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ABSTRACT 
 
Over the past few years, there has been keen research interest 
in load balancing and task scheduling in the cloud as the 
extensive amount of data that is stored in the server leads to 
significantly increased load. This can be resolved by using a 
hybrid algorithm in which the honeybee behavior algorithm’s 
advantages are integrated with fuzzy logic to conduct task 
scheduling and as well as balancing in the cloud. The design 
of this hybrid algorithm aims to enhance prior approaches. It 
is developed as per ABC and merges the important QoS 
factors along with power consumption so that the power that 
virtual machines (VMs) consume on the host can be precisely 
assessed, thereby ensuring efficient load balancing algorithm. 
The present study aims to evaluate the VMs’ power 
consumption by taking into account crucial QoS factors for 
selecting which host and virtual machine will be best suited 
for receiving the task. CloudSim was used to simulate the 
ILBA_HB algorithm. In terms of makespan, average response 
time, and degree of imbalance, the performance of the ILBA 
HB algorithm is compared to that of the LBA HB and 
HBB-LB algorithms. According to the results, the proposed 
algorithm outperformed LBA_HB and HBB-LB.  
 
Key words :Cloud Computing, Load Balancing, Honeybee 
approach, Fuzzy logic.  
 
1. INTRODUCTION 
 

Cloud Computing (CC) is an emerging computing model 
encompassing multiple technologies such as parallel 
computing, utility computing, and distributed computing [1]. 
The CC concept encourages users to share computing 
resources and data through a host application service provider, 
eliminating the need for users to pay for energy or purchase a 
server [2]. However, as the number of users who want to 
participate in CC grows, so does the demand for shared 
resources, making it more difficult for hosts to load balance 
between different resources and schedule tasks appropriately 
[3]. 

 
 

 
Figure 1:Model for load balancing [4] 

 
Load balancing is required in CC for virtual machines (VM) 

to handle both overload and underload conditions [5]. Figure 
1 presents a model and workflow of such a load balancer [4]. 
The dynamic nature of CC thus requires the application of 
dynamic algorithms to allow hosts to load balance effectively 
[6]. Due to the limitations on conventional load balancing 
algorithms in light of changing workload dynamics [3]. 
Swarm Intelligence algorithms (SI), such as the artificial bee 
colony (ABC) and ant colony optimization (ACO), have been 
developed in recent years to help solve such challenges [7]. 

Several researchers have proposed SI-based algorithms for 
balancing loads in the cloud, including the ABC algorithm 
mentioned above [8]. The Load Balancing Algorithm based 
on Honeybee behavior (LBA_HB) is an example of an ABC 
algorithm in which load balancing is based on just one factor 
from among the relevant quality of service factors (QoS); 
other important factors are thus seemingly ignored during 
load balancing in this case. The first objective is to select a 
suitable host with minimal processing time and the second 
objective selects a suitable VM to process the incoming task 
using a minimum request count. This avoids the challenges 
with other current ABC algorithms in that they disregard the 
power consumption factor of the VM, tend not to reduce to 
degree of imbalance in the cloud, and incur a large number of 
task migrations. 

This study proposes an improved load-balancing algorithm 
(ILBA HB) based on honeybee behavior that considers QoS 
parameters such as processing time, cost, and power 
consumption. ILBA_HB designs two fuzzy inference systems 
that allow for selection of the proper host followed by 
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selection of the appropriate VM based on power consumption 
and QoS factors. The performance of the proposed ILBA HB 
algorithm is compared to that of the basic LBA HB algorithm 
in terms of average response time, makespan, and degree of 
imbalance using CloudSim simulator. 

This paper is organized as follows. We present related work 
in the following section. Section 3 introduces the proposed 
load-balancing algorithm. The experimental results and 
evaluation of the proposed algorithm are presented in Section 
4. Section 5 discusses the findings and future work. 
 
2. RELATED WORK 
 

Countless clients share cloud services by sending their 
processing tasks to cloud environments. One challenge that 
this presents to a cloud server is the scheduling of millions of 
tasks. Studies in the SI field have shown that complicated 
issues could be resolved if similar agents worked together in 
clusters within a cloud server [3]. Effective scheduling and 
load balancing can help ensure that customers receive 
enhanced QoS [9].  This section reviews load-balancing 
algorithms inspired by artificial bee colony . 

In [10], authors developed the honeybee-behavior–based 
load-balancing (HBB-LB) algorithm, which enables load 
balancing and considers the priorities of tasks taken away 
from VMs with heavy loads. The tasks that are extracted from 
overloaded VMs act like honeybees. Once submitted to the 
underloaded VM, the different priority tasks as well as the 
tasks allocated to the VM are updated. This information can 
also benefit other tasks. For example, every time a 
high-priority task should be submitted to VMs, it is important 
to take into account the VM with the fewest high-priority 
tasks to ensure that the specific task can be completed sooner. 
The tasks that are extracted are submitted to underloaded 
VMs, as all VMs are arranged in ascending order. Comparing 
the proposed algorithm with Weighted Round Robin (WRR), 
First In First Out (FIFO), and dynamic load balancing 
indicated good results with no additional overhead. This 
technique effectively balances non-preemptive independent 
tasks and improves makespan and response time. 
Low-priority tasks are a constant occurrence, despite the high 
throughput. However, the authors did not examine power 
consumption. The HBB-LB algorithm's flaw is that the 
balancing mechanism begins only when the whole system is 
unbalanced, so the degree of imbalance in this algorithm is 
high. Nevertheless, despite establishing priority as the key 
QoS parameter, other QoS factors are disregarded by this 
algorithm. 

