
Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1079

ABSTRACT

Over the past few years, there has been keen research interest
in load balancing and task scheduling in the cloud as the
extensive amount of data that is stored in the server leads to
significantly increased load. This can be resolved by using a
hybrid algorithm in which the honeybee behavior algorithm’s
advantages are integrated with fuzzy logic to conduct task
scheduling and as well as balancing in the cloud. The design
of this hybrid algorithm aims to enhance prior approaches. It
is developed as per ABC and merges the important QoS
factors along with power consumption so that the power that
virtual machines (VMs) consume on the host can be precisely
assessed, thereby ensuring efficient load balancing algorithm.
The present study aims to evaluate the VMs’ power
consumption by taking into account crucial QoS factors for
selecting which host and virtual machine will be best suited
for receiving the task. CloudSim was used to simulate the
ILBA_HB algorithm. In terms of makespan, average response
time, and degree of imbalance, the performance of the ILBA
HB algorithm is compared to that of the LBA HB and
HBB-LB algorithms. According to the results, the proposed
algorithm outperformed LBA_HB and HBB-LB.

Key words :Cloud Computing, Load Balancing, Honeybee
approach, Fuzzy logic.

1. INTRODUCTION

Cloud Computing (CC) is an emerging computing model
encompassing multiple technologies such as parallel
computing, utility computing, and distributed computing [1].
The CC concept encourages users to share computing
resources and data through a host application service provider,
eliminating the need for users to pay for energy or purchase a
server [2]. However, as the number of users who want to
participate in CC grows, so does the demand for shared
resources, making it more difficult for hosts to load balance
between different resources and schedule tasks appropriately
[3].

Figure 1:Model for load balancing [4]

Load balancing is required in CC for virtual machines (VM)

to handle both overload and underload conditions [5]. Figure
1 presents a model and workflow of such a load balancer [4].
The dynamic nature of CC thus requires the application of
dynamic algorithms to allow hosts to load balance effectively
[6]. Due to the limitations on conventional load balancing
algorithms in light of changing workload dynamics [3].
Swarm Intelligence algorithms (SI), such as the artificial bee
colony (ABC) and ant colony optimization (ACO), have been
developed in recent years to help solve such challenges [7].

Several researchers have proposed SI-based algorithms for
balancing loads in the cloud, including the ABC algorithm
mentioned above [8]. The Load Balancing Algorithm based
on Honeybee behavior (LBA_HB) is an example of an ABC
algorithm in which load balancing is based on just one factor
from among the relevant quality of service factors (QoS);
other important factors are thus seemingly ignored during
load balancing in this case. The first objective is to select a
suitable host with minimal processing time and the second
objective selects a suitable VM to process the incoming task
using a minimum request count. This avoids the challenges
with other current ABC algorithms in that they disregard the
power consumption factor of the VM, tend not to reduce to
degree of imbalance in the cloud, and incur a large number of
task migrations.

This study proposes an improved load-balancing algorithm
(ILBA HB) based on honeybee behavior that considers QoS
parameters such as processing time, cost, and power
consumption. ILBA_HB designs two fuzzy inference systems
that allow for selection of the proper host followed by

Hybrid Load Balancing Approach based on the Integration

of QoS and Power Consumption in Cloud Computing
Hind Salem Alatawi1,Sanaa Abdullah Sharaf2

1Computer Science Department, King Abdulaziz University, Jeddah, Saudi Arabia,halatawi006@stu.kau.edu.sa
2Computer Science Department, King Abdulaziz University, Jeddah, Saudi Arabia, sshara@kau.edu.sa

ISSN 2278-3091
Volume 10, No.2, March - April 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse841022021.pdf

https://doi.org/10.30534/ijatcse/2021/841022021

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1080

selection of the appropriate VM based on power consumption
and QoS factors. The performance of the proposed ILBA HB
algorithm is compared to that of the basic LBA HB algorithm
in terms of average response time, makespan, and degree of
imbalance using CloudSim simulator.

This paper is organized as follows. We present related work
in the following section. Section 3 introduces the proposed
load-balancing algorithm. The experimental results and
evaluation of the proposed algorithm are presented in Section
4. Section 5 discusses the findings and future work.

2. RELATED WORK

Countless clients share cloud services by sending their
processing tasks to cloud environments. One challenge that
this presents to a cloud server is the scheduling of millions of
tasks. Studies in the SI field have shown that complicated
issues could be resolved if similar agents worked together in
clusters within a cloud server [3]. Effective scheduling and
load balancing can help ensure that customers receive
enhanced QoS [9]. This section reviews load-balancing
algorithms inspired by artificial bee colony .

In [10], authors developed the honeybee-behavior–based
load-balancing (HBB-LB) algorithm, which enables load
balancing and considers the priorities of tasks taken away
from VMs with heavy loads. The tasks that are extracted from
overloaded VMs act like honeybees. Once submitted to the
underloaded VM, the different priority tasks as well as the
tasks allocated to the VM are updated. This information can
also benefit other tasks. For example, every time a
high-priority task should be submitted to VMs, it is important
to take into account the VM with the fewest high-priority
tasks to ensure that the specific task can be completed sooner.
The tasks that are extracted are submitted to underloaded
VMs, as all VMs are arranged in ascending order. Comparing
the proposed algorithm with Weighted Round Robin (WRR),
First In First Out (FIFO), and dynamic load balancing
indicated good results with no additional overhead. This
technique effectively balances non-preemptive independent
tasks and improves makespan and response time.
Low-priority tasks are a constant occurrence, despite the high
throughput. However, the authors did not examine power
consumption. The HBB-LB algorithm's flaw is that the
balancing mechanism begins only when the whole system is
unbalanced, so the degree of imbalance in this algorithm is
high. Nevertheless, despite establishing priority as the key
QoS parameter, other QoS factors are disregarded by this
algorithm.

When selecting a VM, the HBB-LB algorithm considers
only the load conditions and ignores other critical QoS factors
required to improve cloud computing performance.As a
result, as shown in[8]an improved honey bee behavior based
load balancing (IHBB-LB) algorithm was developed. More
QoS parameters of the VM, such as service response time and
cost, were added to improve load balancing. Results illustrate
that the IHBB-LB algorithm outperformed the HBB-LB
algorithm in terms of makespan, response time, and the
number of migrated tasks. The degree imbalance for HBB-LB
and IHBB-LB, according to the results, was 1.45 and 1.43,

respectively, indicating a slight increase in the DI associated
with IHBB-LB.

