004

17. S. Tobiyama, Y. Yamaguchi., et al., Malware detection with
deep neural network using process behaviour, IEEE 40th
Annual Computer Software and Applications Conf., Vol. 2, pp.
577-582, 2016

18. M. Rhode., P. Burnap., K. Jones., Early-stage malware
prediction using recurrent neural networks, Computers &
Security, Vol. 77: 578-594, 2018

19. G. Loukas., T. Vuong et al, Cloud-based cyber-physical
intrusion detection for vehicles using deep learning. IEEE
Access, Vol. 6: 3491-3508, 2018

20. M. Al-Qatf., Y. Lasheng et al, Deep learning approach
combining sparse auto-encoder with SVM for network
intrusion detection. IEEE Access, Vol. 6: 52843-52856, 2018

21. Y. Zhang., P. Li., X. Wang., Intrusion detection for IoT
based on improved genetic algorithm and deep belief
network. IEEE Access, 7: 31711-31722, 2019

22. A.A. Ojugo, D.O. Otakore., Improved early detection of
gestational diabetes via intelligent classification models: a
case of Niger Delta, J. of Computer Sci. & Application, Vol. 6,
No. 2, pp. 82-90, doi: 10.12691/jcsa-6-2-5, 2018

23. X.F. Wang, M.K. Reiter, Defending against denial of service
attacks with puzzle auctions, 2003 Symposium on Security
and Privacy, 2003, 78-92

24. T. Ma, F. Weng, J. Cheng, Y. Yu, X. Chen, A hybrid spectral
clustering and deep neural network ensemble algorithm
for intrusion detection in sensor networks, Sensors, 16:
1701, 2016, doi: 10.3390/s16101701

25. M.S. Mehdi, A.A. Zair, M.A. Bensebti, Bayesian Networks in
Intrusion Detection Systems, Journal of Computer Science, 3
(5): Pp.259-265, 2007.

26. A.A. Ojugo., A.O. Eboka., E.O. Okonta., R.E. Yoro., F.O
Aghware., Genetic algorithm rule-based intrusion detection
system, Journal of Emerging Trends in Computer and
Information Systems, 3(8): pp1182-1194, 2012.

27. K.B. Santos S.P. Chandra, M. Ratnakar, B. Dawood, Sudhakar
N. Intrusion detection system: types and prevention,
International Journal of Computer Science and Information
Technologies, Vol. 4 (1), Pp. 77 – 82, 2013

28. R. Thomas, R., Mark, B., Johnson, T., and Croall, J.
NetBouncer: Client-legitimacy-based high performance
DDoS filtering. Proc. of 3rd DARPA Information Survivability
Conf. and Exposition, pp. 111-113, Washington, DC, 2013

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2097

29. T. Gil, and M. Poletto, MULTOPS: a datastructure
structure for bandwidth attack detection. Proc. of 10th conf.
on USENIX Security Symposium. Vol. 10, pp. 13-17. Berkeley,
CA, USA. USENIX Association Berkeley, 2011

30. M. Ring, S. Wunderlich, Grudl D., Landes D., A. Hotho,
Flow-based benchmark data sets for intrusion detection.
Proceedings of the 16th European Conference on Cyber
Warfare and Security (ECCWS), to appear. ACPI, 2017

31. A. Akella, A., Bharambe, A., Reiter, M., S. Seshan, Detecting
DDoS attacks on ISP networks. Proceedings of the Workshop
on Management and Processing of Data Streams (pp. 1-2). San
Diego, CA: ACM, 2013

32. P.K. Munivara, M. Rama, R.A. Mohan., R.K. Venugopal, DoS
and DDoS Attacks: Defense, Detection and Traceback - A
Survey, Global J. of Computer Science and Technology: E
Network, Web & Security, 14 (7), 15-31, 2014

33. H. Nguyen, Proactive detection of DDoS attacks utilizing
k-NN classifier in Anti-DDoS framework. Int. J. of
Electrical, Computer, and Systems Engineering , 4, 247–252.
2010

34. A. Angel., S. Ramamoorthy, Intrusion Detection System by
Combining Fuzzy Logic with Genetic Algorithm, Global
Journal of Pure and Applied Mathematics (GJPAM), Volume
11, No. 1, pp105 – 110, 2015.