When selecting a VM, the HBB-LB algorithm considers 
only the load conditions and ignores other critical QoS factors 
required to improve cloud computing performance.As a 
result, as shown in[8]an improved honey bee behavior based 
load balancing (IHBB-LB) algorithm was developed. More 
QoS parameters of the VM, such as service response time and 
cost, were added to improve load balancing. Results illustrate 
that the IHBB-LB algorithm outperformed the HBB-LB 
algorithm in terms of makespan, response time, and the 
number of migrated tasks. The degree imbalance for HBB-LB 
and IHBB-LB, according to the results, was 1.45 and 1.43, 

respectively, indicating a slight increase in the DI associated 
with IHBB-LB. 

In [11], Patel and Bhalodia (2019) integrated two 
algorithms to create a new algorithm for load balancing over 
cloud systems. This involves the identification of overloaded 
and underloaded VMs, followed by priority-based migration 
of tasks from overloaded to underloaded VMs. If priority is 
confirmed, the honeybee-inspired load-balancing algorithm 
should be applied for task allocation, whereas if priority is not 
confirmed, the WRR algorithm should be adopted for task 
allocation. However, additional QoS factors (e.g., response 
time, cost, power consumption) are not taken into account. 
Furthermore, the authors who proposed this method did not 
address determinants of performance (e.g., degree of 
imbalance, number of migrated tasks). 

In [12], Kruekaew and Kimpan (2020) proposed a new 
method of heuristic task scheduling with ABC (HABC) by 
integrating the swarm intelligence algorithm with ABCand 
heuristic scheduling algorithms. The goal of this algorithm is 
to reduce makespan and achieve load balancing by providing 
better VM scheduling for cloud computing in both uniform 
and non-uniform media. Prior to applying the ABC algorithm, 
the First Come First Serve (FCFS), Smallest Job First (SJF), 
and Largest Job First (LJF) heuristic algorithms were 
employed to structure the tasks into three distinct 
arrangements, with the arrangement using minimal 
computation time during task processing by the ABC 
algorithm considered the ideal. In terms of scheduling and 
load balancing, HABC with the largest-job-first heuristic 
algorithm (HABC_LJF) performed best. The key QoS factor 
identified was makespan, while other QoS factors and power 
use were not taken into account. 

In [13], Joshi and Munisamy (2020) presented the Dynamic 
Degree Balanced with Membership value based 
(D2B_Membership) algorithm, which takes into 
consideration every host’s membership value and the balance 
condition of VMs to modify the allocation policy. VMs are 
allocated to an appropriate host with more capacity than the 
VM’s needs. Workload in task allocation is dynamically 
dispersed by assessing the load on a VM so that the system’s 
performance can be improved. The results indicated that the 
algorithm improved upon Round Robin (RR) and FCFS in 
terms of execution time as well as makespan. However, the 
algorithm did not compute the degree of system imbalance or 
the number of tasks migrated. The algorithm was concerned 
with the two factors of makespan and execution time, 
regarding them as the major QoS factors, and ignored power 
consumption by either the VM or host. 

Recently, the IT industry has significantly increased its 
energy use. As part of the endeavor to provide support to 
cloud computing and grid computing services, major IT 
developers (e.g., IBM, Microsoft, Google) have established a 
greater number of data centers, which are pivotal hubs of 
information and communication technology [14]. Due to the 
myriad servers and switches they contain, these data centers 
consume a massive amount of energy, which not only makes 
operations more expensive but is also environmentally 
detrimental because of carbon dioxide emissions. Energy 
consumption is further increased by the cooling equipment 
necessary to manage the heat generated by the datacenters 
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[15]. It is estimated that, in 2012, data centers consumed about 
300–400 TWh of electricity (approximately 2% of global 
consumption), which is expected to triple by 2020 [16]. There 
is evidence that the energy used by idle servers is up to 70% of 
the energy consumed during peak activity [14], [17]. 

As such, allowing servers to run with a limited workload is 
not cost effective. In the context of cloud computing, a major 
problem for service providers is the amount of power used by 
cloud data centers [14], [18]. In this regard, the goal is to 
decrease power use and ensure compliance with 
environmental policies and standard inter-user contracts [14]. 
A number of studies have investigated the power use of cloud 
computing, with estimation and improvement of the power 
use of separate VMs. 

As noted in [19] by Ghafari, Fazila, Patooghy, and 
Rikhtechi (2013), it is possible to decrease the amount of 
power used by cloud computing infrastructures with the 
load-balancing method known as the ABC 
algorithm–minimal migration time (Bee-MMT), which uses 
ABC to identify over-utilized hosts. It then uses the minimum 
migration time (MMT) policy for VM selection. The VM 
selection policy chooses one or more VMs to migrate from the 
over-utilized hosts so that their use can be minimized. It can 
also identify underutilized hosts and transfer all VMs assigned 
to these hosts, if possible, after which they are switched to 
sleep mode. As can be seen from the performance, power and 
resource consumption are both reduced.Regardless, QoS 
factors were not properly considered.To accomplish load 
balancing, Bee-MMT employs VM migration. Multiple VMs 
may be created on a single physical machine using 
virtualization. The VMs created will be independent in nature 
and have differing configurations. In the case of a physical 
machine becoming overloaded, it is necessary for VMs to 
transfer to a different host using a VM migration 
load-balancing approach [4]. However, this method has some 
disadvantages, the most significant of which are as follows   
[20]:  
 When the VM is migrated from one physical machine 

to another, the physical machine that the VM is 
migrated to consumes more memory. 

 Some of the customer’s current activities can be lost, 
which can result in extremely high expenses. 