In [11], Patel and Bhalodia (2019) integrated two
algorithms to create a new algorithm for load balancing over
cloud systems. This involves the identification of overloaded
and underloaded VMs, followed by priority-based migration
of tasks from overloaded to underloaded VMs. If priority is
confirmed, the honeybee-inspired load-balancing algorithm
should be applied for task allocation, whereas if priority is not
confirmed, the WRR algorithm should be adopted for task
allocation. However, additional QoS factors (e.g., response
time, cost, power consumption) are not taken into account.
Furthermore, the authors who proposed this method did not
address determinants of performance (e.g., degree of
imbalance, number of migrated tasks).

In [12], Kruekaew and Kimpan (2020) proposed a new
method of heuristic task scheduling with ABC (HABC) by
integrating the swarm intelligence algorithm with ABCand
heuristic scheduling algorithms. The goal of this algorithm is
to reduce makespan and achieve load balancing by providing
better VM scheduling for cloud computing in both uniform
and non-uniform media. Prior to applying the ABC algorithm,
the First Come First Serve (FCFS), Smallest Job First (SJF),
and Largest Job First (LJF) heuristic algorithms were
employed to structure the tasks into three distinct
arrangements, with the arrangement using minimal
computation time during task processing by the ABC
algorithm considered the ideal. In terms of scheduling and
load balancing, HABC with the largest-job-first heuristic
algorithm (HABC_LJF) performed best. The key QoS factor
identified was makespan, while other QoS factors and power
use were not taken into account.

In [13], Joshi and Munisamy (2020) presented the Dynamic
Degree Balanced with Membership value based
(D2B_Membership) algorithm, which takes into
consideration every host’s membership value and the balance
condition of VMs to modify the allocation policy. VMs are
allocated to an appropriate host with more capacity than the
VM’s needs. Workload in task allocation is dynamically
dispersed by assessing the load on a VM so that the system’s
performance can be improved. The results indicated that the
algorithm improved upon Round Robin (RR) and FCFS in
terms of execution time as well as makespan. However, the
algorithm did not compute the degree of system imbalance or
the number of tasks migrated. The algorithm was concerned
with the two factors of makespan and execution time,
regarding them as the major QoS factors, and ignored power
consumption by either the VM or host.

Recently, the IT industry has significantly increased its
energy use. As part of the endeavor to provide support to
cloud computing and grid computing services, major IT
developers (e.g., IBM, Microsoft, Google) have established a
greater number of data centers, which are pivotal hubs of
information and communication technology [14]. Due to the
myriad servers and switches they contain, these data centers
consume a massive amount of energy, which not only makes
operations more expensive but is also environmentally
detrimental because of carbon dioxide emissions. Energy
consumption is further increased by the cooling equipment
necessary to manage the heat generated by the datacenters

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1081

[15]. It is estimated that, in 2012, data centers consumed about
300–400 TWh of electricity (approximately 2% of global
consumption), which is expected to triple by 2020 [16]. There
is evidence that the energy used by idle servers is up to 70% of
the energy consumed during peak activity [14], [17].

As such, allowing servers to run with a limited workload is
not cost effective. In the context of cloud computing, a major
problem for service providers is the amount of power used by
cloud data centers [14], [18]. In this regard, the goal is to
decrease power use and ensure compliance with
environmental policies and standard inter-user contracts [14].
A number of studies have investigated the power use of cloud
computing, with estimation and improvement of the power
use of separate VMs.

As noted in [19] by Ghafari, Fazila, Patooghy, and
Rikhtechi (2013), it is possible to decrease the amount of
power used by cloud computing infrastructures with the
load-balancing method known as the ABC
algorithm–minimal migration time (Bee-MMT), which uses
ABC to identify over-utilized hosts. It then uses the minimum
migration time (MMT) policy for VM selection. The VM
selection policy chooses one or more VMs to migrate from the
over-utilized hosts so that their use can be minimized. It can
also identify underutilized hosts and transfer all VMs assigned
to these hosts, if possible, after which they are switched to
sleep mode. As can be seen from the performance, power and
resource consumption are both reduced.Regardless, QoS
factors were not properly considered.To accomplish load
balancing, Bee-MMT employs VM migration. Multiple VMs
may be created on a single physical machine using
virtualization. The VMs created will be independent in nature
and have differing configurations. In the case of a physical
machine becoming overloaded, it is necessary for VMs to
transfer to a different host using a VM migration
load-balancing approach [4]. However, this method has some
disadvantages, the most significant of which are as follows
[20]:
 When the VM is migrated from one physical machine

to another, the physical machine that the VM is
migrated to consumes more memory.

 Some of the customer’s current activities can be lost,
which can result in extremely high expenses.

 There may be excessive VM downtime as a result of
halting VM migration.

One method that has recently attracted significant research
attention is VM consolidation, which can achieve a substantial
decrease in power use, given that the amount of power
consumed by inactive or sleep-mode hosts is low [21]. The
VM consolidation method successfully reduces power use
through the prevention of idle power use by changing idle
nodes to modes such as sleep or hibernation, which use little
power [22]. Live migration is also made possible by
virtualization and involves VM transfer among hosts, known
as physical servers or nodes, with minimal downtime. The
overall goal is to ensure that the fewest possible nodes are
active at any given moment [21].

In the VM consolidation method, choosing the VM for
migration is no easy task, which has prompted the proposal of
a range of solutions. A number of criteria must be considered

in relation to this choice, given the dynamic nature of
computation needs in the real world. In [21], Monil and
Rahman (2016) suggested a fuzzy VM selection algorithm
with migration control. This method is capable of smart
decision-making regarding the choice of VM for migration
between two hosts. An overload detection algorithm was
subsequently applied to establish mean, median, and standard
deviation. The suggested method was simulated and
compared with other similar methods and demonstrated better
performance not only in reduced power use but also in
minimizing Service-Level Agreement (SLA) violations.

VM consolidation was the basis of the approaches
implemented in [22] and [23]. Although both groups of
researchers proposed fuzzy VM selection as a method for
choosing a VM for migration from a host with excessive load,
the inputs employed in a fuzzy inference system to decrease
power use were different. More specifically, Monil and
Rahman (2017) used RAM, correlation, and standard
deviation as inputs in [22], while Rajagopal and Baskaran
(2019) used CPU and disk storage as inputs in [23] used CPU
and disk storage as inputs.