35. P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez and
E. Vazquez, Anomaly-based network intrusion detection:
Techniques, systems and challenges. Computers & Security ,
28, 18-28, 2012.

36. A.J. Deepa and D. Kavitha, A comprehensive Survey on
Approaches to Intrusion Detection System, Int. Conference
on modelling Optimization and Computing, Procedia
Engineering, 2012, 38, Pp. 2063 – 2069.

37. R.E. Yoro., A network intrusion detection system using
hybrid genetic algorithm trained fuzzy modular neural
network model, PhD Thesis to Department of Computer,
Babcock University, Ileshan-Remo, Ogun State, Nigeria, 2021.

38. R. Karimazad, A. Faraahi, An anomaly based method for
DDoS attacks detection using rbf neural networks. Proc. of
Int. Conference on Network and Electronics Engineering (pp.
44–48.). Singapore: IACSIT Press, 2012

39. R. Jalili, R., Imani-Mehr, F., Amini, M., Shahriari, Detection
of distributed denial of service attacks using statistical
pre-processor and unsupervised networks. Proc of Conf.
Info. Security Practice (pp. 192–203). Singapore, 2015

40. Z. Chen, A. Delis, An inline detection and prevention
framework for distributed denial of service attack. The
Computer Journal , 50, 7–40, 2017

41. A.A. Ojugo., O.D. Otakore., Forging an optimized Bayesian
network model with selected parameter for detection of
Coronavirus in Delta State of Nigeria, J. App. Sci. Eng. Tech.
Edu., 3(1): pp37–45, doi: 10.35877/454RI.asci2163, 2021

42. A.A. Ojugo, A.O. Eboka, Signature-based malware
detection using approximate Boyer Moore string matching
algorithm, Int. J. of Mathematical Sciences and Computing,
3(5): pp49-62, doi: 10.5815/ijmsc.2019.03.05, 2019

43. A.A. Ojugo., D.O. Otakore., Intelligent cluster connectionist
recommender system using implicit graph friendship
algorithm for social networks, Int. J. Artificial Intelligence,
9(3): pp497~506, doi: 10.11591/ijai.v9.i3.pp497~506, 2020.

44. B. Ghazale, Reasoning Using Modular Neural Network –
An innovative solution to address question answering AI

tasks, 2020. Available [online] and retrieved from
https://towardsdatascience.com/reasoning-using-modular-neur
al-networks-f003cb6109a2?gi=7dbcd12eb7c, July 18, 2020

45. M.S. Gayathri Shivaraj, Using Hidden Markov Model to
detect rogue access points. 3:394–407 . (S. C. Networks, Ed.)
Nashville, Tennessee State University, U.S.A. 2010

46. Y.C. Wu, H.R. Tseng, W. Yang, R.H. Jan, DDoS detection
and traceback with decision tree and grey relational
analysis. International Journal of Ad Hoc and Ubiquitous
Computing , 7, 121-136, 2011

47. K. Lee, J. Kim, K.H. Kwon, Y. Han, S. Kim, DDoS attack
detection method using cluster analysis. Expert Systems with
Applications , 34, 1659–1665, 2011

48. K. Hwang, P. Dave, S. Tanachaiwiwat, NetShield: Protocol
anomaly detection with data-mining against DDoS attacks.
Proc of 6th Recent Advances in Intrusion Detection (pp. 8-10).
Pittsburgh, PA: Springer-verlag, 2003

49. S. Alexander, An anomaly intrusion detection system based
on intelligent user recognition. Ph.D Thesis, University of
Jyväskylä, Faculty of Information Technology, Finland. 2012.