 There may be excessive VM downtime as a result of 
halting VM migration. 

One method that has recently attracted significant research 
attention is VM consolidation, which can achieve a substantial 
decrease in power use, given that the amount of power 
consumed by inactive or sleep-mode hosts is low [21]. The 
VM consolidation method successfully reduces power use 
through the prevention of idle power use by changing idle 
nodes to modes such as sleep or hibernation, which use little 
power [22]. Live migration is also made possible by 
virtualization and involves VM transfer among hosts, known 
as physical servers or nodes, with minimal downtime. The 
overall goal is to ensure that the fewest possible nodes are 
active at any given moment [21].  

In the VM consolidation method, choosing the VM for 
migration is no easy task, which has prompted the proposal of 
a range of solutions. A number of criteria must be considered 

in relation to this choice, given the dynamic nature of 
computation needs in the real world. In [21], Monil and 
Rahman (2016) suggested a fuzzy VM selection algorithm 
with migration control. This method is capable of smart 
decision-making regarding the choice of VM for migration 
between two hosts. An overload detection algorithm was 
subsequently applied to establish mean, median, and standard 
deviation. The suggested method was simulated and 
compared with other similar methods and demonstrated better 
performance not only in reduced power use but also in 
minimizing Service-Level Agreement (SLA) violations. 

VM consolidation was the basis of the approaches 
implemented in [22] and [23]. Although both groups of 
researchers proposed fuzzy VM selection as a method for 
choosing a VM for migration from a host with excessive load, 
the inputs employed in a fuzzy inference system to decrease 
power use were different. More specifically, Monil and 
Rahman (2017) used RAM, correlation, and standard 
deviation as inputs in [22], while Rajagopal and Baskaran 
(2019) used CPU and disk storage as inputs in  [23] used CPU 
and disk storage as inputs. 

The studies cited above sought to decrease power use by 
data centers or hosts by applying algorithms to move VMs or 
put idle nodes into a mode with low power consumption. 
Nevertheless, the strategy of VM migration does not address 
the issue of significantly diminishing power use. Furthermore, 
the method is deemed to lack efficiency if the reduction in the 
power use of data centers causes SLA violations or disregards 
QoS factors. Therefore, further investigation is necessary to 
overcome this issue. 

Many studies have concentrated on improving just a few 
factors among a plethora of QoS factors[6], [8],[10],[13], 
[24], [25],[26]. Without considering power usage, such 
research has centered on improving QoS factors. On the other 
hand, numerous studies[19], [22], [23], [26], [27]have 
proposed load-balancing algorithms based on ABC to 
minimize power consumption with ignoring QoS variables. 

To evaluate the host and the required VM to receive the 
incoming task, all ABC-based load-balancing algorithms have 
ignored the integration of QoS factors with power 
consumption. Previous algorithms only began the 
load-balancing process if the whole system was unbalanced 
enough to influence the degree of imbalance. As a result, this 
research proposes an improved LBA HB algorithm for 
estimating the VM's power consumption and minimizing the 
system's imbalance degree, average response time, and 
makespan. 

 
3. PROPOSED MODEL 
 

The ABC is based on honey bees’ intelligent foraging 
behavior as they seek food sources; Dervis first presented this 
method for addressing real-world problems in 2005 [28]. 
ABC refers to a subsection of the swarm-intelligence based 
algorithms that address different optimization problems by 
imitating the honeybee swarms’ collective intelligence [28]. 
A bee gathers food from a specific flower, or food source and 
a colony of bees develops where such bees cooperates to find 
better food sources [10]. Sharing information helps with 
making decisions and examining the search space [8].  
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Employed bees, scouts, and onlookers are the three types of 
bees in an ABC system; each performs a different role[3] : 

1. Employed bees: The employed bees are also called 
leader bees. They seek food sources and come back to their 
hives and perform a dance to convey information regarding 
the foraged food sources, including the distance, quantity, and 
direction, as well as quality of the food source [25]. 

2. Scout bees: These bees search for new food sources at 
random near the hive, and when they come across an existing 
source, they begin a new search for a new source in that 
area[9]. 
3. Onlooker bees: Onlooker bees gather information from the 
employed bees in the hive and select food sources based on 
these dances [8]. Typically, a honeybee swarm is comprised 
of, on average, 50% employed bees and 50% unemployed 
bees, with 5 to 10% acting as scout bees. Both scouts and 
onlookers are also known as unemployed bees [25]. 

In this study, the methodology is based on the honeybees’ 
foraging activity carried out to determine the most suitable 
available resources that can ensure that the cloud data center 
has load balancing. Similar to the activity of honeybees when 
searching for food sources wherein they select the best food 
source through foraging, the proposed algorithm approach 
determines the best suited VM in the appropriate host to 
allocate the tasks through the fuzzy inference system. Table 1 
presents a mapping between the honeybees’ foraging behavior 
and the proposed system’s load balancing scenario obtained 
by conducting an in-depth analysis of the honeybees’ foraging 
behavior. 

ILBA_HB is an extension of LBA_HB that enhances the 
performance of LBA_HB with fuzzy logic. The ILBA_HB 
algorithm balances the load using a two-level approach. In the 
first level, the suitable host is selected based on capacity, 
processing time, and load. In the second level, the appropriate 
VM is selected based on processing time, and cost. The VM’s 
power consumption on the host is also estimated. A fuzzy 
system is used to select a proper host and VM to process tasks. 
Fuzzy systems are suitable for environments wherein multiple 
factors are undetermined or cannot be predicted. One of the 
primary benefits of the fuzzy logic controller compared with 
other conventional control strategies is that its controlled 
development can be sustained without complex mathematical 
modeling. Due to the benefits of fuzzy logic when working in 
dynamic, uncertain environments, this paper proposes the 
fuzzy approach. 

