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ABSTRACT 
The future is always been shaped and refocused via Sci-Tech. 
Info and communication technology – has continued to shape 
today’s society as an inevitable driving force because we are 
now heavily dependent on digitally transmitted and processed 
data. This, is consequent upon the fact that individuals and 
organizations are seeking improve means to process data 
more effectively and efficiently. We thus, propose hybrid 
Genetic Algorithm trained Modular Neural Network to detect 
network anomaly cum malicious packets. GA was used due to 
its flexibility cum elitist mode. MNN is used as a learning 
paradigm for modular learning components. Model 
validation return a confusion matrix with these values: TP = 
50, TN = 2, FN = 5, FP = 3. These values were subsequently 
applied to obtain sensitivity, specificity and accuracy of 
model. Model portrays a sensitivity value of 93%, specificity 
value of 25% and an accuracy value of 89%. 
 
Key words: deep learning, anomaly-based networks, IDS, 
intelligent systems, genetic algorithm, memetic, hybrid 
 
1. INTRODUCTION 

Overtime, information has become a crucial element that 
aids many organizations and businesses for effective decision 
making. Thus, it determines their survival, navigational skills 
on the frontiers of service delivery, production efficiency, and 
effectiveness all-round in other respects. Information has 
thus, today become the bedrock of our society, as enhanced 
through the rich faculties and plethora of info and 
communication tech (ICT) supported-devices [1-2]. 

Information advanced as knowledge – has continued to 
foster resources development, growth and productivity [3-4] – 
and overtime, its availability has been eased with a plethora of 
ICT devices that allow for an efficient/effective dissemination 
over network medium. These  medium has also from 
inception being besieged by threats and attacks of varying 
magnitude and veracity as promulgated by daredevil 
unauthorized users often referred to as adversaries cum 
attackers [5-8]. They often employ penetrative means to 

 
 

compromise a user’s system, which in turn leads to 
compromised data integrity, availability, and confidentiality 
[9-12]. Cyber-attacks have indeed become the largest threat to 
global resources such as proprietary data, organization 
networks, and intellectual properties [13] and the extension 
cum expansion of ICT and technology in general has 
continued to heighten the fastidious intent of these 
adversaries as they seek to exploit user resources and data for 
personal and financial gains [14]. 

For many reasons, businesses now employ forensic systems 
to dissuade adversaries from unauthorized access to their data 
[15]. Although, these schemes had been successful earlier, the 
brazing efforts to reinvent the wheel has continued to further 
equip them with the means to evade detection [16-17]. This 
can simply be a function of the fact that most systems 
designed to keep such adversaries out are rippled with flaws 
that these adversaries also seek to exploit [18]. The 
fundamental issue thus, becomes that of accurate detection 
and prompt response cum measures designed as outcome in 
the event the system of detection of an adversary. These 
challenges and inherent dilemmas have thus, encouraged the 
adoption of software solutions for predicting network 
anomalies [19-20]. In recent times, the adoption and usage of 
software implementation has improved in its monitor 
capabilities [21-23]. 

Intrusion are action(s) of an unauthorized users who seeks 
to gain access to a network so as to compromise integrity, 
confidentiality, and availability of network resources. An 
intruder (or adversary) is any user(s) who initiates an 
intrusive action [2] on a network system to exploit its 
resources. Thus, an Intrusion Detection System (IDS) is 
modeled to generate an alert as it observes potentially 
malicious and abusive traffic. It monitors network 
connections and determines an intrusive activity. If an 
intrusive action is detected, the IDS performs one of these: (a) 
logs an audit data that is later analyzed, (b) alerts 
administrator, and (c) ends the connection (as measures for 
the IDS, amongst other functions [11, 12]. Many dataset have 
successfully classified connection observations into normal 
and intrusive connections. Intrusive connections are 
classified into various attack types: (a) denial of service 
(DoS), (b) user to root (U2R), (c) probe, (d) root to local (R2L) 
[1, 9]. 
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An Intrusion Detection System (i.e. from a software view) 
is a component that track system anomalies and reports 
feedback via an audit trail with measures aimed at stopping 
the attack [24] so that such anomalies can be further 
investigated. The IDS monitors and report attacks based on 
predefined policies and procedures stipulated by the system. 
The categorization of IDS cut across environmental issues, 
usage and application, making its implementation cutting 
across a large range of networked systems [19].  
 