50. E. Ahmed, A. Clark, G. Mohay, A novel sliding window based
change detection algorithm for asymmetric traffic. IEEE
Computer Society. Washington, DC, USA. 2010

51. A.A. Ojugo, A.O. Eboka, Memetic algorithm for short
messaging service spam filter text normalization and
semantic approach, Int. J. of Info. & Comm. Tech., 9(1): pp13
– 27, doi: 10.11591/ijict.v9i1.pp9-18, 2020

52. R. Bone, M. Crucianu, Multi-step-ahead Prediction with
Neural Networks. A review publication de l’equipe RFAI,
2016

53. A.A. Ojugo, E. Ben-Iwhiwhu, O. Kekeje., M. Yerokun., I.
Iyawah., Malware propagation on time varying networks:
comparative study, Int. J. Modern Edu. Comp. Sci., 6(8):
pp25-33, doi: 10.5815/ijmecs.2014.08.04, 2014

54. A.A. Ojugo, A.O. Eboka, Comparative evaluation for high
intelligent performance adaptive model for spam phishing
detection, Digital Technologies, Vol. 3, No. 1, pp. 9-15, doi:
10.1269/dt-3-1-1, 2018

55. K. Apoorv, How to deal with IP addresses in Machine
Learning algorithms. 2016, Retrieved October 6, 2018,
www.quora.com/how-can-IP-addresses-in-machine-learning-al
gorithms-in-traffic-analysis-and-anomaly-detection

56. W. Eddy, TCP SYN flooding Attacks and Common
Mitigations. 2017. Retrieved June 16, 2018, from [web]:
http://tools.ietf.org/html/rfc4987.

57. A.A. Ojugo., D.A. Oyemade., Boyer Moore string-match
framework for a hybrid short messaging service spam
filtering technique, International Journal Artificial
Intelligence, 10(3): pp1~8, doi: 10.11591/ijai.v10.i3.pp25,
2021

58. A.A. Ojugo., A.O. Eboka., Empirical Bayesian network to
improve service delivery and performance dependability
on a campus network, International Journal of Artificial
Intelligence, 10(3), pp31-43, 2021

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2098

Figure 2. Framework Diagram of Proposed System for the Hybrid Genetic Algorithm Trained Modular Neural Network

Figure 3. Schematics Diagram of Genetic Algorithm Trained Modular Neural Network

Table 4. Training Result of the HGAMNN with Attack Types Classified into Attack Groups
Attack RA EA AA SA DMA DOSA

SN ICMP NP PS PAS PA PG PC SH SR IPS DNS ARS RA FA PODA
1

1.8 2
1.
4 1.6 0.7 0.6

2.
1 2.4

0.
8 0.4 1 1.4 0.1 2.4 1.5

2
0.4 1

0.
4 2.9 2 1.8

1.
1 0.5

0.
4 0.9 2.7 0.1 1.6 1.7 1.4

3
2.8 2.8

0.
6 0.3 0.7 1.7

0.
1 1.2

0.
1 1.5 1 2.4 1.5 0.7 1.4

4
1.8 1.1

0.
5 1.1 0.1 2.5

0.
6 0.8 1 0.9 2.5 0 1.4 0.2 2.4

5
1.6 0.7

0.
6 0.4 1 0.8

1.
8 2.4

0.
8 0.4 1 1.4 0.1 2.4 1.6

6 1 0.2 1. 0.2 1.9 0 1. 0.2 0. 0.6 0.2 2 0.9 1.2 1.4

Input

Training
85%

Testing
15%

Historic
Dataset

Pre-processing with
Feat Selection

KnowledgeBase
(Optimized

Dataset)

