
Pooja Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3023– 3027

3023

ABSTRACT

Generating animations from text finds application in

numerous areas like screenplay writing, instructional videos,

public safety, and video user manuals, etc. However,

translating natural language text into animations is a

challenging task. We develop a text-to-animation system
which can handle any simple instructional text. We have

created an NLP pipeline to extract action sequences from

cooking recipes and map them to appropriate atomic actions

present in the system’s knowledge base. This paper explores a

novel approach of linking Graphics with Natural Language

Processing (NLP). Our goal is to obviate the necessity of

having a large collection of stored graphics.

Key words: animations, atomic actions, grammar,

instructional text, parse tree, verb-noun pairs.

1. INTRODUCTION

Generating animations from instructional text could be useful

in many contexts e.g. public safety [2], instructional videos

[5], video user manuals, for people who cannot read text but

understand visuals, etc.

In this paper, we propose a text-to-animation generation

system. Given an instructional input text, the system generates

a rough animation of the text. We adopt a modular approach to

solve the problem. Specifically, there are two modules in the

system: (1) It deals with extracting action sequences from the

text, and (2) maps these actions sequences into a 3D world
using a novel technique.

The fundamental step in the process of generating animations

from text is extracting action sequences from it. Extracting

action sequences from text meant for human consumption is

however challenging, as it requires understanding the

complex contexts of actions. We restrict ourselves to simple

sentences as the major focus of this paper is presenting a novel
approach for animation generation. This technique obviates

the necessity of having a large collection of stored graphics in

the database. The system generates a rough animation of the

input text which can be refined if needed by using better 3-D

models.

The potential applications of our contributions are not

restricted to cooking recipes. The techniques we develop can

be used in other applications such as game making, public
safety, etc.

In the remainder of the paper, we first review previous work

related to our approach. Section 3 gives a formal definition of

our text-to-animation system and presents it in detail. Section

4 focuses on evaluating the system based on a user study.

Section 5 provides our conclusion and future directions.

2. RELATED WORK

A lot of work focused on generating 3D animations and 3D

scenes from text has been carried out in the past. WordsEye

[1] is one such system that creates 3D scenes from concise

texts. It uses over 12,000 3D objects and maps them to create a

complex 3D scene from a given textual description.

CarSim [2] is another system that creates animated 3D scenes

of car accidents from reports written in Swedish. Our system

is similar to it in the sense that, it also creates a structured

representation of the input text using an information

extraction module and then generates a 3D scene using a

visual simulator.

SceneSeer [3] is yet another system that makes 3D scenes
from natural language texts. These papers focus primarily on

generating 3D scenes, but their ideas could be extended to

generate 3D animations too.

CARDINAL [4] is an animation generation system that can

generate 2D as well as 3D animations from movie scripts.

CARDINAL too divides the task of generating animations

into two phases, namely the NLP phase and the subsequent

animation generation phase. [5] majorly focuses on
simplifying complex scripts into simple texts and then using

CARDINAL to generate animations.

Other notable works include [9] where different neural

network models are reviewed for text processing and [10]

where authors use machine learning methods to deal with

textual information.

Existing text-to-animation systems focus on texts that contain

both actions and a subject that performs the actions (as in a
movie script, the actor). We majorly focus on instructional

text. It contains actions and its subject is simply understood.

Even though we restrict ourselves to simple instructional

sentences, complex sentences can be handled by introducing a

Generating Animations from Instructional Text

Pooja Yadav1, Kaivalya Sathe1, Dr. Manoj Chandak2
1Shri Ramdeobaba College of Engineering and Management, Nagpur, India, yadavpa_1@rknec.edu

1Shri Ramdeobaba College of Engineering and Management, Nagpur, India, satheks@rknec.edu

2Shri Ramdeobaba College of Engineering and Management, Nagpur, India, hodcs@rknec.edu

ISSN 2278-3091

Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse81932020.pdf

https://doi.org/10.30534/ijatcse/2020/81932020

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse81932020.pdf
https://doi.org/10.30534/ijatcse/2020/81932020

Pooja Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3023– 3027

3024

text simplification step before information extraction as

proposed in [5]. [7] and [8] are other possible alternatives for

text simplification.