2. LITERATURE REVIEW 

Very often, intrusion are large-scale, coordinated attack on 
provisioned services to network resource(s) or victim system, 
launched indirectly via a number of compromised computers 
[25]. Prior an attack, an adversary holds up the resource of a 
large number of vulnerable machines under his control. He 
then exploits their weaknesses by inserting malicious code(s) 
using technique such as HTTP, SYN and UDP flooding – so 
that a server is overwhelmed by their service requests [2]. The 
magnitude of an attack depends on size of the botnet – so that 
the larger the botnet, the more severe and disastrous such 
attack [21]. Intrusion attacks seek to exhaust target resources 
and denying services to legitimate users. When detected, the 
problem is fixed by manually disconnecting the affected 
system from the network. DDoS attacks denies users access to 
network resources such as CPU power, bandwidth, memory, 
processing time. The goal of any intrusion detection scheme is 
to detect the attack as soon as possible and stop them as near 
as possible to their sources [2-8]. 
 
2.1. Intrusion and Intrusive Activities 

IDS has 3-main parts namely: (a) sensors/network probes 
which tracks data traffic, system behaviour and log files by 
translating data into events usable as the IDS monitors and 
taps in to access all network connections, (b) analysis console 
which takes sensor output as input connections, analyses it for 
intrusive acts (as critical component to decide whether or not, 
a connection is intrusive), and (c) policy control generates 
measures based on outcome of an analysis. If analysis console 
flags a connection as intrusion, control met out actions based 
on policies, set by the network administrator [26-27]. Such 
actions include logout of a particular connection, alerting the 
administrator via e-mail etc. It also handles action(s) to be 
taken when an intrusion is detected [1, 26] as in Figure 1. 

 
 
 
 
 
 
 
 
 
 

 
Figure 1. Generalized Framework of the IDS 

 

Intrusion (activities) is either initiated externally or internally 
[1-2] resulting in two (2) types of adversaries: (a) external 
adversaries that have unauthorized (or no) access to resources 
– but, attacks a network via means of penetration. They 
usually employ the use of malware; and (b) internal 
adversaries that resides on the said network and thus, have 
authorized network access to resources [8]. The 
implementation of security tools have their various demerits 
and bottlenecks – some of which hampers network 
performance and in some cases, compromise the network 
security also [9]. 
 
2.2. Related Literature 

Resources are often regarded as a stream of hardware, 
software and other events that can be checked on the backdrop 
of predefined attack rules. With socially-engineered threats 
and attacks, businesses, individuals and organizations now 
can formulate policies that can effectively and efficiently 
detect known attacks occurrences using either of the signature 
and/or anomaly evaluation schemes, self-organizing maps, 
and state transition analysis etc.  

Thomas et al [28] used a NetBouncer to distinguish 
between uncompromised and compromised clients via its 
maintenance of a regularly updated client list that grants the 
requisite access to network resources. New clients are verified 
for legitimacy via their requests and data packets. Where a 
client passes the test, he is added to the legitimacy list and 
thus, granted access to resources until the window for 
legitimacy expires. With the list’s expiration, clients are 
revalidated. 

Conversely, Gil and Poletto [29] used a Multi-Level Tree to 
monitor traffic feats. To detect attacks, the system aggregates 
packet statistics at various levels to successfully detect attacks 
via a disproportional difference between data rates in/out of a 
network. Ring et al. [30] Attackers can evade such detection 
mode by randomizing the source address IP for such 
malicious data. They presented a Host-Based IDS using a 
Blue-Box. The system specifies a set of rules (polices) to 
regulate resources access via an intuitive language to define 
security boundaries. The system was designed to minimize 
kernel changes and performance impact.  

Akella et al. [31] used as Adaptive Neuro-Fuzzy Inference 
System (ANFIS) network-based IDS that sought to address 
the failure of data uncertainty, vagueness and imprecision in 
most predictive models. Their study was born-out of 
adaptation of model tools, target output, solution lacking 
fuzziness and also the nature of training. With ANFIS, their 
overall result was improved in detecting attacks. Munivara et 
al. [32] presented a novel anomaly-IDS via a hybrid 
behavioral model, Bayes net, recursive log-likelihood and 
entropy gain with unsupervised learning between current and 
reference behavior. Entropy and log-likelihood measures 
performance degradation. The model had improved 
classification of packets.  

Santos et al. [28] sought detection and prevention with a 
rule-based network anomaly and state-wise protocol IDS. The 
system eliminated false and positive errors – creating rules 
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and alert logs if a rule is violated. Chia-Mei et al. [3] employ 
the Hidden Markov Model to detect network anomaly 
emanating from detection errors and sensor input diversity. 
The study yields a sequence of attack corresponding to states 
attacks with potential to identify attacks efficiently. Nguyen 
[33] surveyed intrusion methods, attacks types, varied tools. 
His result was IDS with sensor (for packet and anomaly 
signature), backend (to record database), and frontend (for 
user interface, control and commands). The system addressed 
denial of services and synchronization. 