The studies cited above sought to decrease power use by
data centers or hosts by applying algorithms to move VMs or
put idle nodes into a mode with low power consumption.
Nevertheless, the strategy of VM migration does not address
the issue of significantly diminishing power use. Furthermore,
the method is deemed to lack efficiency if the reduction in the
power use of data centers causes SLA violations or disregards
QoS factors. Therefore, further investigation is necessary to
overcome this issue.

Many studies have concentrated on improving just a few
factors among a plethora of QoS factors[6], [8],[10],[13],
[24], [25],[26]. Without considering power usage, such
research has centered on improving QoS factors. On the other
hand, numerous studies[19], [22], [23], [26], [27]have
proposed load-balancing algorithms based on ABC to
minimize power consumption with ignoring QoS variables.

To evaluate the host and the required VM to receive the
incoming task, all ABC-based load-balancing algorithms have
ignored the integration of QoS factors with power
consumption. Previous algorithms only began the
load-balancing process if the whole system was unbalanced
enough to influence the degree of imbalance. As a result, this
research proposes an improved LBA HB algorithm for
estimating the VM's power consumption and minimizing the
system's imbalance degree, average response time, and
makespan.

3. PROPOSED MODEL

The ABC is based on honey bees’ intelligent foraging
behavior as they seek food sources; Dervis first presented this
method for addressing real-world problems in 2005 [28].
ABC refers to a subsection of the swarm-intelligence based
algorithms that address different optimization problems by
imitating the honeybee swarms’ collective intelligence [28].
A bee gathers food from a specific flower, or food source and
a colony of bees develops where such bees cooperates to find
better food sources [10]. Sharing information helps with
making decisions and examining the search space [8].

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1082

Employed bees, scouts, and onlookers are the three types of
bees in an ABC system; each performs a different role[3] :

1. Employed bees: The employed bees are also called
leader bees. They seek food sources and come back to their
hives and perform a dance to convey information regarding
the foraged food sources, including the distance, quantity, and
direction, as well as quality of the food source [25].

2. Scout bees: These bees search for new food sources at
random near the hive, and when they come across an existing
source, they begin a new search for a new source in that
area[9].
3. Onlooker bees: Onlooker bees gather information from the
employed bees in the hive and select food sources based on
these dances [8]. Typically, a honeybee swarm is comprised
of, on average, 50% employed bees and 50% unemployed
bees, with 5 to 10% acting as scout bees. Both scouts and
onlookers are also known as unemployed bees [25].

In this study, the methodology is based on the honeybees’
foraging activity carried out to determine the most suitable
available resources that can ensure that the cloud data center
has load balancing. Similar to the activity of honeybees when
searching for food sources wherein they select the best food
source through foraging, the proposed algorithm approach
determines the best suited VM in the appropriate host to
allocate the tasks through the fuzzy inference system. Table 1
presents a mapping between the honeybees’ foraging behavior
and the proposed system’s load balancing scenario obtained
by conducting an in-depth analysis of the honeybees’ foraging
behavior.

ILBA_HB is an extension of LBA_HB that enhances the
performance of LBA_HB with fuzzy logic. The ILBA_HB
algorithm balances the load using a two-level approach. In the
first level, the suitable host is selected based on capacity,
processing time, and load. In the second level, the appropriate
VM is selected based on processing time, and cost. The VM’s
power consumption on the host is also estimated. A fuzzy
system is used to select a proper host and VM to process tasks.
Fuzzy systems are suitable for environments wherein multiple
factors are undetermined or cannot be predicted. One of the
primary benefits of the fuzzy logic controller compared with
other conventional control strategies is that its controlled
development can be sustained without complex mathematical
modeling. Due to the benefits of fuzzy logic when working in
dynamic, uncertain environments, this paper proposes the
fuzzy approach.

Previous algorithms have used two methods to balance the
system: VM migration and task migration. The migration of
VMs has several limitations, as previously mentioned. In
contrast, task migration undertakes the transfer of novel or
excess tasks from a VM with more load to a VM with less
load. The completion time of migration depends upon the
number of tasks migrated from a VM in the load-balancing
process. The migration of several tasks from one virtual
machine to another causes unfavorable load conditions in the
VM from which the tasks are migrated. The occurrence of
unfavorable load conditions must be minimized to efficiently
balance the load. For this reason, the proposed algorithm
balances the system load as soon as a user request arrives and
assigns that request to the appropriate host and then the
appropriate VM. That means the load-balancing process starts

with the arrival of the system’s first task, not after the whole
system becomes unbalanced. Therefore, the imbalance degree
is decreased in ILBA_HB. If all VMs on a host become
overloaded, then that host becomes overloaded. ILBA_HB
restricts the allocation of requests to overloaded hosts by
removing the task from the waiting queue, where it must wait
until it can be allocated to an available host. Therefore,
ILBA_HB avoids migration time cost, which is caused by the
migration of a number of tasks.

3.1 Description

Fuzzy VM controller and fuzzy host controller were

planned as part of this research. However, since the situation
is uncertain and computing requirements are highly complex
in practice, fuzzy logic can be implemented at various levels
of input to achieve the best combination of energy
consumption and QoS factors[29].

Table 1:Mapping between the ILBA_HB and honeybees’

behavior
Honeybee Hive Cloud Environment

Food Source VMs on proper host, VM or
Host,

Honeybee Task (Cloudlet)
Bee selects best food
source (onlooker bee)

Task allocated to proper VM by
Honeybee broker

Scout bees Tasks in queue/new incoming
task

Employed bees Tasks running in each VM
Bee finds depleted food

source
VM is overloaded

Information shared
through waggle dance

Load, capacity in host and
processing time on each host

and VM

3.1.1 Fuzzy Host Selection Method

For the fuzzy host controller system, three inputs have been
specified: load, processing time, and capacity. The host's
main characteristics are capacity and load. The host fuzzy
controller produces fitness values for all hosts and then
chooses the host with the highest fitness value. The output of
the host fuzzy controller is the host with the highest fitness
value. Figures 2, 3, 4, and 5 illustrate the membership
functions for three inputs and one output. To provide a fuzzy
host controller,a fuzzy inference rule (FIS) is developed using
the three metrics as input. The FIS requires linguistic
variables to be used in the generation of fuzzy inference
rules[21]. Table 2 shows the six possible logical product and
output response conclusions in the proposed method.