Previous algorithms have used two methods to balance the 
system: VM migration and task migration. The migration of 
VMs has several limitations, as previously mentioned. In 
contrast, task migration undertakes the transfer of novel or 
excess tasks from a VM with more load to a VM with less 
load. The completion time of migration depends upon the 
number of tasks migrated from a VM in the load-balancing 
process. The migration of several tasks from one virtual 
machine to another causes unfavorable load conditions in the 
VM from which the tasks are migrated. The occurrence of 
unfavorable load conditions must be minimized to efficiently 
balance the load. For this reason, the proposed algorithm 
balances the system load as soon as a user request arrives and 
assigns that request to the appropriate host and then the 
appropriate VM. That means the load-balancing process starts 

with the arrival of the system’s first task, not after the whole 
system becomes unbalanced. Therefore, the imbalance degree 
is decreased in ILBA_HB. If all VMs on a host become 
overloaded, then that host becomes overloaded. ILBA_HB 
restricts the allocation of requests to overloaded hosts by 
removing the task from the waiting queue, where it must wait 
until it can be allocated to an available host. Therefore, 
ILBA_HB avoids migration time cost, which is caused by the 
migration of a number of tasks. 

 
3.1 Description 

 
Fuzzy VM controller and fuzzy host controller were 

planned as part of this research. However, since the situation 
is uncertain and computing requirements are highly complex 
in practice, fuzzy logic can be implemented at various levels 
of input to achieve the best combination of energy 
consumption and QoS factors[29]. 

 
Table 1:Mapping between the ILBA_HB and honeybees’ 

behavior 
Honeybee Hive Cloud Environment 

Food Source VMs on proper host, VM or 
Host, 

Honeybee  Task (Cloudlet) 
Bee selects best food 
source (onlooker bee) 

Task allocated to proper VM by 
Honeybee broker  

Scout bees Tasks in queue/new incoming 
task 

Employed bees Tasks running in each VM 
Bee finds depleted food 

source 
VM is overloaded 

Information shared 
through waggle dance 

Load, capacity in host and 
processing time on each host 

and VM 
 

 
3.1.1 Fuzzy Host Selection Method 

For the fuzzy host controller system, three inputs have been 
specified:  load, processing time, and capacity. The host's 
main characteristics are capacity and load. The host fuzzy 
controller produces fitness values for all hosts and then 
chooses the host with the highest fitness value. The output of 
the host fuzzy controller is the host with the highest fitness 
value. Figures 2, 3, 4, and 5 illustrate the membership 
functions for three inputs and one output. To provide a fuzzy 
host controller,a fuzzy inference rule (FIS) is developed using 
the three metrics as input. The FIS requires linguistic 
variables to be used in the generation of fuzzy inference 
rules[21]. Table 2 shows the six possible logical product and 
output response conclusions in the proposed method.  

A CC system is comprised of a series of data centers. Each 
data center encompasses a series of h hosts, each of which in 
turn encompasses a series of m VMs. A set of VMs is created 
as푉 = {푉 ,푉 , … ,푉 }, where 푚 is the number of all VMs. A 
set of tasks is created as 푇 = {푇 ,푇 , … ,푇 }, where 푛 is the 
number of all tasks. The completion time for a task푇  on a 
VM  is indicated as 퐶푇 , 푖 = 1, 2, …푛 , 푗 = 1, 2, …푚 .The 
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following equations are used to calculate these inputs: 
 The total possible resources of a VM that can be allocated 

for task execution are determined by capacity. 
If N denotes the number of processors in a virtual 
machine,P denotes the million instructions per second 
(MIPS) for all processors, and Bdenotes the bandwidth 
available for communication, the capacity of a single 
virtual machine (Ci) can be determined as follows[12]: 

퐶푖 = 푁 + 푃 + 퐵													(1) 
A host’s capacity is the summation the capacity of all VMs, 
given as follows [8]: 

퐶 = 퐶푖
	 	

																																		(2)											 

 If T(t)represents the number of tasks on a VM's service 
queue at time t, , and S represents the execution 
timeS(T, t), then the loadL , is computed as follows [13]: 

퐿 , =
푇(푡)
푆(푇, 푡)

																								(3) 

The host’s load can be obtained by summing the load of all 
VMs: 

퐿 = 퐿 ,
	 	

																															(4) 

 The processing time of a host is calculated as follows [3]: 

푃푇 = 푃푇
	 	

																																		(5)		 

Similarly, where n denotes the number of hosts, the average 
processing time of all hosts can be determined as follows[3]: 

푃푇 _ =
1
푛 푃푇

	 	

															(6) 

 Load standard deviation: The standard deviation (σ) in 
statistics and probability theory shows how much 
variance or dispersion there is in relation to the average. 
The formula is as follows[10]: 

휎 =
1
푚 (푃푇 − 푃푇 _ )

	 	
																				(7) 

 Standard normal deviate of VM(j): The calculated 
difference between an observed value and the mean is 
referred to as deviation in mathematics and statistics. The 
magnitude of the difference indicates the extent of the 
difference[3]. The normal deviate, also known as the 
standardized value, is the distance between the mean of a 
data point and the standard deviation of a distribution. 
The standard normal deviate is a unit deviation with a 
mean of zero. This metric is determined as follows to 
show deviation from the average mean or predicted 
value[3]: 

푆푁퐷 (푗) =
(푃푇 (푗)− 푃푇 _ )

휎 								(8) 
 
 
 
 