GA-Block

Encoder

 Assigner

Selector

Operator

Swapper

Changer

Terminator

Modular Neural Net-Block

MLP/BPGD

Activation
Function

MLP/BPGD

MLP/BPGD

n

Output Decision Support
System

Stored
Result

Intrusive Connection

Testing Phase

Sensor
Inflow

Connection

Test
Dataset

Retrieve Optimized Rules
from stored Knowledgebase

Training Phase

Supply Audit Data Training
Dataset

HGAMNN
Generate Optimized

Rules
Knowledge-B

ase
Optimized

Rules

Analysis
Component

Decision Support System

Policy Control

Normal Connection

Let go

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2099

6 2 7
7

0.6 2.1
2.
9 1.2 2.1 2.8 1 2.2 2 2.9 2.9 2 2.3 0.4 2.2

8
0.9 0.9 1 1.1 0.6 2.8

0.
5 3

1.
4 2.5 1.4 2.7 0.1 0.2 0.8

9
1 0.2

1.
6 0.2 1.9 0

1.
2 1

0.
1 1 1.8 1.8 2.5 1.9 1.7

10
2.2 0.2

2.
9 2.7 0.9 0.1

0.
5 1.9

2.
8 0.4 2.7 0.3 1.5 1.1 2.3

11
0.1 0.4

0.
6 2.6 0.6 0.3

1.
7 0.6

1.
1 1.6 2 2.2 1.9 2.6 2.1

12
2.4 2

0.
9 0 1.7 2.8

1.
5 1 1 2.6 0.1 1.1 0.5 0.6 2

13
1.9 0.1

1.
7 2.4 0.1 2.9

2.
5 2.4

1.
3 0.9 2 0.9 2.1 1.3 2

14
0.3 1.5

2.
2 0.1 0.7 1.9

0.
1 0.6 0 2.8 2.1 2.8 0.4 0.3 2.6

15
2.9 0.4

1.
8 1 0.2 2.3

2.
6 1.6

2.
1 1.9 0.5 1.4 2.8 2.9 2.3

16
2.1 1.9

1.
5 1.7 0.8 3

2.
9 2.5

0.
7 0.5 1.1 2.7 1.4 0.7 1.2

17
2.2 2.8

2.
3 1 0.4 1

1.
8 1.8

1.
2 1.1 0.8 2.2 1.3 2.5 0.6

18
1.5 1.2

2.
3 0.6 1.8 2.5

2.
8 1.3

0.
1 0.9 0.8 1 0.8 0 1.1

19
1.4 1.5

1.
5 2.9 2.8 0.4

1.
4 2.6

1.
2 1.5 1.8 1.9 2.3 0.3 1.5

20
1.7 1.4

2.
4 2.3 1.9 0.2

1.
3 1.1

2.
7 2.4 2.4 1.7 1.4 2.5 1.6

21
0.9 0.4 1 1.1 1.4 0.9 2 2.8

1.
8 2.4 1.6 0.6 2.6 2.8 0.5

22
2.7 1.2

1.
6 1.4 2.8 0.8

1.
2 1.2

0.
1 1.5 1 2.4 1.5 0.7 2

23
1 3

2.
2 1.3 1.8 0.5

2.
7 1

2.
2 1.5 1.2 1.5 2.7 0.7 1.8

24
1.2 0.5

2.
6 2.4 0.5 2.2

2.
8 1

0.
4 2.1 2 2.3 2.8 1.8 0.8

25
1.4 1.1

0.
7 2.5 0.9 2.6

0.
2 1.6

2.
3 1.6 2.4 0.2 1.3 1.1 1.6

26
0.3 2.2

0.
2 2.1 2.5 0.9

2.
5 2.8

2.
4 2.9 2.3 2.9 2.6 0.6 2.1

27
0.5 1.5

2.
3 2.4 2.7 1.9

1.
1 1

0.
1 1 1.8 1.8 2.5 1.9 1.8

28
2.2 2.8

0.
4 2.4 1.5 0

2.
6 0.3

0.
1 1.4 1.8 2.2 0.9 0.9 2.2

29
2 0.5

2.
4 0.5 2.6 0.4

1.
5 2.5

0.
1 1.5 0.1 0 1.4 2.3 2.7

30
2.1 0.2

2.
9 2.8 0.7 2.5

2.
4 2.4

0.
