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ABSTRACT 
This paper presents the performance of Multiple Mitosis 
Genetic Algorithm to solve Rosernbrock’s test function for 
different multiplying factor. Multiplying factor in Multiple 
Mitosis Genetic Algorithm is introduced by the author to 
improve convergence rate to find final optimum. To compare 
with simple Genetic Algorithm, this method promotes 
productive parents to produce greater number of kids in one 
generation where it increases the possibilities to have good 
quality of individuals and prevent premature convergence. 
Result shows that as the factor increases, the final answer 
converge approaching global optimum and the result is 
comparable with other methods proposed by other 
researchers. 
 
Key words: genetic algorithm, premature convergence, 
genetic algorithm 
 
1. INTRODUCTION 

Nowadays, the application of optimization technologies is 
emerging in various industries to promotes user friendly, 
efficient, smart, fast and many more added values in wide 
range of area such as engineering, financial, medical, 
education and many more [1] – [7].  For example, higher 
quality medical images can be generated with faster 
processing time which can help medical practitioners for 
diagnosis purpose and traffic can be controlled with the 
intelligence of emerging optimization technique in traffic 
management [8] – [10].  

Because of that, optimization techniques evolved from time 
to time by many researchers to improve the performance of 
current techniques and fulfil the needs of current needs. 
There are many approaches introduced such as development 
of new optimization techniques, hybrid different techniques 
together, modification on the flow of the algorithm, 
manipulation of operator of certain algorithm and many 
more techniques done by researchers [11] – [15].  

Particle Swarm Optimization (PSO) is another 
metaheuristic method was introduced by Kennedy and 

Eberhart in 1995 to solve optimization problem. PSO is an 
algorithm inspired by the foraging behaviors of birds. 
Innovation of this method also emerging from time to time 
as it is known as one of powerful optimization algorithm 
[16] – [17].  

Whale Optimization Algorithm (WOA) was introduced by 
Mirjalili & Lewis in 2016. There are three operators 
introduced which are encircling prey, bubble-net foraging 
in exploitation phase and search for prey in exploration 
phase. This method was developed inspired by the behavior 
of humpback whales in hunting activity [18]. 

Genetic Algorithm (GA) is one of the pioneer algorithms in 
metaheuristic optimization technique introduced by John 
Holland in 1988. It is a method based on genetic evolution 
that has several operators: mutation, crossover, and 
selection processes [19] – [20]. Many researchers improved 
the performance of classical GA by doing modification on 
these operators which results outstanding performance in 
solving optimization problems [21] – [25]. 

Abid Hussain in [26] proposed the idea of Best-Worst 
Selection (BWS) criteria for Genetic Algorithm as a new 
selection scheme which separates healthy parents and 
unhealthy parents to reduce the effect of premature 
convergence. It has simple scheme and results proved the 
method help to improve the performance of simple GA. 
David in [27] promotes chaotic induced genes into normal 
GA to improve the accuracy of the best fitness found using 
GA techniques. The proposed idea shows that the influence 
of chaos theory improves the performance of GA. 

This paper study the impact of changing multiplying factor 
on the performance of Multiple Mitosis Genetic Algorithm 
(MMGA). As the factor increased, the proposed idea 
improves the diversity of high-quality individuals by 
producing higher number of children which also helps to 
improve the performance of simple GA from premature 
convergence. 

 Rosernbrock’s test function has been used as the test 
function because it is challenging to find out the global 
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optimum of the function and it has been used continuously 
as a benchmark to test the performance of new optimization 
algorithm. The global optimum lies inside a narrow, long, 
parabolic shaped flat valley, and to find a minimum point is 
trivial [28]. Result shows that as the factor increases, the 
final answer converge approaching global optimum and the 
result is comparable with other methods proposed by other 
researchers. 

2. METHODOLOGY 
Traditionally, Simple Genetic Algorithm (SGA) can be 
presented in following pseudocode [29-30]: 

START 
Generate the initial population 
Compute fitness 
REPEAT 
    Selection 
    Crossover 
    Mutation 
    Compute fitness 
UNTIL population has converged 
STOP 

SGA have potential to eliminate good quality individuals in 
the new generation while the population going through the 
process of crossover and mutation and finally the process 
brings the problem of slow convergence. To improve the 
performance of SGA in improving convergence rate, this 
paper proposed following modification on SGA, namely 
Multiple Mitosis Genetic Algorithm (MMGA). 

START 
Generate the initial population 
Compute fitness 

Selection 

Set Multiplying Factor of MMGA, M 
REPEAT 

Multiple Mitosis Crossover 
Mutation 
Compute fitness 
UNTIL number of individuals in new generations = M 
STOP 

In MMGA, selection process is not conducted in every 
generation. After the multiplying factor, M setup either 
randomly or preset by the user, selected parents will 
generate a number of children on the same amount of M 
value.  If the value of M is 10 means that 1 parent will 
produces 10 number of children at one time and 1 parent 
can produce children more than one time. This is done by 
the multiple mitosis crossover and mutation process. Again, 
the children will be evaluated and compared to find the best 
solution of its generation. 