We extract action sequences from the input text by generating

a constituency-based parse tree for the text. Other techniques

like deep reinforcement learning are also used for extracting

action sequences efficiently [6].

3. TEXT-TO-ANIMATION SYSTEM

A modular approach is adopted for generating animations

from cooking recipes instructional text. The system presently

only deals with simple instructional sentences. The general

overview of our approach is presented in Figure 1. The system

is divided into two modules:

• NLP Module: Given an input text, this module first
performs coreference resolution on the text, parses
the resolved text to output a constituency parse tree
which is further used to extract information i.e. the
actions and their corresponding arguments into
pre-defined action representations.

• Animation Generation Module: The NLP module
passes on to the graphics component all the
information necessary to render appropriate
graphics. It generates animations based on action
representations using a set of grammar rules.

2.1 NLP Module

Coreference Resolution: Input text can contain several

entities that have the same referent (e.g. pronouns). To find all
the expressions that refer to the same entity, coreference

resolution is required. NeuralCoref python package is used

which resolves pronouns to the entity they refer to in the text.

Parsing: We are interested in finding the action sequences

from the text. The Coreference resolved text is parsed with the

Berkeley Neural Parser which generates a constituency-based

parse tree. A constituency-based parse tree represents the

syntactic structure of a sentence. The root node of a
constituency-based parse tree is always denoted as S, which

represents the entire sentence. The tress has nodes like VP

(Verb Phrase), NP (Noun Phrase), VB (Verb), NN (Singular

noun), NNS (Plural noun), DT (Determiners), CC

(Conjunctions), TO (To), etc.

A constituency-based parse tree is shown for Sentence 1 “Boil

rice and add spices to it” in Figure 1. The tree is seen as a

hierarchy of verb phrases (nodes denoted by VP).

We are interested in those VP nodes whose children are a verb

(VB) followed by a noun phrase (NP). A noun phrase is

further made up of either a singular noun (NN) or a plural

noun (NNS).

Fig. 2 shows a partial parse tree that contains a VB node

followed by an NP node having NNS as its child. Fig. 3

contains a VB node followed by an NP node having NN as its
child.

In Fig. 2 and Fig. 3, the blue nodes are the nodes of interest as

they have a VB child followed by an NP child.

Extraction: In a typical text-to-animation system, an

important step is to extract relevant information from the

input text (in our case, instructional text). Cooking recipe

instructions typically consist of actions (typically verbs) and

their arguments (typically objects of the verb).

The extraction algorithm (Extracting Actions Procedure)

starts with a constituency-based parse tree of the sentence and

recursively processes it to find (action, argument) pairs and

appends it to a global list of action sequences. This global list

contains the extracted action sequences present in the input

text. For example, consider the coreference resolved text:

“Wash the tomato and cut tomato. Add tomato and spices to
bowl.”

The relevant information for this text is as follows:

Step 1: Wash the tomato represented as (wash, tomato).

Step 2: Cut the tomato represented as (cut, tomato).

Step 3: Add tomato to a bowl represented as (add, tomato).

 Step 4: Add spices to the bowl represented as (add, spices).

All these 4 action argument pairs get stored in the global list

of action sequences maintained in the Extracting Actions
Procedure.

These extracted action sequences are passed to the Animation

Generation module.

Figure 1: System Architecture: Input text is passed through the NLP module to generate
animations.

Pooja Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3023– 3027

3025

2.2 Animation Generation Module

Any action performed in a 3D world can be thought of as

being composed of several atomic actions. For example, a

cooking recipe instruction (fry, onion) can be decomposed as
(1) (heat, stove), (2) (take, pan), (3) (add, oil), and (4) (add,

onion). Similarly, (boil, rice) could be decomposed as (1)

(heat, stove), (2) (take, casserole), (3) (add, water), (4) (add,

rice). In this paper, we restrict ourselves to cooking actions,

but the idea of decomposing actions could be generalized. We

build on this intuition, a set of grammar production rules for

13 different cooking actions as shown in Figure 4.