8 0.4 1 1.4 0.1 2.4 1.9

31
2.6 0.4

2.
3 1.5 0.1 0.5

0.
5 2.2 2 2.9 2.9 2 2.3 0.4 0.2

32
1.2 2.8

2.
9 0.7 2.9 1.7

0.
3 2.5

2.
2 2.3 0.3 2.9 0.3 2.1 0.7

33
1.9 2.5

2.
2 2.1 1.7 3

2.
2 2.7

2.
8 0.1 2.5 1.4 1.7 2.7 2.2

34
0.8 2.4

2.
7 0.1 1.6 2.1

1.
8 1.2

1.
6 0.6 0.4 0.3 2.3 2.2 1.9

35
2.4 2.1

1.
2 2.6 1.2 0.2

0.
1 2.8

1.
6 0.1 1.2 0.4 1.4 0.9 1.5

36
0.6 2.1

2.
9 1.2 2.1 2.8 1 0.7

2.
1 2.8 0.8 1.8 1.3 2.2 1

37 2.6 1.5 3 2.2 0.1 0.1 0. 2.4 1. 0.9 0.8 0.7 1.2 1.3 1.5

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2100

8 1
38

0.2 2.9
0.
7 1.5 0.9 0.7

2.
1 2

1.
7 0.5 0.8 1 1.6 2.9 1

39
1.2 0.6

1.
4 1 2.2 1.9

1.
5 2.7

1.
5 1.6 2.2 0.1 2.7 0.1 1.7

40
2.5 1.7

0.
8 0.7 2.8 2.1

0.
4 2.6

2.
5 1.6 2.1 0.7 1.8 1.4 0.3

41
0.3 0.6

0.
9 1.2 0.9 1.9

2.
5 1.4

2.
9 2.3 2.9 2.5 0.6 1.7 1.2

42
0.8 1.1

2.
6 1.4 2.8 2.6

2.
5 0

0.
8 0.3 2.6 0.5 1.7 2 1.5

43
0.3 2.2

0.
1 1.9 2.1 1.2

2.
9 0.2

2.
1 2.7 2.3 1.3 2.5 1.6 1

44
1.8 1.9

1.
8 1.3 1 0.3

0.
8 1.2

0.
4 2.8 0.8 2.3 1.8 0.7 0.5

45
1.8 1.2

0.
8 0.9 0.3 0.2

0.
4 1.5 1 0.2 2.5 1 0.5 2 2.2

46
0.6 0.1

0.
1 1.7 0.3 0.2 0 3

2.
6 1.1 1.1 1.6 2.9 2 1.4

47
2.7 2.1

1.
5 2.1 0.7 0.8

2.
8 0.5

1.
3 1.7 0.2 1.7 2.3 1.1 1.7

48
1.5 1

2.
6 1.3 0.6 2.1

1.
5 2.2

2.
3 0.6 2.8 0.3 0.8 0.7 1.1

49
2.7 0.5

2.
5 2.2 0.8 0

0.
8 1.7

2.
6 1.5 1.6 2.2 2 2.4 1.2

50
1.6 0.3 0 0.6 2.9 2

1.
4 0.8

0.
7 2.3 2.2 1.8 2.4 2.2 0.4

51
0.3 1

1.
6 2.2 1.6 2.9

2.
9 0.9

2.
7 1.1 1.7 0.1 2.6 2.4 2.6

52
1.9 0.6

0.
6 2.7 1 0.8

1.
8 2.1

2.
9 0 0.6 1.1 3 0.9 0.6

53
1.6 0.7

0.
6 0.4 1 0.8

1.
8 0.9

1.
5 1.6 1.6 2.6 2.7 1.6 1.9

54
1 0.8 3 0 2.5 1.5

2.
5 2.5

0.
1 1.2 1.4 2.5 0.9 1.1 0.6

55
0.2 0.3

0.
8 0.8 0.9 0.4

2.
4 1.5

1.
4 2.4 0 2.1 3 3 1.4

56
2.5 0.8

2.
1 1.9 1.4 1.6

1.
2 2.2

1.
6 1.8 1.4 1.1 2.3 1.8 2.3

57
1.8 2

1.
4 1.6 0.7 0.6

2.
1 2.6

1.
4 0.1 1.5 2.1 2.1 0.8 2.8

58
2.1 2.2

1.
8 0.4 2 0.4

0.
8 1.8

0.
3 0.8 2.7 1.6 2.9 2.3 0.7

59
0.4 1

0.
9 2.2 2.5 1.3 3 1.5

1.
6 0.7 1.6 2.9 3 1.4 0.9

60
2.5 1.5

0.
7 0.8 0.5 0.5

2.
7 1

1.
6 2.7 1.1 0.9 2.5 1.1 1.5

Table 5. Result of Efficiency of HGAMNN at Testing Phase
S/N RA EA AA SA DAM DOS AA AA TP