3.1.2 Fuzzy VM Selection Method 

 
For the development of the fuzzy VM controller system, 

three inputs have been specified: processing time, cost, and 
power consumption.The VM fuzzy controller produces fitness 
values for all VMs on the proper host and then chooses the 
VM with the highest fitness value to process the incoming 
task. The output of the VM fuzzy controller is the VM with 
the highest fitness value. Figures 6, 7, 8, and 9 illustrate the 
membership functions for three inputs and one output. To 
provide a fuzzy VM controller, a FIS is developed using the 
three metrics as input. The FIS requires linguistic variables to 
be used in the generation of fuzzy inference rules [21]. Table 3 
shows the seven possible logical product and output response 
conclusions in the proposed method.The following equations 
are used to calculate these inputs: 
 The processing time of VMj is calculated as follows [8]: 

푃푇 =
퐿 ,

퐶푖 																																											(9) 
The following formula is used to measure the average 
processing time of all virtual machines: 

푃푇 _ =
1
푚 푃푇 (푗)

	 	

											(10) 

 The cost of a virtual machine is calculated by the cost of a 
singleCPU, network, RAM, and bandwidthunit. If a VM 
is priced such that p represents unit price where p = 1, 
푑푎푡푎  represents bandwidth, net  represents network 
units, RAM  represents memory units, and 
a, b, c, d	represents weights for each resource attribute 
where a + b + c + d = 1 ,The VM's cost is then 
calculated as follows[8]: 
퐶표푠푡 =

푝
퐶푃푈 ∗ 푛푒푡 ∗ 푑푎푡푎 ∗ 푅퐴푀 										(11) 

 On a given host, a VM's power consumption can be 
measured as follows. Consider theyth	VM, , denoted 
byVM , where c denotes the number of CPU nodes in 
VM . The memory capacity of 	VM  is m ,	 the task 
withinVM  ist , and the CPU utilization ratio of 푡  is 
c . If t  is run on multiple CPUs, c 	becomes the sum 
of the Processor utilization ratios for each of the CPUs 
wheret isrun[20]. m  is the memory utilization of t , 
and p  is the consumed power of t .The CPU and 
memory usage of a task are essential factors in VM power 
consumption, and when these factors have higher values, 
VM power consumption increases[20].As shown in Eq. 
12, p is estimated as the product ofc and 푚 . 

푝 = 푐 	× 	푚 																								(12) 
p , as shown in Eq. 16, represents the total consumed power 
of each task in VM , while ndenotes the overall number of 
tasks runningin VM [20] 

푝 =
∑ 푝	 	

푐 																									(13) 
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Figure 2:Capacity input membership function 

 

Figure 3:Processing timeinput membership function 

 

Figure 4:Loadinput membership function 

 

Figure 5:Membership output function of host-fitness 

 

Table 2:The fuzzy rulers for hosts 
The fuzzy rulers to host selector are: 

1: IF capacity IS high AND load IS low AND 
processing_time IS low THEN fitness IS high. 

2: IF capacity IS low AND load IS high AND 
processing_time IS high THEN fitness IS low. 

3: IF capacity IS low AND load IS low AND 
processing_time IS low THEN fitness IS Normal. 

4: IF capacity IS high AND load IS low AND 
processing_time IS high THEN fitness IS Normal; 

5: IF capacity IS high AND load IS high AND 
processing_time IS low THEN fitness IS high; 

6: IF capacity IS high AND load IS high AND 
processing_time IS high THEN fitness IS low; 

 

 

Figure 6:Cost input membership function 

 

Figure 7: VM processing_time input membership function 

 

Figure 8:Power consumptioninput membership function 

 

Figure9:Membership output function of VM-fitness 
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Table 3: The fuzzy rulers for VMs 
The fuzzy rulers to VM selector are: 

1: IF Power IS Low AND Cost IS Low AND 
VM_PTTime IS Low THEN fitness IS High; 

2: IF Power IS High AND Cost IS High AND 
VM_PTTime IS High THEN fitness IS Low; 

3: IF Power IS Low AND Cost IS High AND 
VM_PTTime IS Low THEN fitness IS High; 

4: IF Power IS High AND Cost IS Low AND 
VM_PTTime IS High THEN fitness IS Low; 

5: IF Power IS High AND Cost IS High AND 
VM_PTTime IS Low THEN fitness IS Normal; 

6: IF Power IS Low AND Cost IS Low AND 
VM_PTTime IS High THEN fitness IS Normal; 

7: IF Power IS Low AND Cost IS High AND 
VM_PTTime IS High THEN fitness IS Normal; 

 
3.2 Flowchart of Proposed Model  
 

Whilst the four stages outlined below (A, B, C, & D) are 
comparable to the four stages described in LBA_HB (A, B, C, 
& D), there is one noticeable difference in that the suggested 
algorithm encompassed two further steps, to wit: B.8 and B.9. 
Figure 10 presents the framework of the ILBA_HB algorithm. 
The four phases in the algorithm are outlined below. 
A. Workflow Submission (the input comprises a group of 
tasks) 

1. The preprocessor receives new workflow. 
2. The number of tasks and the length of each task's 

instructions are calculated in the workflow sent to 
the preprocessor. 

B. Task In (input comprises an individual task) 
1. Tasks are readied for implementation, and a request 

is dispatched to the VM load balancer.  
2. Prepared tasks are queued by the VM load balancer. 
3. Tasks are prioritized as per a FCFS approach and the 

queued first task is taken by the VM load balancer.   
4. To determine which task is allocated to which VM, 

data is gathered between the last allocation and 
de-allocation, thereby imitating honeybee behavior 
since bees determine which plant to visit in 
accordance with nectar availability in specific flower 
patches.  Threshold information gauges host 
availability in accordance with host variation. VMs 
perform this availability check.  