Ojugo and Yoro [1] presented a deep learning approach to 
distinguish between benign exchange of data and malicious 
attacks from data traffic using anomaly-based IDS dataset. 
Result shows consequent success that effectively 
differentiates between genuine and malicious packets as well 
as detection of the Denial of service attacks. 
 
2.3. Study Motivation  

Study is motivated by the following reasons [1-2, 7, 34-36]: 
1. The inherent gains has continued to ensure such studies are 

inevitable. These attacks will continue to rise at alarming 
rate with malicious activities guised to exploit users – 
causing great financial loss. To efficiently tackle 
malicious packets, most of such studies are often 
‘inconclusive’ task being hampered in performance both 
by the technique used by adversaries, feature selection and 
adopted model – all of which, can result in model 
overfitting, over-training and over-parameterization. 

2. We seek to validate Ojugo and Eboka [2] and Ojugo and 
Yoro [1] that posits feat selection, their adoption of deep 
neural network amongst others, as being a focal 
component in the success of a good fitness function as well 
as good classification by the model adopted. 

3. Even with great results consistently reported irrespective of 
the heuristic method adopted, many such frameworks also 
yields a corresponding acceptable rate of false-positive 
and true-negative results in detecting malicious packets. 

4. Careful diagnosis of network is often time-wasting. It also 
often yields inconclusive results for evolving signature 
strings, all of which will amount to increased 
false-positive and true-negative results. 

5. Design of effective detection scheme has continued to 
suffer setback(s) due to the fact that malicious packets by 
design, are poised to evade detection. Its character size 
and limited available dataset continues to cripple its 
detection. Thus, we use feat selection in training to resolve 
impediment in size of parameters to be trained (though 
this, also can lead to poor learning of feature and in turn, 
poor classification). 

 
To overcome shortfalls in the adoption of machine 

learning schemes to handle malicious traffics, we compare 
various machine learning techniques to reduce on traffic 
packets and enhance adequate classification. 
 

3. METHODOLOGY 
We adopt a methodology that first seeks a proposed system 

broken-down into 2-phases: (a) training, and (b) testing as in 
figure 2. For our proposed system (see figure 3) as detailed 
workings of the proposed system in view of figure 2. We thus 
adopt the methodology as below [37-40]: 
 
3.1. Proposed Experimental Hybrid Framework 

For the study, our hybrid framework is divided into three (3) 
components: (a) a supervised Cultural Genetic Algorithm, (b) 
an unsupervised modular neural network, and (c) decision 
support system, and (d) a knowledge-base.   
 Supervised Genetic Algorithm (GA): GA model is inspired 

by Darwinian evolution of survival of fittest, it consists of 
a chosen population with potential solutions to specific 
task. Each potential optimal solution is found via four 
operators and individuals with genes close to its optimal, 
are said to be fit. Fitness function determines how close an 
individual is to optimal solution. The basic operators of 
GA includes initialize, fitness function and select, 
crossover and mutation [37]. Our GA is a variant, which 
has some belief spaces defined thus: (a) normative belief 
(has specific value ranges to which an individual is 
bound), (b) domain belief (has data about task domain), 
(c) temporal belief (has data about events’ space is 
available), and (d) spatial belief (has topographical data). 
In addition, an influence function mediates between belief 
space and the pool – to ensure and alter individuals in the 
pool to conform to belief space. CGA is chosen to yield a 
pool that does not violate its belief space and helps reduce 
number of possible individuals GA generates till an 
optimum is found [42-43]. 

 
 Unsupervised Modular Neural Network (MNN) in [44] is 

an improved deep learning net with modular learning of 
feats of independent series and intermediary components 
functioning under a particular architecture. It advances a 
model that receive a module’s output as input, to compute 
final output via tangent activation function. The MNN is 
divided into potentially, smaller and more manageable 
network [37] with enhanced efficiency via connected units 
that exponentially increase, as independent networks are 
added. This complicates the network structure; But, also 
improves computational efficiency, reduces convergence 
time on individual task assigned to segmented modules, 
and allows tasks to be executed in parallel with module 
that are re-organized to improve flexibility and 
adaptability [45]. The network enhances intelligence and 
increases time efficiency by reducing network’s learning 
time – achieved via an independent training algorithms 
applied at each module with training dataset implemented 
independently and more quickly. This makes the model 
more flexible, adaptable and robust as rules can be re-used 
independently at various networks. Re-usability of rules is 
quite a tedious experienced with such large and complex 
networks. But, with appropriate data encoding and 
carefully selected feats – network experiences improved 
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performance, improves flexibility via compartmentalizing 
and removes partitions of interfaces to eliminate 
redundancy [46]. The MNN is a large network of 
modularized networks that allows for easy learning and 
understandability of feats of interest. It grants a model 
greater flexibility via task execution parallelism via 
compartmentalization, is flexible, eases code reuse and 
adaptability [47]. Data is passed via task decomposition 
and training modules that support effective classification. 
MNN can be easily implemented using the multilayered 
perceptron, adaptive resonance theory and self-organizing 
maps. The network is trained either through the 
supervised, unsupervised and/or reinforcement learning 
approach [29]. 