A CC system is comprised of a series of data centers. Each
data center encompasses a series of h hosts, each of which in
turn encompasses a series of m VMs. A set of VMs is created
as푉 = {푉 ,푉 , … ,푉 }, where 푚 is the number of all VMs. A
set of tasks is created as 푇 = {푇 ,푇 , … ,푇 }, where 푛 is the
number of all tasks. The completion time for a task푇 on a
VM is indicated as 퐶푇 , 푖 = 1, 2, …푛 , 푗 = 1, 2, …푚 .The

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1083

following equations are used to calculate these inputs:
 The total possible resources of a VM that can be allocated

for task execution are determined by capacity.
If N denotes the number of processors in a virtual
machine,P denotes the million instructions per second
(MIPS) for all processors, and Bdenotes the bandwidth
available for communication, the capacity of a single
virtual machine (Ci) can be determined as follows[12]:

퐶푖 = 푁 + 푃 + 퐵													(1)
A host’s capacity is the summation the capacity of all VMs,
given as follows [8]:

퐶 = 퐶푖
	 	

																																		(2)											

 If T(t)represents the number of tasks on a VM's service
queue at time t, , and S represents the execution
timeS(T, t), then the loadL , is computed as follows [13]:

퐿 , =
푇(푡)
푆(푇, 푡)

																								(3)

The host’s load can be obtained by summing the load of all
VMs:

퐿 = 퐿 ,
	 	

																															(4)

 The processing time of a host is calculated as follows [3]:

푃푇 = 푃푇
	 	

																																		(5)		

Similarly, where n denotes the number of hosts, the average
processing time of all hosts can be determined as follows[3]:

푃푇 _ =
1
푛 푃푇

	 	

															(6)

 Load standard deviation: The standard deviation (σ) in
statistics and probability theory shows how much
variance or dispersion there is in relation to the average.
The formula is as follows[10]:

휎 =
1
푚 (푃푇 − 푃푇 _)

	 	
																				(7)

 Standard normal deviate of VM(j): The calculated
difference between an observed value and the mean is
referred to as deviation in mathematics and statistics. The
magnitude of the difference indicates the extent of the
difference[3]. The normal deviate, also known as the
standardized value, is the distance between the mean of a
data point and the standard deviation of a distribution.
The standard normal deviate is a unit deviation with a
mean of zero. This metric is determined as follows to
show deviation from the average mean or predicted
value[3]:

푆푁퐷 (푗) =
(푃푇 (푗)− 푃푇 _)

휎 								(8)

3.1.2 Fuzzy VM Selection Method

For the development of the fuzzy VM controller system,

three inputs have been specified: processing time, cost, and
power consumption.The VM fuzzy controller produces fitness
values for all VMs on the proper host and then chooses the
VM with the highest fitness value to process the incoming
task. The output of the VM fuzzy controller is the VM with
the highest fitness value. Figures 6, 7, 8, and 9 illustrate the
membership functions for three inputs and one output. To
provide a fuzzy VM controller, a FIS is developed using the
three metrics as input. The FIS requires linguistic variables to
be used in the generation of fuzzy inference rules [21]. Table 3
shows the seven possible logical product and output response
conclusions in the proposed method.The following equations
are used to calculate these inputs:
 The processing time of VMj is calculated as follows [8]:

푃푇 =
퐿 ,

퐶푖 																																											(9)
The following formula is used to measure the average
processing time of all virtual machines:

푃푇 _ =
1
푚 푃푇 (푗)

	 	

											(10)

 The cost of a virtual machine is calculated by the cost of a
singleCPU, network, RAM, and bandwidthunit. If a VM
is priced such that p represents unit price where p = 1,
푑푎푡푎 represents bandwidth, net represents network
units, RAM represents memory units, and
a, b, c, d	represents weights for each resource attribute
where a + b + c + d = 1 ,The VM's cost is then
calculated as follows[8]:
퐶표푠푡 =

푝
퐶푃푈 ∗ 푛푒푡 ∗ 푑푎푡푎 ∗ 푅퐴푀 										(11)

 On a given host, a VM's power consumption can be
measured as follows. Consider theyth	VM, , denoted
byVM , where c denotes the number of CPU nodes in
VM . The memory capacity of 	VM is m ,	 the task
withinVM ist , and the CPU utilization ratio of 푡 is
c . If t is run on multiple CPUs, c 	becomes the sum
of the Processor utilization ratios for each of the CPUs
wheret isrun[20]. m is the memory utilization of t ,
and p is the consumed power of t .The CPU and
memory usage of a task are essential factors in VM power
consumption, and when these factors have higher values,
VM power consumption increases[20].As shown in Eq.
12, p is estimated as the product ofc and 푚 .

푝 = 푐 	× 	푚 																								(12)
p , as shown in Eq. 16, represents the total consumed power
of each task in VM , while ndenotes the overall number of
tasks runningin VM [20]

푝 =
∑ 푝	 	

푐 																									(13)

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1084

Figure 2:Capacity input membership function

Figure 3:Processing timeinput membership function

Figure 4:Loadinput membership function

Figure 5:Membership output function of host-fitness

Table 2:The fuzzy rulers for hosts
The fuzzy rulers to host selector are:

1: IF capacity IS high AND load IS low AND
processing_time IS low THEN fitness IS high.

2: IF capacity IS low AND load IS high AND
processing_time IS high THEN fitness IS low.

3: IF capacity IS low AND load IS low AND
processing_time IS low THEN fitness IS Normal.

4: IF capacity IS high AND load IS low AND
processing_time IS high THEN fitness IS Normal;

5: IF capacity IS high AND load IS high AND
processing_time IS low THEN fitness IS high;

6: IF capacity IS high AND load IS high AND
processing_time IS high THEN fitness IS low;

Figure 6:Cost input membership function

Figure 7: VM processing_time input membership function

Figure 8:Power consumptioninput membership function

Figure9:Membership output function of VM-fitness

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1085

Table 3: The fuzzy rulers for VMs
The fuzzy rulers to VM selector are:

1: IF Power IS Low AND Cost IS Low AND
VM_PTTime IS Low THEN fitness IS High;

2: IF Power IS High AND Cost IS High AND
VM_PTTime IS High THEN fitness IS Low;

3: IF Power IS Low AND Cost IS High AND
VM_PTTime IS Low THEN fitness IS High;

4: IF Power IS High AND Cost IS Low AND
VM_PTTime IS High THEN fitness IS Low;

5: IF Power IS High AND Cost IS High AND
VM_PTTime IS Low THEN fitness IS Normal;

6: IF Power IS Low AND Cost IS Low AND
VM_PTTime IS High THEN fitness IS Normal;

7: IF Power IS Low AND Cost IS High AND
VM_PTTime IS High THEN fitness IS Normal;

3.2 Flowchart of Proposed Model

Whilst the four stages outlined below (A, B, C, & D) are
comparable to the four stages described in LBA_HB (A, B, C,
& D), there is one noticeable difference in that the suggested
algorithm encompassed two further steps, to wit: B.8 and B.9.
Figure 10 presents the framework of the ILBA_HB algorithm.
The four phases in the algorithm are outlined below.
A. Workflow Submission (the input comprises a group of
tasks)

1. The preprocessor receives new workflow.
2. The number of tasks and the length of each task's

instructions are calculated in the workflow sent to
the preprocessor.