5.  Host levels are limited so request allocations to 
overloaded hosts are restricted. However, any task 
withdrawn from the queue must locate an 
appropriate host. The threshold data indicates two 
potential outcomes, namely: the task might locate a 
list of hosts using fuzzy host selection or the task 

might not find a host and be waited until one is 
obtained.   

6. The first task is eliminated from the queue when it 
identifies a suitable host. 

7. A control flag gathers tasks from the queue.  
8. (Fuzzy host level): Three vital inputs are located in 

the fuzzy host selection, whereby the host is selected 
in accordance with fuzzy host selection output. 

9.  (Fuzzy VM level):It's possible that a task may be 
accepted by more than one VM on a given host. The 
most appropriate VM is chosen using a fuzzy VM 
selection method. The most appropriate VM is 
chosen based on three key inputs. A proper VM id is 
the output of fuzzy VM selection. 

C. Task out (an appropriate VM has been selected): 
1. The host and the VM update any allocated data. 

Regular checks designed to whether the host or VM 
is overloaded can produce data, including the host’s 
and the VM’s current processing time. Whether the 
VM(j) becomes overloaded is determined by 
variations in its processing time. The variation value 
indicates the VM(j) load balance in comparison to 
those of other VMs. Variations in VM processing 
time, when compared to average VM processing 
times indicate whether it exceeds or is equal to a 
threshold value α, as per the following: 

푆푁퐷 (푗) ≥ 훼																				(14) 
When all VMs in a specified host become 
overloaded, that host is considered overloaded. 

2. The task is allocated to a suitable VM. 
3. The task upgrades any de-allocated data, including 

current host and VM processing times and host and 
VM availability. VMs are deemed ready for use 
when specific VM processing times vary from the 
average processing time of all VMs at a rate lower 
than a threshold value α, as indicated in the 
following: 

푆푁퐷 (푗) < 훼																		(15) 
A host which has at least one available VM is 
considered available. 

4. Remaining tasks regarded both host and VM are 
conducted in a fashion akin to the waggle dance of 
honeybees, wherein information is passed to other 
bees in the hive. In the current case, information 
updates pertain to availability and VM and host 
loads, thereby facilitating the suitable assignment of 
task to VMs.  

5. To avoid delays once the allocated task has been 
executed, a control lag is dispatched to the tasks.  

6. The execution is completed by this task. 
D. Delay (a task is unable to locate an available host) 
1. The process is delayed unit the control flag has been 

dispatched and received, after which the execution can be 
concluded. Subsequently, the task is restarted from an 
earlier stage because the perceived data must be 
re-evaluated. Delayed tasks are prioritized ahead of other 
queuing tasks. Once the first round is completed, each 
task returns to phase B.4, after which is concludes the 
other unfinished steps. 
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Figure 10:Flow chart of structure of ILBA_HB model 

 

4. RESULTS AND DISCUSSION 
 

We present the results of the experiments conducted in this 
study in this section. We compared the proposed algorithm 
with the HBB-LB and LBA-HB algorithms. We used the 
CloudSim simulator for execution. To mimic our algorithm, 
we expanded the classes of the CloudSim simulator. The 
principle execution is comprised of a subclass of the 
DatacenterBroker class in the org.cloudbus.cloudsim 
package, which we called HoneyBeeLoadbalancer. It is 
imperative to note that the DatacenterBroker class has an 
inheritance relationship with the SimEntity class within the 
org.cloudbus.cloudsim.core package. 

To assess the performance in the cloud, results were 
simulated in a Windows 10 environment (64-bit) with an i5 
processor and 2.3 GHz speed with 16 GB memory. The 
language used was Java (Eclipse). 

In this study, we used the jFuzzyLogic library to combine 
CloudSim and fuzzy logic. This library includes a 
programming interface as well as a completely functioning 
and complete implementation of a FIS  [22]. 
 
4.1Simulation Parameters 

 
The proposed method’s output is evaluated in a 

heterogeneous setting using VMs with varying characteristics. 
This cloud environment accepts cloudlets of various 
specifications. Table 4 summarizes the characteristics of a 
datacenter, VMs, hosts, as well as cloudlets. The simulation 
with the CloudSim framework follows the next steps: 

1. Set up the CloudSim  package 
2. Create Datacenters 
3. Create Broker 

4. Create VMs and Cloudlets and send them to broker 
5. Starts the simulation 
6. Save results when simulation is over 
 

Table 4: Simulation Parameters 
Type Parameters Values 

DC 

Number of Data 
Centers 10 

Number of Hosts 2-6 
VmScheduler Time shared 

Host Processing speed 
(MIPS) 10000 

Host storage (MB) 100000 
Host bandwidth 

(Mbps) 80000 

Host RAM (MB) 4096Mb 

VM 

Number of VMs 50 

Processor speed 500-2000 
MIPS 

Available memory 
space in a single VM 256-2048 Mb 

Bandwidth 500-1000 
Cloudlet Scheduler Time shared 

Number of Processor 
Elements (PEs) 

requirement 
1-4 

VM Manager Xen 
 
 

Task 
or 
Clou

dlet 

Length of task 
(Executable instruction 

length in bytes) 
1000-20000 

Total number of tasks 100-1000 

 
4.2Comparison 

 
In this section, a comparison is made between three 

different approaches for load balancing. The three algorithms 
taken into account are HBB-LB, LBA-HB, and the proposed 
ILBA-HB. Different metrics can be used to evaluate different 
techniques; in our work, we use three specific metrics to 
assess their effectiveness: 

1. Response time (RT): The time between a request's initial 
demand and the first response provided is commonly referred 
to as response time [30]. 