  
 Knowledgebase – as in figure 1, as explained in the section 

below for the supervised genetic algorithm and the 
Kohonen self-organizing map neural network. 

3.2. Data Sample / Feature Selection 
For the study, we use Australian Defense Force Academy 

(ADFA 2014) dataset available and retrieved [online] from: 
http://cloudstor.aarnet.edu.au/plus/index.php/s/f2fgM0lG1A
MBKpu. We split into: training (70%) and testing (30%) and 
use 7-parameters to adjust weights in table 1. 
 
3.3.  Training Phase 

With feats selected as in table 1 – they are sent to GA-unit 
as input to perform: Encoder, Assigner, Selector, and 
Operators (Swapper and Changer). 
 
3.3.1. Encoder 

Unformatted data are often rippled with noise, ambiguous 
and partial truth. Encoding seeks to filter the dataset, 
mapping unto the required format a model easily understand. 
To encode the selected feats, we transform our dataset using 
selected feats as in table 1. We employ data type in Pandas 
Library displayed by listing 1 algorithm [29, 48-53]. 
Input: Selected Feature: Output: Converted Feature Data type 
1. Select Feature 
2. For each Selected Feature 
3. If Selected Feature is Non-Numerical then 
4. Generate Category Data type 
5. End if:  End For each 
 

Listing 1: Algorithm to Convert Data type to Category 
 
Like Ojugo et al. [26] Each chromosome becomes a rule used 
for training. Within each individual are seven connection 
feats and an attack-type encoded. We encode using the direct 
value. Each rule (If-Then) clause has a “condition” and 
“outcome”. A rule has 7-feats as in Table 1, connected with 
logical AND. The feat “Attack name” is for classification (at 
training); And, for connection (during test) if the “condition” 
part is matched. 
 
 
 
 
 

Table 1. Selected Features and Representation 
Features Format Data Types Number of Genes 
Source IP a.b.c.d Object 4 

Source Port Numeric Integer 1 
Destination IP a.b.c.d Object 4 

Destination Port Numeric Float 1 
Protocol String Object 1 
Duration H:M:S Float 3 

Attack Name / Type String Object 1 
 
3.3.2. Assigner / Fitness Function 

Model measures each rule’s “goodness” as to how many 
attacks it can detect. A rule is good if it can correctly classify 
attacks in the training data; Else, it is bad and is not selected 
for processing. The more attacks a rule detects, the higher its 
fitness value assigned. We adopt support-confidence mode as 
in Eq. (1-3) [26]: 
support = |A and B| / N         (1) 
confidence = |A and B| / |A|        (2) 
fitness = w1 * support + w2 * confidence   (3) 
 
N  = Total number of network connection, |A| = Number of net 
connections matching the condition A, |A and B| = Number of 
network connections that matches the rule if A then B; and 
w1, w2 = weights balance between the two terms. A critical 
merit here is that changing the weights w1/w2, can be used to 
either identify intrusions with w1 = 1 and w2 = 0; Or, to 
classify the types of intrusions with w1 = 0 and w2 = 1 for the 
latter case. 
 
3.3.3. Selector 

Accepts input from assigner and apply tournament 
selection to distinctly separate high-from-low optimal ruleset 
feats. We compute probability to determine the chance of 
selecting a rule from the pool; We compute the cumulative 
probability that yields the probability of accuracy on the pool 
range to ensure that all values assigned are accurate; And 
thus, we perform the tourney selection to obtain optimal feats. 
We used tournament method for its flexibility to deal with 
premature convergence. The tournament algorithm is given 
as in listing 2. 
Input: Population of chromosome 
Output: Selected Chromosome to carry out crossover 
1. Randomly select 3 chromosomes from given population 
2. Pick out top 2-chromosomes based on their fitness value 
3. Return the selected two chromosome 
Listing 2. Tournament Selection Algorithm 
 
3.3.4. Operator (Swapper / Changer) 

The operator routine consist of swapper and changer. With 
the tourney selection, it chooses 3 or more rules from current 
pool cum generation; And, afterwards – selects the best 
2-rules from the selected three (3) as parents to create new 
offspring. This scheme was specifically selected based on its 
reputation of maintaining population diversity. The goal here 
is to create elitists rules and not just one best rule (global 
optimum); But, to create a set of rules that are good enough to 
detect intrusion (local optimums). Thus, to maintain pool 
diversity – we used the tournament selection. This in 
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furtherance will also grant us greater flexibility to adopt cum 
adapt the two (2) swapper (or crossover). 