B. Task In (input comprises an individual task)
1. Tasks are readied for implementation, and a request

is dispatched to the VM load balancer.
2. Prepared tasks are queued by the VM load balancer.
3. Tasks are prioritized as per a FCFS approach and the

queued first task is taken by the VM load balancer.
4. To determine which task is allocated to which VM,

data is gathered between the last allocation and
de-allocation, thereby imitating honeybee behavior
since bees determine which plant to visit in
accordance with nectar availability in specific flower
patches. Threshold information gauges host
availability in accordance with host variation. VMs
perform this availability check.

5. Host levels are limited so request allocations to
overloaded hosts are restricted. However, any task
withdrawn from the queue must locate an
appropriate host. The threshold data indicates two
potential outcomes, namely: the task might locate a
list of hosts using fuzzy host selection or the task

might not find a host and be waited until one is
obtained.

6. The first task is eliminated from the queue when it
identifies a suitable host.

7. A control flag gathers tasks from the queue.
8. (Fuzzy host level): Three vital inputs are located in

the fuzzy host selection, whereby the host is selected
in accordance with fuzzy host selection output.

9. (Fuzzy VM level):It's possible that a task may be
accepted by more than one VM on a given host. The
most appropriate VM is chosen using a fuzzy VM
selection method. The most appropriate VM is
chosen based on three key inputs. A proper VM id is
the output of fuzzy VM selection.

C. Task out (an appropriate VM has been selected):
1. The host and the VM update any allocated data.

Regular checks designed to whether the host or VM
is overloaded can produce data, including the host’s
and the VM’s current processing time. Whether the
VM(j) becomes overloaded is determined by
variations in its processing time. The variation value
indicates the VM(j) load balance in comparison to
those of other VMs. Variations in VM processing
time, when compared to average VM processing
times indicate whether it exceeds or is equal to a
threshold value α, as per the following:

푆푁퐷 (푗) ≥ 훼																				(14)
When all VMs in a specified host become
overloaded, that host is considered overloaded.

2. The task is allocated to a suitable VM.
3. The task upgrades any de-allocated data, including

current host and VM processing times and host and
VM availability. VMs are deemed ready for use
when specific VM processing times vary from the
average processing time of all VMs at a rate lower
than a threshold value α, as indicated in the
following:

푆푁퐷 (푗) < 훼																		(15)
A host which has at least one available VM is
considered available.

4. Remaining tasks regarded both host and VM are
conducted in a fashion akin to the waggle dance of
honeybees, wherein information is passed to other
bees in the hive. In the current case, information
updates pertain to availability and VM and host
loads, thereby facilitating the suitable assignment of
task to VMs.

5. To avoid delays once the allocated task has been
executed, a control lag is dispatched to the tasks.

6. The execution is completed by this task.
D. Delay (a task is unable to locate an available host)
1. The process is delayed unit the control flag has been

dispatched and received, after which the execution can be
concluded. Subsequently, the task is restarted from an
earlier stage because the perceived data must be
re-evaluated. Delayed tasks are prioritized ahead of other
queuing tasks. Once the first round is completed, each
task returns to phase B.4, after which is concludes the
other unfinished steps.

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1086

Figure 10:Flow chart of structure of ILBA_HB model

4. RESULTS AND DISCUSSION

We present the results of the experiments conducted in this
study in this section. We compared the proposed algorithm
with the HBB-LB and LBA-HB algorithms. We used the
CloudSim simulator for execution. To mimic our algorithm,
we expanded the classes of the CloudSim simulator. The
principle execution is comprised of a subclass of the
DatacenterBroker class in the org.cloudbus.cloudsim
package, which we called HoneyBeeLoadbalancer. It is
imperative to note that the DatacenterBroker class has an
inheritance relationship with the SimEntity class within the
org.cloudbus.cloudsim.core package.

To assess the performance in the cloud, results were
simulated in a Windows 10 environment (64-bit) with an i5
processor and 2.3 GHz speed with 16 GB memory. The
language used was Java (Eclipse).

In this study, we used the jFuzzyLogic library to combine
CloudSim and fuzzy logic. This library includes a
programming interface as well as a completely functioning
and complete implementation of a FIS [22].

4.1Simulation Parameters

The proposed method’s output is evaluated in a

heterogeneous setting using VMs with varying characteristics.
This cloud environment accepts cloudlets of various
specifications. Table 4 summarizes the characteristics of a
datacenter, VMs, hosts, as well as cloudlets. The simulation
with the CloudSim framework follows the next steps:

1. Set up the CloudSim package
2. Create Datacenters
3. Create Broker

4. Create VMs and Cloudlets and send them to broker
5. Starts the simulation
6. Save results when simulation is over

Table 4: Simulation Parameters
Type Parameters Values

DC

Number of Data
Centers 10

Number of Hosts 2-6
VmScheduler Time shared

Host Processing speed
(MIPS) 10000

Host storage (MB) 100000
Host bandwidth

(Mbps) 80000

Host RAM (MB) 4096Mb

VM

Number of VMs 50

Processor speed 500-2000
MIPS

Available memory
space in a single VM 256-2048 Mb

Bandwidth 500-1000
Cloudlet Scheduler Time shared

Number of Processor
Elements (PEs)

requirement
1-4

VM Manager Xen

Task
or
Clou

dlet

Length of task
(Executable instruction

length in bytes)
1000-20000

Total number of tasks 100-1000

4.2Comparison

In this section, a comparison is made between three

different approaches for load balancing. The three algorithms
taken into account are HBB-LB, LBA-HB, and the proposed
ILBA-HB. Different metrics can be used to evaluate different
techniques; in our work, we use three specific metrics to
assess their effectiveness:

1. Response time (RT): The time between a request's initial
demand and the first response provided is commonly referred
to as response time [30].