1. 1.145221 0.740639 1.238624 0.825188 0.912576 0.24069543 AA AA TP

2. 1.298007 0.986543 1.791807 1.186744 1.161781 0.92057455 AA AA TP

3. 1.462402 1.188071 2.674925 1.279731 1.671345 1.19477387 AA AA TP

4. 1.779682 1.308777 2.666281 1.353374 1.213471 0.54475628 AA AA TP

5. 1.096717 1.140673 2.625089 0.993437 0.773264 0.5475417 AA AA TP

6. 1.362148 1.378951 2.475307 1.397318 1.571091 1.49257306 AA AA TP

7. 1.654572 1.723601 2.341845 1.11437 0.906337 1.68077918 AA AA TP

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2101

8. 2.088441 1.899401 2.450093 1.853578 1.775133 1.46754675 AA AA TP

9. 1.168651 1.858298 1.618963 1.643482 1.590895 0.98409124 AA EA FN

10. 0.608126 1.265237 1.786271 2.02092 1.616803 1.58973958 AA SA FN

11. 1.036154 2.178259 2.323616 1.144753 0.669079 1.19001043 AA AA TP

12. 1.385181 2.065562 1.87516 1.752237 1.79577 0.73513175 AA EA FN

13. 1.125601 1.093824 1.508817 1.395502 1.348271 1.47307977 AA AA TP

14. 1.163178 1.806082 2.872712 1.363866 1.820904 1.9412663 AA AA TP

15. 0.537211 1.41855 1.694458 1.624039 1.080302 0.68066651 AA AA TP

16. 1.60784 1.706436 1.387475 1.477592 1.722393 0.78385333 DMA DMA TP

17. 1.436983 2.406047 1.537661 2.577004 2.546922 0.95404663 DMA SA FN

18. 1.450412 0.795849 0.473358 2.005779 2.291248 0.76097431 DMA DMA TP

19. 0.868102 1.6953 1.520961 1.67332 2.01163 1.25818485 DMA DMA TP

20. 1.483137 1.934566 1.08047 1.973112 1.974995 1.34559804 DMA DMA TP

21. 0.758749 1.025694 0.092034 1.591964 2.305973 0.9708285 DMA DMA TP

22. 1.63458 1.915358 1.18654 1.259972 1.913305 1.42120613 DMA EA FN

23. 1.528723 1.928169 1.161088 1.500427 1.79483 1.41576289 DMA EA FN

24. 1.383908 0.790485 1.291135 1.219047 1.745576 1.25585408 DMA DMA TP

25. 0.787106 0.83199 1.065448 1.100579 0.83516 1.44015847 DOSA DOSA TP

26. 0.400954 1.295232 0.47968 0.872047 0.534323 1.20401244 DOSA EA FN

27. 0.462054 1.008137 0.58825 1.275179 1.141453 1.67491842 DOSA DOSA TP

28. 1.019359 1.544497 0.975073 1.356528 1.286769 1.61675307 DOSA DOSA TP

29. 1.249457 0.717916 1.998781 1.208508 1.891255 2.08888464 DOSA DOSA TP

30. 1.634014 2.322682 0.648019 1.956776 1.765493 1.95249323 DOSA EA FN