 
 
3.3.5. Modular Neural Network 

Our MNN is constructed from the feedforward multi-layer 
perceptron network Ghale [44]. It receives optimized rule(s) 
as in Figure 2 [1-2] and propagates the If-Then (selected) 
rules into the varying classes for detection. Rules are modeled 
as a production system of 4-components: (i) rule-set pattern of 
how rule(s) and operation(s) are applied, (b) databank of 
(If-Then) rules as selected data feats, (c) control strategy to 
specify how the rules are compared to those in the 
knowledgebase to find a match and ways to resolve conflicts if 
several rules match at the same time, and (d) rule applier. 
MNN yields self-learning ability and acts as the principal 
component analyzer with rules optimized by GA’s swapper 
and changer (mutation) so that the trained model can 
effectively, autonomously classify dataset into either the 
normal or attack classes [54-55]. 
 
3.3.6. Training Result 

Table 2 shows the top 22-rules generated at training phase 
having almost same fitness value of between 0.80-to-0.8065. 
Thus, top rules are above 80% good enough to be used for 
intrusion detection in testing phase. Results shows we have a 
set of good rules. For example, rule 14 (bold and italics) states 
that any connection with any number of hours, 0 minutes, any 
number of seconds, any protocol, with source port of 1023, 
with any destination port, a source IP address of 
192.168.1.30, and destination IP address of 192.168.0.-1 (i.e. 
which means the last octet of this address could be anything 
from 0 to 255) is regarded as an intrusion. We can interpret 
other rules used thus. Also, we note that 10-of-the-22 rules 
have destination port as -1. This infers that most of the rules 
looks out for network connection from any destination port 
(i.e. -1). Thus, increasing the chances of detecting intrusion 
on any port in the network as well as improves generality of 
rules [56-58]. 
 
Table 2. Top 22-Generated Rules with Fitness Function Value 

Time Prot Source 
Port 

Dest 
Port 

Source IP Dest. IP Attack FF 

-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 PG 0.8063 

-1,0,23 -1 -1 -1 192.168.1.30 192.-1.0.20 PC 0.8063 

0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 PS 0.8063 

0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 PS 0.8063 

-1,0,23 telnet -1 23 192.-1.1.30 192.168.0.20 PC 0.8063 

0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 ARS 0.8063 

-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 ICMP 0.8063 

0,0,5 -1 -1 -1 192.168.1.30 192.168.0.20 NP 0.8063 

0,0,23 telnet -1 -1 192.168.1.30 192.168.0.20 PA 0.8063 

-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 FA 0.8063 

0,0,5 -1 -1 -1 192.168.1.30 192.-1.0.20 FA 0.8063 

-1,0,23 telnet -1 23 192.168.1.30 192.168.0.20 ARS 0.8063 

0,0,-1 -1 1023 1021 192.-1.1.30 -1.168.0.20 PODA 0.8031 

-1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 PODA 0.8031 

0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 PA 0.8031 

0,0,14 -1 -1 513 192.168.1.30 192.168.0.20 SR 0.8031 

0,0,14 -1 -1 513 -1.168.1.30 192.168.0.20 SH 0.8031 

0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 RA 0.8031 

-1,0,-1 -1 1023 -1 192.168.1.30 192.168.0.-1 DN 0.8031 

0,0,5 -1 -1 23 192.168.1.30 192.168.0.20 IPS 0.8031 

-1,0,-1 -1 1023 -1 192.168.1.30 192.168.-1.20 PODA 0.8031 

0,0,14 -1 -1 513 192.168.1.30 192.168.0.-1 ICMP 0.8031 

 
The rule generator used a population size of 400, and went 
through 5000 evolutions, with 0.05 probability of a gene to be 
mutated. The weight parameters (i.e. w1 and w2) used for this 
run was 0.2 and 0.8 respectively. Taking the first rule from 
table 2 as a case study, we have that: 

If(duration=“-1:0:23” and protocol=“telnet” and 
sourceport=-1 and destinationport=23 and source 
IP=“192.168.1.30” and destination IP =“192.168.0.20) 
then {log network connection as an Intrusion}  