푅푇 = 퐹푇 − 퐸푆푇															(16)
where FT denotes the time taken for the Cloudlet to complete
andEST denotes the start time for executing the Cloudlet. The
response time for a given VM is indicated as RT , while the
average response time for n VMs is defined as:

푅푇 =
푅푇
푛 																		(17)

Figures 11 and 12 are box plots representing the distribution
of results for RT. The statistical values for these distributions
are given in Table 5, which presents a comparison of the
response times for ILBA-HB, LBA-HB, and HBB-LB. From

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1087

the results, it is clear that the proposed ILBA-HB algorithm
improves the response time by 1.93% for the LBA-HB
algorithm and 62.71% for the HBB-LB algorithm when the DI
value is at its maximum, by 4.38% for the LBA-HB algorithm
and 78.05% for the HBB-LB algorithm when the DI value is
at its minimum, and by 3.90% for the LBA-HB algorithm and
52.44% for the HBB-LB algorithm when the DI value is
average.

Figure 11:RT dispersion for ILBA-HB and LBA-HB

Figure 12: RT dispersion for HBB-LB

Table 5: Statistics for RT

Stat
HBB-
LB

LBA-
HB

ILBA-
HB

Min. 6.36 1.46 1.396
1st

Qu.
19.08 14.96 14.432

Med
ian

64.28 36.70 34.922

Mea
n

97.40 46.32 44.513

3rd
Qu.

148.7
8

68.17 64.663

Max
.

409.4
0

155.6
5

152.63
2

2. Makespan is the maximum time it takes to complete a

task [10]. M stands for Makespan and is calculated as follows:
푀 = 푚푎푥 퐶푇 ; 								푖 ∈ 푇									(18)

Figures 13 and 14 indicate the distribution of results for
Makespan and Table 6 presents the statistics behind these
distributions. Table 6 shows that the proposed algorithm's
Makespan was the best performing among cloud computed

algorithms in a heterogeneous setting, with the lowest
minimum Makespan, maximum Makespan, and average
Makespan. ILBA-HB improves Makespan by 3.70% for the
LBA-HB algorithm and 84.83% for the HBB-LB algorithm
when the DI value is at its maximum, by 33.33% for the
LBA-HB algorithm and 91.66% for the HBB-LB algorithm
when the DI value is at its minimum, and by 3.55% for the
LBA-HB algorithm and 78.30% for the HBB-LB algorithm
when the DI value is average.

3. The degree of imbalance (DI) is a metric that calculates
the imbalance among VMs, which is defined as follows [8]:

푇 =
푡표푡푎푙_푡푎푠푘푙푒푛푔푡ℎ

푝푒_푛푢푚 × 푝푒_푚푖푝푠 														(19)

where total_tasklength is the total length of the tasks that are
submitted to the VMj, pe_num is the number of processors
of VMj, and pe_mips is the MIPS of each processor of VMj.

퐷퐼 =
푇 − 푇

푇 																					(20)

Where T andT are the maximum and minimum Ti for
all VMs, and T is the average Ti of the VMs [12].

The distribution and statistics for this measure are shown in
Figures 15 and 16 and Table 7.The results of the ILBA-HB
algorithm for DI demonstrate that it did not improve the DI
when compared to LBA-HB. For the first quartile of DI values
and the minimum DI values, the proposed algorithm
improved the degree of imbalance slightly over LBA-HB. In
contrast, the LBA-HB algorithm outperformed ILBA-HB in
its degree of imbalance for the maximum and average values
and the third quartile. The performance of the two algorithms
for the DI was close, to a large extent, as the two algorithms
avoid task migration to keep the system's load balanced.

When comparing the proposed algorithm's output to that of
the HBB-LB algorithm in terms of degrees of imbalance, the
ILBA-HB algorithm outperformed the HBB-LB algorithm
because its minimum DI, maximum DI, and average DI were
the lowest in a heterogeneous setting . Table 11 demonstrates
how the proposed algorithm improved the degree of
imbalance by a significant percentage; the ratio of the
ILBA-HB algorithm’s improvement to that of the HBB-LB
algorithm was 45.34% at the maximum DI, 49.29% at the
average, and 50.28% at the minimum.

The proposed algorithm is superior to HBB-LB for the DI
as the HBB-LB algorithm migrates tasks between VMs and
this causes migration costs. In contrast, the proposed
algorithm avoids task migration; we assumed that avoiding
task migration reduced the degree of imbalance and this is
what the results have proven.

The use of fuzzy logic with the proposed algorithm
improves its response time and Makespan compared to those
of LBA-HB and HBB-LB, thus improving overall system
performance. The ILBA-HB algorithm generates promising
results, even if the improvement is negligible.

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1088

Figure 13: Makespan dispersion for ILBA-HB and LBA-HB

Figure 14:Makespan dispersion for HBB-LB

Table 6: Statistics for Makespan

Stat
HBB-
LB

LBA-
HB

ILBA-
HB

Min. 12.0 3.00 2.00
1st

Qu.
36.0 27.00 24.00

Med
ian

202.0 64.00 64.72

Mea
n

372.6 80.85 77.98

3rd
Qu.

604.1 117.7
4

109.75

Max
.

1714.
5

269.9
9

259.99

Figure 15: DI dispersion for ILBA-HB and LBA-HB

Figure 16:DI dispersion for HBB-LB

Table 7: Statistics for DI

Stat
HBB-
LB

LBA-
HB

ILBA-
HB

Min. 1.414 1.205 0.703
1st

Qu.
1.415 1.272 1.217

Med
ian

2.772 1.301 1.265

Mea
n

2.700 1.297 1.352

3rd
Qu.

3.921 1.314 1.387

Max
.

4.497 1.370 2.458

The second part of these results discusses the relationship

between the VM’s power consumption factor and QoS
factors, for example cost and processing time. These two
variables were the only ones considered in this study. Table 8
presents the power consumed per VM versus the cost factor
and processing time factor. The power consumed by the VM
is calculated according to Eq. 13 . To illustrate the two
variables’ relationship, we adopt Spearman’s Rank
Correlation Coefficient. The Spearman’s Rank Correlation
Coefficient is a statistical test for determining the degree of
correlation between two variables, if any [31]. Meanwhile, a
scatter graph for the two variables could indicate whether
there is a degree of correlation, with Spearman’s Rank
providing a numerical value for the degree of correlation, or
indeed the degree of non-correlation [31].