31. 0.745678 1.319641 1.301297 1.723985 2.275666 2.52417574 DOSA DOSA TP

32. 0.908548 1.711734 0.82181 1.091148 1.278484 2.17205165 DOSA DOSA TP

33. 1.53547 1.754345 0.96574 2.186631 1.797608 2.4745849 DOSA DOSA TP

34. 0.990058 0.95513 1.664435 0.910087 1.315444 2.01445495 DOSA DOSA TP

35. 1.531673 1.137577 1.390784 1.162937 1.448822 2.69561644 DOSA DOSA TP

36. 1.242974 0.607483 0.279377 1.071257 0.773388 2.10512873 DOSA DOSA TP

37. 1.575336 1.780247 0.328159 1.635776 1.761581 2.18301009 DOSA DOSA TP

38. 0.786443 1.809597 1.553314 1.751552 1.483655 2.06529269 DOSA DOSA TP

39. 0.89827 0.664382 1.289824 1.549923 1.672583 1.94438136 DOSA DOSA TP

40. 0.398665 0.917867 1.233003 1.340682 1.947955 2.65383471 DOSA DOSA TP

41. 1.228751 3.036853 1.155614 1.02652 0.755642 0.76015573 EA EA TP

42. 1.556566 1.960189 0.262416 1.450106 1.543339 1.18606119 EA EA TP

43. 1.660613 3.517836 0.719227 1.837238 1.691638 1.083169 EA EA TP

44. 1.683847 2.13692 0.926975 1.480859 1.036756 0.60533973 EA EA TP

45. 1.258429 3.154816 1.196924 1.307103 1.023035 1.36194814 EA EA TP

46. 1.099156 2.557461 1.881641 1.740465 1.590554 0.70322263 EA EA TP

47. 1.430446 2.101897 1.11758 1.400688 1.512653 1.08198506 EA EA FN

48. 1.752706 1.131862 1.291279 1.114632 0.906651 1.68192345 RA RA TP

Arnold Adimabua Ojugo et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2090 – 2102

2102

49. 1.887932 0.503047 0.843047 1.139533 1.042396 0.6117324 RA RA TP

50. 1.826242 0.766047 1.219812 1.206673 1.260082 1.61894798 RA RA TP

51. 2.114548 2.417205 1.036036 1.13538 0.600058 0.40006945 RA EA FN

52. 2.100956 2.191988 0.125554 1.157001 1.347212 0.42027154 RA EA FN

53. 2.015753 1.157165 0.42147 0.990854 1.35745 1.69381217 RA RA TP

54. 1.592386 1.165703 0.511642 1.400343 1.497606 1.21498618 RA RA TP

55. 2.283751 1.338653 1.772224 1.024978 1.442303 1.43468776 RA RA TP

56. 1.549626 1.412527 1.082289 1.30949 1.382474 1.08664489 RA RA TP

57. 1.394832 1.376607 0.50429 1.460414 1.327358 1.22384431 RA SA FN

58. 1.249294 1.657261 1.782562 2.3299 2.280578 0.75408993 SA SA TP

59. 0.91905 0.868423 1.523947 1.906193 1.684543 0.46394474 SA SA TP

60. 0.568968 0.451055 0.851288 1.435549 0.875701 0.29922454 SA SA TP