 
Furthermore, figure 4 shows the training phase scatter-graph 
in support of the Table 3 below – which shows the training 
result for the hybrid Genetic Algorithm trained Modular 
Neural Network framework. The key for the table 3 includes: 
ICMP – Internet Control Protocol Packet Internet Groper 
(ICMP PING), NP – Network Ping, PS – Port Scanning 
Utility, PAS – Packet Sniffer, PA – Protocol Analyser, PG – 
Password Guessing Attack, PC – Password Cracking 
Program, SH – Session Hijack, SR – Session Replay, IPS – IP 
Spoofing, DN – Domain Name Attack, RA – Rerouting 
Attack, FA – Flood Attack, ARS – Address Resolution 
Spoofing, and PODA – Ping of Death respectively. 

Figure 4. Training Phase Result 
 
4. FINDINGS / DISCUSSION 
 
4.1. Model Performance 

We use misclassification rate and improvement 
percentages for the adopted model(s) in comparison in both 
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training and test data given by Eq. 1 and 2 respectively; 
While, tables 2 and 3 yields summary of obtained values. 
 

 

 
 

Table 3. Misclassification Rate of Each model 
 
Model 

Classification Errors 
Training 

Data 
Testing Data 

PHMM 13.7% 10.2% 
GANN 21.3% 19.7% 
Hybrid Genetic Algorithm 
Modular Neural Network 

1.29% 1.09% 

 
 

Table 4. Improvement Percentage 
 
Model 

Improvement % 
Training 

Data 
Testing 
Data 

PHMM 56.03% 64.16% 
GANN 42.79% 34.09% 
Hybrid Genetic Algorithm 
Modular Neural Network 

75.89% 92.01% 

 

Tables 3 and 4 indicates that PHMM outperforms GANN – 
with a misclassification rate of 13.7% (false-positives and 
true-negatives). It also has a classification accuracy of 87.3%; 
While, promising an improvement of about 56%. In contrast, 
GANN has a misclassification rate of 21.3% (false-positives 
and true-negatives error rate) and promises an improvement 
of 42.79%. Both PHMM and GANN underperformed against 
the proposed hybrid Genetic algorithm trained Modular 
neural network as seen in tables 3 and 4 respectively. 
 
4.2. Findings and Discussion 

Model distinctively predicted the various attacks namely: 
RA – Reconnaissance Attack, EA – Eavesdropping Attacks, 
AA – Access Attacks, DAM – Data Manipulation Attack, SA 
– Session Attack, and DOSA – Denial of Service Attack. Our 
test dataset consists of 60 samples to determine the veracity in 
predicting the attacks. The confusion matrix (TP, TN, FP and 
FN) was computed in that of-the-60-cases, model accurately 
predicted Fifty-Two (52) cases (TP = 50, TN = 2); While, 
eight (8) cases of (FN = 5, FP = 3) were inaccurately 
predicted. 

Figure 5 shows model sensitivity, specificity and accuracy. 
Sensitivity (93%) shows the capability of HGAMNN to detect 
occurrence of all attacks when exhibited. Also, Specificity 
(25%) shows the capability of HGAMNN to detect occurrence 
of all attacks when not exhibited or present sample case; 
While, Accuracy (71%) yields the degree of truth for which 
the model HGAMNN detects the presence and absence of any 
and all attacks. 
 
 

 
 

Figure 5. Categories of Prediction 
 
4.3. Result Trade-offs 
Several trade-off were noticed during result compilation and 
they fall under these [46-51]:  
a. Result Presentation – researchers often display flawed 

results, modify and/or build new models rather than 
re-test limitations, biasness and inabilities of existing 
ones. Also, some researchers fail to report negative 
results thinking they are less valuable. We employ such 
data driven model to curb the non-linearity and 
dynamism in observed datasets used to train and test 
model, unlike knowledge models. 

b. Efficiency – modelers use figure to show how good and 
well their simulations are, in agreement with observed 
data (even with their limited and squeezed data) with 
graphs that are often not easily distinguishable. Some 
researchers do not even provide the dataset used. Yet, 
their model is in ‘agreement’. Some measure of goodness 
does not provide the relevant knowledge for the task at 
hand.  

c. Insufficient Test – Validation compares simulated versus 
observed values, and many studies suffer from 
inadequate data. If a model seeks to simulate results, such 
capability cannot be demonstrated with 
unfounded/misleading result from limited data and 
misleading conclusions. 