Table 9 presents the Spearman’s rank correlation
coefficient for power consumption, PT, as well as cost.
Through this test, it may be concluded that there is a very
strong positive correlation between power consumption and
cost, because the Rs value is +0.9547, critical probability (p)
value is 0.001, while the statistical significance level is
99.9%. The null hypothesis has a 0.1% chance of being
correct (p=0.001). Resultantly, we must accept the alternative
hypothesis, namely that a very strong positive correlation
exists between power consumption and cost, with the null
hypothesis rejected (that no correlation exists).

From the results presented in table 9 it may be concluded
that power consumption and PT have a very weak positive

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1089

correlation, because the Rs value is 0.1589, critical p value is
0.50, while the statistical significance level is 50%. The null
hypothesis has a 50% chance of being correct (p=0.50).
Consequently, we must accept the null hypothesis that no
correlation exists.

Table 8: Power consumption, cost, and PT for VMs
VM

_id
power

consumption
Cost PT

 0 1.900 0.600 80.000
1 49.400 7.800 260.000
2 85.387 8.100 120.000
3 136.350 8.100 67.500
4 0.950 0.300 40.000
5 47.500 7.500 250.000
6 85.387 8.100 120.000
7 136.350 8.100 67.500
8 1.900 0.600 80.000
9 47.500 7.500 250.000
10 85.387 8.100 120.000
11 136.350 8.100 67.500
12 0.950 0.300 40.000
13 47.500 7.500 250.000
14 85.387 8.100 120.000
15 136.350 8.100 67.500
17 47.500 7.500 250.000
20 2.850 0.900 120.000
18 85.387 8.100 120.000
19 136.350 8.100 67.500
21 47.500 7.500 250.000
22 85.387 8.100 120.000
23 136.350 8.100 67.500
24 0.950 0.300 40.000
25 47.500 7.500 250.000
29 47.500 7.500 250.000
26 123.337 11.70

0
173.333

27 136.350 8.100 67.500
30 85.387 8.100 120.000
31 136.350 8.100 67.500
32 0.950 0.300 40.000
33 47.500 7.500 250.000
34 85.387 8.100 120.000
35 136.350 8.100 67.500
37 47.500 7.500 250.000
38 85.387 8.100 120.000
39 136.350 8.100 67.500
41 47.500 7.500 250.000
42 85.387 8.100 120.000
44 0.950 0.300 40.000
45 47.500 7.500 250.000
43 136.350 8.100 67.500
46 85.387 8.100 120.000
47 141.400 8.400 70.000
49 47.500 7.500 250.000

Table 9: Spearman’s rank correlation coefficient
Variables Rs value P value
PC vs Cost 0.9547 0.001
PC vs PT 0.1589 0.50

5. CONCLUSION

Cloud computing may be considered as an innovative
paradigm providing users with a wide range of
resources,which are able toassist with the simultaneous
execution of applications or tasks. The numerous applications,
as well asconstantly altering user demands, create problems of
load balancing—including under-loading and
over-loading—for the virtual machines in the cloud data
center,resulting in the system’s performance being negatively
affected.A hybrid algorithm may be used to apply fuzzy logic
for implementing a dynamic load balancing algorithm,which
can deal with previous algorithms’ ambiguity and
inconsistency. In order to select the appropriate VM for
handling the task, the proposed algorithm takes into account
the QoS factors such as cost and processing time, alongside
the power consumption factor. The simulation results
evidence that the proposed algorithm enhances the mean
response time, makespan, as well as degree of imbalance over
LBA_HB and HBB-LB. Additionally, it clarified that energy
consumption and cost have a very strong positive
correlation,while the correlation between energy consumption
and processing time is very weak. However, future
researchcould consider the new meta-heuristic nature-inspired
techniques for ensuring load-balancing with regards to energy
consumption and QoS. Moreover, it is feasible to apply the
proposed algorithm in the real time environment as a means of
comparing the results.

REFERENCES

1. Z. Zhou, H. Wang, H. Shao, L. Dong, and J. Yu, “A

high-performance scheduling algorithm using greedy
strategy toward quality of service in the cloud
environments,” Peer-to-Peer Netw. Appl., vol. 13, no. 6,
pp. 2214–2223, 2020, doi: 10.1007/s12083-020-00888-4.

2. P. T. Endo, M. Rodrigues, G. E. Gonçalves, J.
availability in clouds: systematic review and research
challenges,” J. Cloud Comput., vol. 5, no. 1, 2016, doi:
10.1186/s13677-016-0066-8.

3. W. Hashem, H. Nashaat, and R. Rizk, “Honey bee based
load balancing in cloud computing,” KSII Trans.
Internet Inf. Syst., vol. 11, no. 12, pp. 5694–5711, 2017,
doi: 10.3837/tiis.2017.12.001.

4. P. Kumar and R. Kumar, “Issues and challenges of load
balancing techniques in cloud computing: A survey,”
ACM Comput. Surv., vol. 51, no. 6, 2019, doi:
10.1145/3281010.

5. D. Satria, D. Park, and M. Jo, “Recovery for overloaded
mobile edge computing,” Futur. Gener. Comput. Syst.,
vol. 70, pp. 138–147, 2017, doi:
10.1016/j.future.2016.06.024.

Hind Salem Alatawi et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1079 – 1090

1090

6. K. R. Remesh Babu and P. Samuel, “Enhanced bee
colony algorithm for efficient load balancing and
scheduling in cloud,” Adv. Intell. Syst. Comput., vol.
424, pp. 67–78, 2016, doi:
10.1007/978-3-319-28031-8_6.

7. M. Gamal, R. Rizk, H. Mahdi, and B. Elhady,
“Bio-inspired load balancing algorithm in cloud
computing,” Adv. Intell. Syst. Comput., vol. 639, pp.
579–589, 2018, doi: 10.1007/978-3-319-64861-3_54.

8. M. A. S. Mosleh and G. Radhamani, “A novel fuzzy QoS
based Improved Honey Bee Behavior algorithm for
efficient load balancing in cloud,” SPIIRAS Proc., vol.
2, no. 57, pp. 26–44, 2018, doi: 10.15622/sp.57.2.