푅푇 = 퐹푇 − 퐸푆푇															(	16) 
where FT denotes the time taken for the Cloudlet to complete 
andEST denotes the start time for executing the Cloudlet. The 
response time for a given VM  is indicated as RT , while the 
average response time for n VMs is defined as: 

푅푇 =
푅푇
푛 																		(17) 

Figures 11 and 12 are box plots representing the distribution 
of results for RT. The statistical values for these distributions 
are given in Table 5, which presents a comparison of the 
response times for ILBA-HB, LBA-HB, and HBB-LB. From 
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the results, it is clear that the proposed ILBA-HB algorithm 
improves the response time by 1.93% for the LBA-HB 
algorithm and 62.71% for the HBB-LB algorithm when the DI 
value is at its maximum, by 4.38% for the LBA-HB algorithm 
and 78.05% for the HBB-LB algorithm when the DI value is 
at its minimum, and by 3.90% for the LBA-HB algorithm and 
52.44% for the HBB-LB algorithm when the DI value is 
average. 

 

 
Figure 11:RT dispersion for ILBA-HB and LBA-HB 

 
Figure 12: RT dispersion for HBB-LB 

 

Table 5: Statistics for RT 

Stat 
HBB-
LB 

LBA-
HB 

ILBA-
HB 

Min. 6.36 1.46 1.396 
1st 

Qu. 
19.08 14.96 14.432 

Med
ian 

64.28 36.70 34.922 

Mea
n 

97.40 46.32 44.513 

3rd
Qu. 

148.7
8 

68.17 64.663 

Max
. 

409.4
0 

155.6
5 

152.63
2 

 
2.  Makespan is the maximum time it takes to complete a 

task [10]. M stands for Makespan and is calculated as follows: 
푀 = 푚푎푥 퐶푇 ; 								푖 ∈ 푇									(18) 

Figures 13 and 14 indicate the distribution of results for 
Makespan and Table 6 presents the statistics behind these 
distributions. Table 6 shows that the proposed algorithm's 
Makespan was the best performing among cloud computed 

algorithms in a heterogeneous setting, with the lowest 
minimum Makespan, maximum Makespan, and average 
Makespan. ILBA-HB improves Makespan by 3.70% for the 
LBA-HB algorithm and 84.83% for the HBB-LB algorithm 
when the DI value is at its maximum, by 33.33% for the 
LBA-HB algorithm and 91.66% for the HBB-LB algorithm 
when the DI value is at its minimum, and by 3.55% for the 
LBA-HB algorithm and 78.30% for the HBB-LB algorithm 
when the DI value is average. 
 

3.   The degree of imbalance (DI) is a metric that calculates 
the imbalance among VMs, which is defined as follows [8]: 

푇 =
푡표푡푎푙_푡푎푠푘푙푒푛푔푡ℎ

푝푒_푛푢푚 × 푝푒_푚푖푝푠 														(19) 

where total_tasklength is the total length of the tasks that are 
submitted to the VMj, pe_num  is the number of processors 
of VMj, and pe_mips  is the MIPS of each processor of VMj.  

퐷퐼 =
푇 − 푇

푇 																					(20) 

Where T  andT are the maximum and minimum Ti for 
all VMs, and T  is the average Ti of the VMs [12]. 

The distribution and statistics for this measure are shown in 
Figures 15 and 16 and Table 7.The results of the ILBA-HB 
algorithm for DI demonstrate that it did not improve the DI 
when compared to LBA-HB. For the first quartile of DI values 
and the minimum DI values, the proposed algorithm 
improved the degree of imbalance slightly over LBA-HB. In 
contrast, the LBA-HB algorithm outperformed ILBA-HB in 
its degree of imbalance for the maximum and average values 
and the third quartile. The performance of the two algorithms 
for the DI was close, to a large extent, as the two algorithms 
avoid task migration to keep the system's load balanced. 

When comparing the proposed algorithm's output to that of 
the HBB-LB algorithm in terms of degrees of imbalance, the 
ILBA-HB algorithm outperformed the HBB-LB algorithm 
because its minimum DI, maximum DI, and average DI were 
the lowest in a heterogeneous setting . Table 11 demonstrates 
how the proposed algorithm improved the degree of 
imbalance by a significant percentage; the ratio of the 
ILBA-HB algorithm’s improvement to that of the HBB-LB 
algorithm was 45.34% at the maximum DI, 49.29% at the 
average, and 50.28% at the minimum. 

The proposed algorithm is superior to HBB-LB for the DI 
as the HBB-LB algorithm migrates tasks between VMs and 
this causes migration costs. In contrast, the proposed 
algorithm avoids task migration; we assumed that avoiding 
task migration reduced the degree of imbalance and this is 
what the results have proven. 

The use of fuzzy logic with the proposed algorithm 
improves its response time and Makespan compared to those 
of LBA-HB and HBB-LB, thus improving overall system 
performance. The ILBA-HB algorithm generates promising 
results, even if the improvement is negligible. 
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Figure 13: Makespan dispersion for ILBA-HB and LBA-HB 

 
Figure 14:Makespan dispersion for HBB-LB 

 

Table 6: Statistics for Makespan 

Stat 
HBB-
LB 

LBA-
HB 

ILBA-
HB 

Min. 12.0 3.00 2.00 
1st 

Qu. 
36.0 27.00 24.00 

Med
ian 

202.0 64.00 64.72 

Mea
n 

372.6 80.85 77.98 

3rd
Qu. 