d. Model validation is a scientific dialogue – impeded by 
improper applications and ambiguous results. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Test Phase Scatter-Graph 
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5. CONCLUSION 
The unpredictability of attack patterns and the noisy nature 

of its many features, will continue to thrust researchers into 
the adoption of deep learning models to address cyber-attacks. 
The variance associated with machine learning dataset has 
also made the possibility of optimization of training sample a 
must if heighten predictability is to be achieved. We propose 
hybrid Genetic Algorithm trained Modular Neural Network 
to detect network anomaly cum malicious packets. The use of 
GA was due to its flexibility cum elitist mode; While, MNN is 
used as a learning paradigm for modular learning 
components. Model validation return a confusion matrix with 
these values: TP = 50, TN = 2, FN = 5, FP = 3. These values 
were subsequently applied to obtain sensitivity, specificity 
and accuracy of the model. HGAMNN shows sensitivity value 
of 93%, specificity value of 25% and an accuracy value of 
89%. 
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Figure 2. Framework Diagram of Proposed System for the Hybrid Genetic Algorithm Trained Modular Neural Network 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Schematics Diagram of Genetic Algorithm Trained Modular Neural Network 
 
 

Table 4. Training Result of the HGAMNN with Attack Types Classified into Attack Groups 
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2.
9 0 0.6 1.1 3 0.9 0.6 

53 
1.6 0.7 

0.
6 0.4 1 0.8 

1.
8 0.9 

1.
5 1.6 1.6 2.6 2.7 1.6 1.9 

54 
1 0.8 3 0 2.5 1.5 

2.
5 2.5 

0.
1 1.2 1.4 2.5 0.9 1.1 0.6 

55 
0.2 0.3 

0.
8 0.8 0.9 0.4 

2.
4 1.5 

1.
4 2.4 0 2.1 3 3 1.4 

56 
2.5 0.8 

2.
1 1.9 1.4 1.6 

1.
2 2.2 

1.
6 1.8 1.4 1.1 2.3 1.8 2.3 

57 
1.8 2 

1.
4 1.6 0.7 0.6 

2.
1 2.6 

1.
4 0.1 1.5 2.1 2.1 0.8 2.8 

58 
2.1 2.2 

1.
8 0.4 2 0.4 

0.
8 1.8 

0.
3 0.8 2.7 1.6 2.9 2.3 0.7 

59 
0.4 1 

0.
9 2.2 2.5 1.3 3 1.5 

1.
6 0.7 1.6 2.9 3 1.4 0.9 

60 
2.5 1.5 

0.
7 0.8 0.5 0.5 

2.
7 1 

1.
6 2.7 1.1 0.9 2.5 1.1 1.5 

 
 

Table 5. Result of Efficiency of HGAMNN at Testing Phase 
S/N RA EA AA SA DAM DOS AA AA TP 

1. 1.145221 0.740639 1.238624 0.825188 0.912576 0.24069543 AA AA TP 

2. 1.298007 0.986543 1.791807 1.186744 1.161781 0.92057455 AA AA TP 

3. 1.462402 1.188071 2.674925 1.279731 1.671345 1.19477387 AA AA TP 

4. 1.779682 1.308777 2.666281 1.353374 1.213471 0.54475628 AA AA TP 

5. 1.096717 1.140673 2.625089 0.993437 0.773264 0.5475417 AA AA TP 

6. 1.362148 1.378951 2.475307 1.397318 1.571091 1.49257306 AA AA TP 

7. 1.654572 1.723601 2.341845 1.11437 0.906337 1.68077918 AA AA TP 



Arnold Adimabua Ojugo  et al .,  International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May -  June 2021, 2090 – 2102 

2101 
 

 