9. S. T. Milan, L. Rajabion, H. Ranjbar, and N. J.
Navimipour, “Nature inspired meta-heuristic
algorithms for solving the load-balancing problem in
cloud environments,” Comput. Oper. Res., vol. 110, pp.
159–187, 2019, doi: 10.1016/j.cor.2019.05.022.

10. L. D. Dhinesh Babu and P. Venkata Krishna, “Honey bee
behavior inspired load balancing of tasks in cloud
computing environments,” Appl. Soft Comput. J., vol.
13, no. 5, pp. 2292–2303, 2013, doi:
10.1016/j.asoc.2013.01.025.

11. K. D. Patel and T. M. Bhalodia, “An efficient dynamic
load balancing algorithm for virtual machine in cloud
computing,” 2019 Int. Conf. Intell. Comput. Control
Syst. ICCS 2019, no. Iciccs, pp. 145–150, 2019, doi:
10.1109/ICCS45141.2019.9065292.

12. B. Kruekaew and W. Kimpan, “Enhancing of artificial
bee colony algorithm for virtual machine scheduling
and load balancing problem in cloud computing,” Int.
J. Comput. Intell. Syst., vol. 13, no. 1, pp. 496–510, 2020,
doi: 10.2991/ijcis.d.200410.002.

13. A. Joshi and S. D. Munisamy, “Enhancement of
Performance Parameter of Cloud Using Dynamic
Degree Balanced with Membership Value
Algorithm,” Int. J. Adv. Res. Eng. Technol., vol. 11, no.
8, pp. 664–676, 2020, doi:
10.34218/IJARET.11.8.2020.065.

14. M. Soltanshahi, R. Asemi, and N. Shafiei,
“Energy-aware virtual machines allocation by krill
herd algorithm in cloud data centers,” Heliyon, vol. 5,
no. 7, pp. 3–8, 2019, doi: 10.1016/j.heliyon.2019.e02066.

15. S. Mustafa, B. Nazir, A. Hayat, A. U. R. Khan, and S. A.
Madani, “Resource management in cloud computing:
Taxonomy, prospects, and challenges,” Comput.
Electr. Eng., vol. 47, pp. 186–203, 2015, doi:
10.1016/j.compeleceng.2015.07.021.

16. S. Ismaeel, R. Karim, and A. Miri, “Proactive dynamic
virtual-machine consolidation for energy
conservation in cloud data centres,” J. Cloud Comput.,
vol. 7, no. 1, 2018, doi: 10.1186/s13677-018-0111-x.

17. M. Tan, C. Chi, J. Zhang, S. Zhao, G. Li, and S. Lü, “An
energy-aware virtual machine placement algorithm
in cloud data center,” ACM Int. Conf. Proceeding Ser.,
vol. Part F1318, no. C, pp. 719–723, 2017, doi:
10.1145/3144789.3144792.

18. T. Deepika and P. Prakash, “Power consumption
prediction in cloud data center using machine
learning,” Int. J. Electr. Comput. Eng., vol. 10, no. 2, pp.

1524–1532, 2020, doi:
10.11591/ijece.v10i2.pp1524-1532.

19. S. M. Ghafari, M. Fazeli, A. Patooghy, and L. Rikhtechi,
“Bee-MMT: A load balancing method for power
consumption management in cloud computing,” 2013
6th Int. Conf. Contemp. Comput. IC3 2013, no. April
2016, pp. 76–80, 2013, doi: 10.1109/IC3.2013.6612165.

20. M. G. K. Geetha Megharaj, Metaheuristic-Based
Virtual Machine Task Migration Technique for Load
Balancing in the Cloud, vol. 771. Springer Singapore,
2019.

21. M. A. H. Monil and R. M. Rahman, “VM consolidation
approach based on heuristics fuzzy logic, and
migration control,” J. Cloud Comput., vol. 5, no. 1,
2016, doi: 10.1186/s13677-016-0059-7.

22. M. A. H. Monil and R. M. Rahman, “Fuzzy logic-based
VM selection strategy for cloud environment,” Int. J.
Cloud Comput., vol. 6, no. 2, pp. 163–186, 2017, doi:
10.1504/IJCC.2017.086019.

23. E. Rajagopal and N. Baskaran, “Fuzzy softset based VM
selection in cloud datacenter,” 2019 Int. Conf. Intell.
Comput. Control Syst. ICCS 2019, no. Iciccs, pp.
462–467, 2019, doi: 10.1109/ICCS45141.2019.9065678.

24. M. Gupta and G. sharma, “An Efficient Modified
Artificial Bee Colony Algorithm for Job Scheduling
Problem,” Int. J. Soft Comput. Eng., no. 1, pp.
2231–2307, 2012.

25. J. Yao and J. H. He, “Load balancing strategy of cloud
computing based on artificial bee algorithm,” Proc. -
2012 8th Int. Conf. Comput. Technol. Inf. Manag. ICCM
2012, vol. 1, pp. 185–189, 2012.

26. S. Saravanan, V. Venkatachalam, and S. T. Malligai,
“Optimization of SLA Violation In Cloud Computing
Using Artificial,” vol. 1, no. 3, pp. 410–414, 2015.

27. A. P. S.Yakhchi,S.M.Ghafari, M.YakhchiM.Fazeli,
“ICA-MMT: A load balancing method in cloud
computing environment.,” 2015, [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7210303/.

28. H. Talebian et al., Optimizing virtual machine
placement in IaaS data centers: taxonomy, review
and open issues, vol. 23, no. 2. Springer US, 2020.

29. N. Mansouri, B. Mohammad Hasani Zade, and M. M.
Javidi, “Hybrid task scheduling strategy for cloud
computing by modified particle swarm optimization
and fuzzy theory,” Comput. Ind. Eng., vol. 130, no.
March, pp. 597–633, 2019, doi:
10.1016/j.cie.2019.03.006.

30. M. H. Ghahramani, M. Zhou, and C. T. Hon, “Toward
cloud computing QoS architecture: Analysis of cloud
systems and cloud services,” IEEE/CAA J. Autom. Sin.,
vol. 4, no. 1, pp. 6–18, 2017, doi:
10.1109/JAS.2017.7510313.

31. H. Akoglu, “User’s guide to correlation coefficients,”
Turkish J. Emerg. Med., vol. 18, no. 3, pp. 91–93, 2018,
doi: 10.1016/j.tjem.2018.08.001.

