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ABSTRACT 

 

Generating animations from text finds application in 

numerous areas like screenplay writing, instructional videos, 

public safety, and video user manuals, etc. However, 

translating natural language text into animations is a 

challenging task. We develop a text-to-animation system 
which can handle any simple instructional text. We have 

created an NLP pipeline to extract action sequences from 

cooking recipes and map them to appropriate atomic actions 

present in the system’s knowledge base. This paper explores a 

novel approach of linking Graphics with Natural Language 

Processing (NLP). Our goal is to obviate the necessity of 

having a large collection of stored graphics.   

 
Key words: animations, atomic actions, grammar, 

instructional text, parse tree, verb-noun pairs. 

 

1. INTRODUCTION 

 

Generating animations from instructional text could be useful 

in many contexts e.g. public safety [2], instructional videos 

[5],  video user manuals, for people who cannot read text but 

understand visuals, etc.  

 

In this paper, we propose a text-to-animation generation 

system. Given an instructional input text, the system generates 

a rough animation of the text. We adopt a modular approach to 

solve the problem. Specifically, there are two modules in the 

system: (1) It deals with extracting action sequences from the 

text, and (2) maps these actions sequences into a 3D world 
using a novel technique.  

 

The fundamental step in the process of generating animations 

from text is extracting action sequences from it. Extracting 

action sequences from text meant for human consumption is 

however challenging, as it requires understanding the 

complex contexts of actions. We restrict ourselves to simple 

sentences as the major focus of this paper is presenting a novel 
approach for animation generation. This technique obviates 

the necessity of having a large collection of stored graphics in 

the database. The system generates a rough animation of the 

input text which can be refined if needed by using better 3-D 

models. 

 

 
 

The potential applications of our contributions are not 

restricted to cooking recipes. The techniques we develop can 

be used in other applications such as game making, public 
safety, etc. 

 

In the remainder of the paper, we first review previous work 

related to our approach. Section 3 gives a formal definition of 

our text-to-animation system and presents it in detail. Section 

4 focuses on evaluating the system based on a user study. 

Section 5 provides our conclusion and future directions. 

 

2. RELATED WORK 

 

A lot of work focused on generating 3D animations and 3D 

scenes from text has been carried out in the past. WordsEye 

[1] is one such system that creates 3D scenes from concise 

texts. It uses over 12,000 3D objects and maps them to create a 

complex 3D scene from a given textual description.  

CarSim [2] is another system that creates animated 3D scenes 

of car accidents from reports written in Swedish. Our system 

is similar to it in the sense that, it also creates a structured 

representation of the input text using an information 

extraction module and then generates a 3D scene using a 

visual simulator.  

SceneSeer [3] is yet another system that makes 3D scenes 
from natural language texts. These papers focus primarily on 

generating 3D scenes, but their ideas could be extended to 

generate 3D animations too. 

CARDINAL [4] is an animation generation system that can 

generate 2D as well as 3D animations from movie scripts. 

CARDINAL too divides the task of generating animations 

into two phases, namely the NLP phase and the subsequent 

animation generation phase. [5] majorly focuses on 
simplifying complex scripts into simple texts and then using 

CARDINAL to generate animations.  

Other notable works include [9] where different neural 

network models are reviewed for text processing and [10] 

where authors use machine learning methods to deal with 

textual information. 

Existing text-to-animation systems focus on texts that contain 

both actions and a subject that performs the actions (as in a 
movie script, the actor). We majorly focus on instructional 

text. It contains actions and its subject is simply understood.  

Even though we restrict ourselves to simple instructional 

sentences, complex sentences can be handled by introducing a 

 

Generating Animations from Instructional Text 

Pooja Yadav1, Kaivalya Sathe1, Dr. Manoj Chandak2 
1Shri Ramdeobaba College of Engineering and Management, Nagpur, India, yadavpa_1@rknec.edu 

1Shri Ramdeobaba College of Engineering and Management, Nagpur, India, satheks@rknec.edu  

2Shri Ramdeobaba College of Engineering and Management, Nagpur, India, hodcs@rknec.edu 

 

ISSN 2278-3091               

Volume 9, No.3, May - June 2020 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse81932020.pdf 

https://doi.org/10.30534/ijatcse/2020/81932020 
 

  

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse81932020.pdf
https://doi.org/10.30534/ijatcse/2020/81932020


Pooja Yadav et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 3023– 3027 

3024 

 

 

text simplification step before information extraction as 

proposed in [5]. [7] and [8] are other possible alternatives for 

text simplification. 
 

We extract action sequences from the input text by generating 

a constituency-based parse tree for the text. Other techniques 

like deep reinforcement learning are also used for extracting 

action sequences efficiently [6]. 