Each grammar symbol is an action. Each grammar symbol has

a (object, parameter) structure associated with it. For

example, in MOVE (*, stove), ‘*’ is the object which

represents any object and ‘stove’ is the parameter. The

instruction simply means: MOVE the object represented by

‘*’ to the ‘stove’.

The left-hand side (LHS) of the grammar represents action
and its right-hand side (RHS) represents its corresponding

decomposition into atomic actions. The grammar symbols on

RHS are concatenated by the concatenation operator (.).

Moreover, if multiple productions are possible for a single

action in the LHS, they are separated by (‘|’). In such a case,

the system intelligently chooses the appropriate production

based on the (object, parameter) structure of the action.

The combinations of the atomic actions shown in Table 1,

namely MOVE, TILT, ACTION, HEAT can represent

complex actions in an elegant way as determined by the

grammar. The grammar rules are shown in Figure 4.

Figure 4: Grammar production rules for 13 cooking actions

Notice that in the grammar, we only have a production

BOIL(*) and not BOIL(rice). As ‘*’ represents any object,

rice replaces ‘*’ in the grammar symbol representation.

The animation generation module uses the action sequences

from the NLP module. For every (action, argument) pair, the

action gets decomposed into atomic actions according to the

grammar. We used the open-source Blender software for

creating the animations for atomic actions.

The decomposition for (boil, rice) is represented in the form

of a tree in Figure 5. The atomic actions are given by the
leaves of the tree, read from left to right.

Blender Implementation: We used Blender software to

create animations of atomic actions (Table 1). This section

explains how exactly the system is implemented and how

some features of blender make it possible.

Blender uses the concept of keyframes. Interpolation
generates property values between keyframes. Animation of

an object can be achieved by interpolation between these

keyframes. For instance, suppose we want to animate the

action MOVE of an object, say, casserole. If we specify the

coordinates and rotation angle of the casserole at the 10th

frame and then at the 20th frame, after which blender uses

interpolation to determine the position and rotation angle of

the casserole at all the frames between the 10th and the 20th
frame.

In our animation generation system, the initial configuration

Pooja Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3023– 3027

3026

looks as in Figure 6.

The concept of keyframe is used to create animations for all

atomic actions. For instance, MOVE action is implemented as
a python function which takes as an input (1) an object from

the 3D world, upon which the action has to be performed, and

(2) the destination coordinates. The reference to the object is

obtained from a dictionary, having the name of objects as keys

and the object’s initial location coordinates as values. The

python function adds 3 keyframes at an interval to generate an

animation of the object moving from its initial position to its

final destination.

Figure 7 shows different keyframes of MOVE (Casserole;

Stove).

Thus, the animation generation module first recursively

expands the action object pairs obtained from the NLP

module and calls the above-mentioned python function which

adds keyframes in the entire animation. The end result is an

eye-catching animation of the given input text.

3. EVALUATION

Evaluating a text-to-animation system is a challenging task

because of two reasons: (1) there aren't any standard datasets

for text-to-animation generation, and (2) no guidelines on
how such systems should be evaluated and which evaluation

metrics to be used exist.

Figure 6: Initial Configuration

Figure 7: Different keyframes of MOVE (Casserole; Stove)

Nonetheless, it is essential to assess the performance of our

system.

We conducted a qualitative evaluation via a user study to

evaluate the performance of the system, similar to the study

carried out in [5]. The idea was to gauge the performance of

the system based on a user’s perspective.

We created a set of animations for 20 different cooking

instructions sentences. This set was given to 10 users. It took

around 30 minutes for a user to complete the study, on

average.

The users were asked to evaluate how reasonable were the

animations w.r.t the input text and how much of the text

information was depicted in the animations, on a five-point

Likert scale. 76.5% of the user ratings on the overall
pre-visualization were 3-point or above (figure 8).

However, it was found that the NLP module can be enhanced

in some cases. For instance, in “Give the rice a good mix”,

“mix” would be identified as a noun instead of a verb. In a few

cases where actions not existing in the grammar appear in the

input text, the system simply ignores the unknown actions.