8. 2.088441 1.899401 2.450093 1.853578 1.775133 1.46754675 AA AA TP 

9. 1.168651 1.858298 1.618963 1.643482 1.590895 0.98409124 AA EA FN 

10. 0.608126 1.265237 1.786271 2.02092 1.616803 1.58973958 AA SA FN 

11. 1.036154 2.178259 2.323616 1.144753 0.669079 1.19001043 AA AA TP 

12. 1.385181 2.065562 1.87516 1.752237 1.79577 0.73513175 AA EA FN 

13. 1.125601 1.093824 1.508817 1.395502 1.348271 1.47307977 AA AA TP 

14. 1.163178 1.806082 2.872712 1.363866 1.820904 1.9412663 AA AA TP 

15. 0.537211 1.41855 1.694458 1.624039 1.080302 0.68066651 AA AA TP 

16. 1.60784 1.706436 1.387475 1.477592 1.722393 0.78385333 DMA DMA TP 

17. 1.436983 2.406047 1.537661 2.577004 2.546922 0.95404663 DMA SA FN 

18. 1.450412 0.795849 0.473358 2.005779 2.291248 0.76097431 DMA DMA TP 

19. 0.868102 1.6953 1.520961 1.67332 2.01163 1.25818485 DMA DMA TP 

20. 1.483137 1.934566 1.08047 1.973112 1.974995 1.34559804 DMA DMA TP 

21. 0.758749 1.025694 0.092034 1.591964 2.305973 0.9708285 DMA DMA TP 

22. 1.63458 1.915358 1.18654 1.259972 1.913305 1.42120613 DMA EA FN 

23. 1.528723 1.928169 1.161088 1.500427 1.79483 1.41576289 DMA EA FN 

24. 1.383908 0.790485 1.291135 1.219047 1.745576 1.25585408 DMA DMA TP 

25. 0.787106 0.83199 1.065448 1.100579 0.83516 1.44015847 DOSA DOSA TP 

26. 0.400954 1.295232 0.47968 0.872047 0.534323 1.20401244 DOSA EA FN 

27. 0.462054 1.008137 0.58825 1.275179 1.141453 1.67491842 DOSA DOSA TP 

28. 1.019359 1.544497 0.975073 1.356528 1.286769 1.61675307 DOSA DOSA TP 

29. 1.249457 0.717916 1.998781 1.208508 1.891255 2.08888464 DOSA DOSA TP 

30. 1.634014 2.322682 0.648019 1.956776 1.765493 1.95249323 DOSA EA FN 

31. 0.745678 1.319641 1.301297 1.723985 2.275666 2.52417574 DOSA DOSA TP 

32. 0.908548 1.711734 0.82181 1.091148 1.278484 2.17205165 DOSA DOSA TP 

33. 1.53547 1.754345 0.96574 2.186631 1.797608 2.4745849 DOSA DOSA TP 

34. 0.990058 0.95513 1.664435 0.910087 1.315444 2.01445495 DOSA DOSA TP 

35. 1.531673 1.137577 1.390784 1.162937 1.448822 2.69561644 DOSA DOSA TP 

36. 1.242974 0.607483 0.279377 1.071257 0.773388 2.10512873 DOSA DOSA TP 

37. 1.575336 1.780247 0.328159 1.635776 1.761581 2.18301009 DOSA DOSA TP 

38. 0.786443 1.809597 1.553314 1.751552 1.483655 2.06529269 DOSA DOSA TP 

39. 0.89827 0.664382 1.289824 1.549923 1.672583 1.94438136 DOSA DOSA TP 

40. 0.398665 0.917867 1.233003 1.340682 1.947955 2.65383471 DOSA DOSA TP 

41. 1.228751 3.036853 1.155614 1.02652 0.755642 0.76015573 EA EA TP 

42. 1.556566 1.960189 0.262416 1.450106 1.543339 1.18606119 EA EA TP 

43. 1.660613 3.517836 0.719227 1.837238 1.691638 1.083169 EA EA TP 

44. 1.683847 2.13692 0.926975 1.480859 1.036756 0.60533973 EA EA TP 

45. 1.258429 3.154816 1.196924 1.307103 1.023035 1.36194814 EA EA TP 

46. 1.099156 2.557461 1.881641 1.740465 1.590554 0.70322263 EA EA TP 

47. 1.430446 2.101897 1.11758 1.400688 1.512653 1.08198506 EA EA FN 

48. 1.752706 1.131862 1.291279 1.114632 0.906651 1.68192345 RA RA TP 
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49. 1.887932 0.503047 0.843047 1.139533 1.042396 0.6117324 RA RA TP 

50. 1.826242 0.766047 1.219812 1.206673 1.260082 1.61894798 RA RA TP 

51. 2.114548 2.417205 1.036036 1.13538 0.600058 0.40006945 RA EA FN 

52. 2.100956 2.191988 0.125554 1.157001 1.347212 0.42027154 RA EA FN 

53. 2.015753 1.157165 0.42147 0.990854 1.35745 1.69381217 RA RA TP 

54. 1.592386 1.165703 0.511642 1.400343 1.497606 1.21498618 RA RA TP 

55. 2.283751 1.338653 1.772224 1.024978 1.442303 1.43468776 RA RA TP 

56. 1.549626 1.412527 1.082289 1.30949 1.382474 1.08664489 RA RA TP 

57. 1.394832 1.376607 0.50429 1.460414 1.327358 1.22384431 RA SA FN 

58. 1.249294 1.657261 1.782562 2.3299 2.280578 0.75408993 SA SA TP 

59. 0.91905 0.868423 1.523947 1.906193 1.684543 0.46394474 SA SA TP 

60. 0.568968 0.451055 0.851288 1.435549 0.875701 0.29922454 SA SA TP 

 
 
 