 

3.  TEXT-TO-ANIMATION SYSTEM 

 

A modular approach is adopted for generating animations 

from cooking recipes instructional text. The system presently 

only deals with simple instructional sentences. The general 

overview of our approach is presented in Figure 1. The system 

is divided into two modules: 

• NLP Module: Given an input text, this module first 
performs coreference resolution on the text, parses 
the resolved text to output a constituency parse tree 
which is further used to extract information i.e. the 
actions and their corresponding arguments into 
pre-defined action representations. 

• Animation Generation Module: The NLP module 
passes on to the graphics component all the 
information necessary to render appropriate 
graphics. It generates animations based on action 
representations using a set of grammar rules. 

2.1 NLP Module 

 

Coreference Resolution: Input text can contain several 

entities that have the same referent (e.g. pronouns). To find all 
the expressions that refer to the same entity, coreference 

resolution is required. NeuralCoref python package is used 

which resolves pronouns to the entity they refer to in the text.  

Parsing: We are interested in finding the action sequences 

from the text. The Coreference resolved text is parsed with the 

Berkeley Neural Parser which generates a constituency-based 

parse tree. A constituency-based parse tree represents the 

syntactic structure of a sentence. The root node of a 
constituency-based parse tree is always denoted as S, which 

represents the entire sentence. The tress has nodes like VP 

(Verb Phrase), NP (Noun Phrase), VB (Verb), NN (Singular 

noun), NNS (Plural noun), DT (Determiners), CC 

(Conjunctions), TO (To), etc. 

 
A constituency-based parse tree is shown for Sentence 1 “Boil 

rice and add spices to it” in Figure 1. The tree is seen as a 

hierarchy of verb phrases (nodes denoted by VP). 

 

We are interested in those VP nodes whose children are a verb 

(VB) followed by a noun phrase (NP).  A noun phrase is 

further made up of either a singular noun (NN) or a plural 

noun (NNS).  

 

Fig. 2 shows a partial parse tree that contains a VB node 

followed by an NP node having NNS as its child.  Fig. 3 

contains a VB node followed by an NP node having NN as its 
child.  

 

In Fig. 2 and Fig. 3, the blue nodes are the nodes of interest as 

they have a VB child followed by an NP child. 

Extraction: In a typical text-to-animation system, an 

important step is to extract relevant information from the 

input text (in our case, instructional text). Cooking recipe 

instructions typically consist of actions (typically verbs) and 

their arguments (typically objects of the verb). 

The extraction algorithm (Extracting Actions Procedure) 

starts with a constituency-based parse tree of the sentence and 

recursively processes it to find (action, argument) pairs and 

appends it to a global list of action sequences. This global list 

contains the extracted action sequences present in the input 

text. For example, consider the coreference resolved text: 

“Wash the tomato and cut tomato. Add tomato and spices to 
bowl.” 

The relevant information for this text is as follows: 

Step 1: Wash the tomato represented as (wash, tomato). 

Step 2: Cut the tomato represented as (cut, tomato). 

Step 3: Add tomato to a bowl represented as (add, tomato). 

 Step 4: Add spices to the bowl represented as (add, spices). 

All these 4 action argument pairs get stored in the global list 

of action sequences maintained in the Extracting Actions 
Procedure. 

These extracted action sequences are passed to the Animation 

Generation module. 

Figure 1: System Architecture: Input text is passed through the NLP module to generate 
animations. 
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2.2 Animation Generation Module 

 

Any action performed in a 3D world can be thought of as 

being composed of several atomic actions. For example, a 

cooking recipe instruction (fry, onion) can be decomposed as 
(1) (heat, stove), (2) (take, pan), (3) (add, oil), and (4) (add, 

onion). Similarly, (boil, rice) could be decomposed as (1) 

(heat, stove), (2) (take, casserole), (3) (add, water), (4) (add, 

rice). In this paper, we restrict ourselves to cooking actions, 

but the idea of decomposing actions could be generalized. We 

build on this intuition, a set of grammar production rules for 

13 different cooking actions as shown in Figure 4. 

 
Each grammar symbol is an action. Each grammar symbol has 

a (object, parameter) structure associated with it. For 

example, in MOVE (*, stove), ‘*’ is the object which 

represents any object and ‘stove’ is the parameter. The 

instruction simply means: MOVE the object represented by 

‘*’ to the ‘stove’. 

 

The left-hand side (LHS) of the grammar represents action 
and its right-hand side (RHS) represents its corresponding 

decomposition into atomic actions. The grammar symbols on 

RHS are concatenated by the concatenation operator (.).  

Moreover, if multiple productions are possible for a single 

action in the LHS, they are separated by (‘|’).  In such a case, 

the system intelligently chooses the appropriate production 

based on the (object, parameter) structure of the action. 