Production rules of such unknown actions need to be added to

the grammar.

Figure 5: Decomposition tree for (boil, rice)

Pooja Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3023– 3027

3027

4. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel text-to-animation system.

The system decomposes extracted actions into atomic actions

based on pre-defined grammar rules. Evaluating such a

system is a challenge. Nonetheless, the user study shows a

reasonable performance of the system. The proposed system

can be improvised in many ways.

Firstly, the current system works only with relatively simple
sentences. Consider a sentence “Bring the rice to a boil”

which semantically means the same as “Boil the rice”. The

constituency parse tree generated by the Berkeley neural

parser will treat “boil” as a noun. In the future, we would like

to use text simplification techniques to first simplify complex

sentences into simple sentences and then extract relevant

information.

Secondly, for every new possible action, the user has to define

a grammar production rule for it. It would be helpful if the

system can automatically infer the grammar productions for a

new action based on its similarity to some existing action in

the grammar. Such similarity can be found out using language

models like word2vec, glove, etc.

11 12.5

17

28
31.5

0

5

10

15

20

25

30

35

Fr
eu

q
eu

n
cy

 (
in

 p
er

ce
n

ta
ge

s)

User rating

rating 1 rating 2 rating 3 rating 4 rating 5

Figure 8: Graph of frequency (in percentages) versus user ratings

ACKNOWLEDGMENT

We would like to thank Mansi Radke for her valuable

suggestions. We would also like to express gratitude towards

Sweta Jain for her help and support.

REFERENCES

1. Coyne, Bob, and Richard Sproat. WordsEye: an

automatic text-to-scene conversion system.

In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pp.
487-496, August 2001.

2. Johansson, Richard, David Williams, Anders Berglund,

and Pierre Nugues. Carsim: a system to visualize

written road accident reports as animated 3D scenes.

In Proceedings of the 2nd Workshop on Text Meaning

and Interpretation, pp. 57-64, July 2004.

3. Chang, Angel X., Mihail Eric, Manolis Savva, and

Christopher D. Manning. SceneSeer: 3D scene design

with natural language, arXiv preprint
arXiv:1703.00050, February 2017.

4. Marti, Marcel, Jodok Vieli, Wojciech Witoń, Rushit

Sanghrajka, Daniel Inversini, Diana Wotruba, Isabel

Simo, Sasha Schriber, Mubbasir Kapadia, and Markus

Gross. Cardinal: Computer assisted authoring of

movie scripts. In 23rd International Conference on

Intelligent User Interfaces, pp. 509-519, March 2018.

5. Zhang, Yeyao, Eleftheria Tsipidi, Sasha Schriber,
Mubbasir Kapadia, Markus Gross, and Ashutosh Modi.

Generating animations from screenplays. arXiv

preprint arXiv:1904.05440, April 2019.

https://doi.org/10.18653/v1/S19-1032

6. Feng, Wenfeng, Hankz Hankui Zhuo, and Subbarao

Kambhampati. Extracting action sequences from texts

based on deep reinforcement learning. arXiv preprint

arXiv:1803.02632, March 2018.
7. Ferrés, Daniel, Montserrat Marimon, and Horacio

Saggion. YATS: yet another text simplifier.

In International Conference on Applications of Natural

Language to Information Systems, pp. 335-342. Springer,

Cham, June 2016.

8. Wang, Tong, Ping Chen, John Rochford, and Jipeng

Qiang. Text simplification using neural machine

translation. In Thirtieth AAAI Conference on Artificial
Intelligence. March 2016.

9. Sheetal S. Pandya, Nilesh B. Kalani. Review on text

sequence processing with use of deep neural network

model. In International Journal of Advanced Trends in

Computer Science and Engineering. September 2019.

10. Maganti Syamala, N. J. Nalini. A Deep Analysis on

Aspect based Sentiment Text Classification

Approaches. In International Journal of Advanced
Trends in Computer Science and Engineering. September

2019.

https://doi.org/10.30534/ijatcse/2019/01852019

https://doi.org/10.18653/v1/S19-1032
https://doi.org/10.30534/ijatcse/2019/01852019