It is expected that this method can improve the existence of 
high fitness individual in increment of the multiplying 
factor even though the number of populations is small as it is 

productive to produce number of children. Experiments are 
conducted to optimize a mathematical problem for different 
value of multiplying factor, M using Multiple Mitosis 
Genetic Algorithm. 

Experiments are conducted to observe the quality of the new 
offspring in solving Rosernbrock’s test function as in 
Equation 1.                     

                               (1) 

 
 

This function has “0” global optimum value at (1, 1). 
Variables x1 and x2 are encoded in binary where the number of 
bits for each variable are 29 bits to maintain the precision to 
eight places after the decimal point.  

In this experiment, the following parameter are set to find the 
global minimum of Rosernbrock’s function using Multiple 
Mitosis Genetic Algorithm. 

 

Number of generations: 1 

Population size: 50 

Probability of crossover: 1.0 

Probability of mutation: 0.01 

Multiplying factor, M = [10, 30, 50, 70, 90] 

Chromosome length = 29 bits, binary representation. 

3. RESULTS AND DISCUSSIONS 
Figure 1 shows the fitness distribution of the individuals at the 
initial population. The fitness of the initial population 
generated are scattered up to more than f(x) =2000 where the 
global optimum f(x) = 0.  
 

 
Figure 1: Best Fitness for Individuals at Initial Population 

 
The same function and parameter are now tested by setting 
the number of multiplying factor, M to 10 where it is expected 
that the fitness of the individuals is improved. Figure 2 shows 
that the fitness of the individuals is now scattered below f(x) = 
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120 where it shows 90 percent improvement on the fitness to 
achieve global solution.  
 
To observe the performance of multiplying factor on 
increasing the convergence rate, again the value of 
multiplying factor is now increased to M=30. Now, the fitness 
of the individuals is more converging from f(x) = 120 in 
previous figure to f(x) = 6 in Figure 3 where it shows 95 
percent improvement of the quality of the fitness. 
 

 
Figure 2: Best Fitness for Individuals at M=10 

 

 
Figure 3: Best Fitness for Individuals at M=30 

 

 
Figure 4: Best Fitness for Individuals at M=50 

 
Figure 4 shows the individuals distribution when M = 50. It 
shows that the fitness of all individuals is now below f(x) = 2.0 
which shows 68 percent improvement on the fitness from 
Figure 3.  
 
Figure 5 and Figure 6 show the distribution of the individuals 
for multiplying factor, M=70 and M=90. Both of the figure 
show improvement of the fitness where the fitness of the 

individuals is now scattered below 1.2. In Figure 7, best 
individuals with highest fitness for each multiplying factor is 
taken out to observe the convergence of the solution to achieve 
global optimum and the summary is listed in Table 1. 
 

 
Figure 5: Best Fitness for Individuals at M=70 

 

 
Figure 6: Best Fitness for Individuals at M = 90 

 

 
Figure 7: Convergence of Best Fitness for M = 10 to M = 90 

 
 
 
 
 

Table 1: Best fitness recorded for each multiplying factor 
No of Multiplying 

Factor, M 
Best Fitness 

10 0.014564 
30 0.000103 
50 1.64E-05 
70 4.89E-05 
90 8.16E-07 
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For benchmarking purpose, the results are compared with 
other methods to ensure that the proposed method is 
comparable. Table 2 presents the best fitness of selected 
methods compared with Multiple Mitosis Genetic 
Algorithm. 

 
Table 2: Comparison of best fitness for different optimization 

technique 
Algorithm Best fitness 
PSO 8.2E-02 
WOA 7.18E00 
GA 5.92 E01 
SGA 0.0000100 
BWS 0.0013 
Chaotic Induced Genes 

(CGA) 
3.83E-07 

MMGA 8.16E-07 
 

Best fitness using PSO, WOA, GA, SGA, BWS, Chaotic 
Induced Genes (GA) and MMGA are listed in the tables. 
Best fitness is taken from the best performance of each 
methods to find global optimum. Compared with other 
optimization technique, MMGA shows that the best fitness 
found using this method is comparable and has stronger 
search ability for global optimum compared to normal GA. 
However Chaotic Induced GA shows the improvement of 
4.33 x 10-7on the best fitness compared to MMGA. 
 
4. CONCLUSIONS 

 
This paper presents the performance of Multiple Mitosis 
Genetic Algorithm to solve Rosenbrock’s test function for 
different multiplying factor. Multiplying factor in Multiple 
Mitosis Genetic Algorithm is introduced by the author to 
improve convergence rate to find final optimum. To 
compared with simple Genetic Algorithm, this method 
promotes productive parents to produce greater number of 
kids in one generation where it increases the possibilities to 
have good quality of individuals and prevent premature 
convergence. Result shows that as the factor increased, final 
answer converges approaching global optimum and the 
result is comparable with other methods proposed by other 
researchers. 
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