 
The combinations of the atomic actions shown in Table 1, 

namely MOVE, TILT, ACTION, HEAT can represent 

complex actions in an elegant way as determined by the 

grammar. The grammar rules are shown in Figure 4. 

Figure 4: Grammar production rules for 13 cooking actions 
 

Notice that in the grammar, we only have a production 

BOIL(*) and not BOIL(rice). As ‘*’ represents any object, 

rice replaces ‘*’ in the grammar symbol representation. 

 
The animation generation module uses the action sequences 

from the NLP module. For every (action, argument) pair, the 

action gets decomposed into atomic actions according to the 

grammar. We used the open-source Blender software for 

creating the animations for atomic actions.  

 

The decomposition for (boil, rice) is represented in the form 

of a tree in Figure 5. The atomic actions are given by the 
leaves of the tree, read from left to right. 

 

Blender Implementation: We used Blender software to 

create animations of atomic actions (Table 1). This section 

explains how exactly the system is implemented and how 

some features of blender make it possible. 

 

Blender uses the concept of keyframes. Interpolation 
generates property values between keyframes. Animation of 

an object can be achieved by interpolation between these 

keyframes. For instance, suppose we want to animate the 

action MOVE of an object, say, casserole. If we specify the 

coordinates and rotation angle of the casserole at the 10th 

frame and then at the 20th frame, after which blender uses 

interpolation to determine the position and rotation angle of 

the casserole at all the frames between the 10th and the 20th 
frame.  

 

In our animation generation system, the initial configuration 
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looks as in Figure 6. 

 

The concept of keyframe is used to create animations for all 

atomic actions. For instance, MOVE action is implemented as 
a python function which takes as an input (1) an object from 

the 3D world, upon which the action has to be performed, and 

(2) the destination coordinates. The reference to the object is 

obtained from a dictionary, having the name of objects as keys 

and the object’s initial location coordinates as values. The 

python function adds 3 keyframes at an interval to generate an 

animation of the object moving from its initial position to its 

final destination.   
 

Figure 7 shows different keyframes of MOVE (Casserole; 

Stove).  

 

Thus, the animation generation module first recursively 

expands the action object pairs obtained from the NLP 

module and calls the above-mentioned python function which 

adds keyframes in the entire animation. The end result is an 

eye-catching animation of the given input text.  

 

3.  EVALUATION 

 

Evaluating a text-to-animation system is a challenging task 

because of two reasons: (1) there aren't any standard datasets 

for text-to-animation generation, and (2) no guidelines on 
how such systems should be evaluated and which evaluation 

metrics to be used exist.   

Figure 6: Initial Configuration 
 

Figure 7: Different keyframes of MOVE (Casserole; Stove) 

 
Nonetheless, it is essential to assess the performance of our 

system. 

 

We conducted a qualitative evaluation via a user study to 

evaluate the performance of the system, similar to the study 

carried out in [5]. The idea was to gauge the performance of 

the system based on a user’s perspective. 

 
We created a set of animations for 20 different cooking 

instructions sentences. This set was given to 10 users. It took 

around 30 minutes for a user to complete the study, on 

average.  
 

The users were asked to evaluate how reasonable were the 

animations w.r.t the input text and how much of the text 

information was depicted in the animations, on a five-point 

Likert scale. 76.5% of the user ratings on the overall 
pre-visualization were 3-point or above (figure 8).  

 

However, it was found that the NLP module can be enhanced 

in some cases. For instance, in “Give the rice a good mix”, 

“mix” would be identified as a noun instead of a verb. In a few 

cases where actions not existing in the grammar appear in the 

input text, the system simply ignores the unknown actions.  

 
Production rules of such unknown actions need to be added to 

the grammar. 

Figure 5: Decomposition tree for (boil, rice) 
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4. CONCLUSION AND FUTURE WORK 

In this paper, we propose a novel text-to-animation system. 

The system decomposes extracted actions into atomic actions 

based on pre-defined grammar rules. Evaluating such a 

system is a challenge. Nonetheless, the user study shows a 

reasonable performance of the system. The proposed system 

can be improvised in many ways. 

 

Firstly, the current system works only with relatively simple 
sentences. Consider a sentence “Bring the rice to a boil” 

which semantically means the same as “Boil the rice”. The 

constituency parse tree generated by the Berkeley neural 

parser will treat “boil” as a noun. In the future, we would like 

to use text simplification techniques to first simplify complex 

sentences into simple sentences and then extract relevant 

information. 

 
Secondly, for every new possible action, the user has to define 

a grammar production rule for it. It would be helpful if the 

system can automatically infer the grammar productions for a 

new action based on its similarity to some existing action in 

the grammar. Such similarity can be found out using language 

models like word2vec, glove, etc.    
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Figure 8: Graph of frequency (in percentages) versus user ratings 
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