604.1 117.7
4 

109.75 

Max
. 

1714.
5 

269.9
9 

259.99 

 
 

 
Figure 15: DI dispersion for ILBA-HB and LBA-HB 

 
Figure 16:DI dispersion for HBB-LB 

 
 

Table 7: Statistics for DI 

Stat 
HBB-
LB 

LBA-
HB 

ILBA-
HB 

Min. 1.414 1.205 0.703 
1st 

Qu. 
1.415 1.272 1.217 

Med
ian 

2.772 1.301 1.265 

Mea
n 

2.700 1.297 1.352 

3rd
Qu. 

3.921 1.314 1.387 

Max
. 

4.497 1.370 2.458 

 
The second part of these results discusses the relationship 

between the VM’s power consumption factor and QoS 
factors, for example cost and processing time. These two 
variables were the only ones considered in this study. Table 8 
presents the power consumed per VM versus the cost factor 
and processing time factor. The power consumed by the VM 
is calculated according to Eq. 13 . To illustrate the two 
variables’ relationship, we adopt Spearman’s Rank 
Correlation Coefficient. The Spearman’s Rank Correlation 
Coefficient is a statistical test for determining the degree of 
correlation between two variables, if any [31]. Meanwhile, a 
scatter graph for the two variables could indicate whether 
there is a degree of correlation, with Spearman’s Rank 
providing a numerical value for the degree of correlation, or 
indeed the degree of non-correlation [31]. 

Table 9 presents the Spearman’s rank correlation 
coefficient for power consumption, PT, as well as cost. 
Through this test, it may be concluded that there is a very 
strong positive correlation between power consumption and 
cost, because the Rs value is +0.9547, critical probability (p) 
value is 0.001, while the statistical significance level is 
99.9%. The null hypothesis has a 0.1% chance of being 
correct (p=0.001). Resultantly, we must accept the alternative 
hypothesis, namely that a very strong positive correlation 
exists between power consumption and cost, with the null 
hypothesis rejected (that no correlation exists).  

From the results presented in table 9 it may be concluded 
that power consumption and PT have a very weak positive 
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correlation, because the Rs value is 0.1589, critical p value is 
0.50, while the statistical significance level is 50%. The null 
hypothesis has a 50% chance of being correct (p=0.50). 
Consequently, we must accept the null hypothesis that no 
correlation exists. 
 

Table 8: Power consumption, cost, and PT for VMs 
VM

_id 
power 

consumption 
Cost PT 

 0  1.900 0.600 80.000 
1 49.400 7.800 260.000 
2 85.387 8.100 120.000 
3 136.350 8.100 67.500 
4 0.950 0.300 40.000 
5 47.500 7.500 250.000 
6 85.387 8.100 120.000 
7 136.350 8.100 67.500 
8 1.900 0.600 80.000  
9 47.500 7.500 250.000 
10 85.387 8.100 120.000 
11 136.350 8.100 67.500 
12 0.950 0.300 40.000 
13 47.500 7.500 250.000 
14 85.387 8.100 120.000 
15 136.350 8.100 67.500 
17 47.500 7.500 250.000 
20 2.850 0.900 120.000 
18 85.387 8.100 120.000 
19 136.350 8.100 67.500 
21 47.500 7.500 250.000 
22 85.387 8.100 120.000 
23 136.350 8.100 67.500 
24 0.950 0.300 40.000 
25 47.500 7.500 250.000 
29 47.500 7.500 250.000 
26 123.337 11.70

0 
173.333 

27 136.350 8.100 67.500 
30 85.387 8.100 120.000 
31 136.350 8.100 67.500 
32 0.950 0.300 40.000 
33 47.500 7.500 250.000 
34 85.387 8.100 120.000 
35 136.350 8.100 67.500 
37 47.500 7.500 250.000 
38 85.387 8.100 120.000 
39 136.350 8.100 67.500 
41 47.500 7.500 250.000 
42 85.387 8.100 120.000 
44 0.950 0.300 40.000 
45 47.500 7.500 250.000 
43 136.350 8.100 67.500 
46 85.387 8.100 120.000 
47 141.400 8.400 70.000 
49 47.500 7.500 250.000 

Table 9: Spearman’s rank correlation coefficient 
Variables Rs value P value 
PC vs Cost 0.9547 0.001 
PC vs PT 0.1589 0.50 

 
5. CONCLUSION 
 

Cloud computing may be considered as an innovative 
paradigm providing users with a wide range of 
resources,which are able toassist with the simultaneous 
execution of applications or tasks. The numerous applications, 
as well asconstantly altering user demands, create problems of 
load balancing—including under-loading and 
over-loading—for the virtual machines in the cloud data 
center,resulting in the system’s performance being negatively 
affected.A hybrid algorithm may be used to apply fuzzy logic 
for implementing a dynamic load balancing algorithm,which 
can deal with previous algorithms’ ambiguity and 
inconsistency. In order to select the appropriate VM for 
handling the task, the proposed algorithm takes into account 
the QoS factors such as cost and processing time, alongside 
the power consumption factor. The simulation results 
evidence that the proposed algorithm enhances the mean 
response time, makespan, as well as degree of imbalance over 
LBA_HB and HBB-LB. Additionally, it clarified that energy 
consumption and cost have a very strong positive 
correlation,while the correlation between energy consumption 
and processing time is very weak. However, future 
researchcould consider the new meta-heuristic nature-inspired 
techniques for ensuring load-balancing with regards to energy 
consumption and QoS. Moreover, it is feasible to apply the 
proposed algorithm in the real time environment as a means of 
comparing the results. 
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