
Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

583

ABSTRACT

Education system needs an effective method to evaluate
students in a competent way on their major concepts learned
from their studies. Generating Multiple Choice Questions
(MCQ) process is cumbersome and needs a lot of effort
especially among novice instructors. The current MCQ
generators do not automatically generate questions but only
randomly display questions from the question bank. However,
it is not easy to load a massive number of questions in the
question banks where it is normally done in stages to have
massive question collection in the question bank. Therefore,
this paper proposes an automatic question generator
specifically for MCQ to enable a massive number of questions
generated in just a few seconds. In addition, it is useful for
students who have to do self-learning for their tutorial
exercises especially during the COVID -19 pandemic crisis
where online learning is widely used to replace the traditional
face-to-face sessions. The generator has adopted an
ontological approach for question generation strategies, and it
is implemented using rule-based reasoning. There are six
modules proposed and discussed in this paper including the
concept extraction from ontology, concept, and question stem
mapping, generating appropriate answer options using
ontology relation information and reordering of answer
options. The functionality and validation test showed that
Multiple Choice Question Generator (MCQ-G) can generate
MCQ with appropriate answer options. This work will be
extended in the future using the difference domain ontology
and question types.

Key words: Automated Assessment, Covid-19, Multiple
Choice Question, Ontology, Operating Systems, Question
Generation.

1. INTRODUCTION

Question generation is a process that requires human’s ideas
from someone that has sufficient knowledge or expertise in
that particular area of domain. Question generation is a task
that affects many aspects of people’s lives [1]. Asking
questions can also help students to know their knowledge
gaps and make them search for information to compensate for
these gaps [2][3].

Question generation is designed by the institution’s
instructors who are experts in the specific field. Usually, an
instructor creates the questions manually and sometimes
he/she also depends on the question banks. The instructor
must study all related information/contents through other
sources such as books, research articles, internet videos, and
some preliminary knowledge. The instructor should also
know how to apply the knowledge to solve problems
developed for these questions. Most of the college and
university papers’ levels are determined from students’ past
performance.
In the present, instructors do not need to generate questions
manually since it will burden them and it is time-consuming
[4]. Therefore, automated question generator is developed,
which is more flexible for them to choose the subjects. The
system also has difficulty levels for the question generation.
This system is also more secure than generating questions
manually and the question paper can be created faster even a
few minutes before the examination which it can avoid from
any paper leakage [3]. Question generation also involves the
creation of reasonable questions from an input, which can be
structured and unstructured [5]. The goal of generating
questions is to create questions paper based on existing
knowledge webs. However, there is still lack of MCQ generator
for education subject especially in Computer Science. Most of the
MCQ generator evaluates on general domain questions.
Thus, in this research MCQ-G is developed to generate MCQ
that specific on computer science field, in which Operating
System subject is used for experimental purposes. The proposed
system will be able to create question based on predefined

The Development of MCQ generating system based on

Ontology Concepts
Noor Hasimah Ibrahim Teo1, Nurul Diyana Mohd Nor2, Nurul Hidayah Mat Zain3,, Nor Aiza Moketar4

1Universiti Teknologi MARA, Malaysia, shimateo@uitm.edu.my
2Universiti Teknologi MARA, Malaysia, nuruldiyanamn@gmail.com

3Universiti Teknologi MARA, Malaysia, nurul417@uitm.edu.my
4Universiti Teknologi MARA, Malaysia, noraiza1@uitm.edu.my

 ISSN 2278-3091
Volume 9, No.1.4, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse8191.42020.pdf

https://doi.org/10.30534/ijatcse/2020/8191.42020
4

Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

584

question stem and using an ontological approach for selecting
answer options. The aim of MCQ-G is to generate massive MCQ
question repository to allow a question to be selected from a
bigger range of questions that indirectly promote dynamic
question generation. Dynamic, in this case, refers to massive
choices of questions for selection at one time; thus, more different
question set can be generated.
The automatic question generation features benefit online
learning in twofold. First, as an instructor, it reduces the
workload to create a quiz, tutorial, or exercise questions for
students to work on. They can spend their time in preparing and
updating their learning contents especially after the COVID-19
pandemic crisis, most of the classes are still going to be
conducted via online mode. Second, as for the students, it will
give an advantage in their self-learning by answering many
questions.
There are different types of questions used for assessment
purpose, this includes MCQ, true/false, short answers,
matching, etc. In this paper, MCQ is chosen to be generated
because MCQ is quite difficult to be created manually. The
basic structure of MCQ includes question stems and answer
options. There are two answer options which are correct and
incorrect answers. In this work, the single correct answer type
of MCQ is developed.

2. ONTOLOGY FOR EDUCATIONAL PURPOSES

Domain ontology has been widely used in the various
domains including biomedical [6], cloud service platform [7]
and web service [8] that are created using a difference
ontology editor. The difference ontology editor is discussed in
[9]. However, there is still lack of resources for domain
ontology specifically to cater to educational assessments.
The ontologies in computer science that are publicly available
is the Operating System (OS) ontology ontology which is used
in this work. The ontology of Operating System [10], is an
ontology for a standard undergraduate operating system
course. The ontology is built using the semantic Web
Ontology Language (OWL), and the concepts are extracted
from four sources which include three textbooks [11] [12]
[13] and lecture notes from one of the authors. It is reported
that the ontology has more than one thousand concepts that
spread into six parts; operating system overview, process
management, storage management, I/O systems, Distributed
Systems and Protection and Security.
In this work, difference operating system ontologies are used.
This ontology proposed in [14] contains 97 concepts and are
spread into nine parts; concurrency control, file systems,
fundamental of an operating system, I/O system, Linux
system, memory management, process and thread
management, protection and security, and system software.
Table 1 shows the concepts and its number of sub-concepts for
ontology discussed in [14].

Table 1: Main Concepts and its number of sub-concepts in OS
Ontology

No. Concepts No. of Sub

Concepts
1 Concurrency control 11
2 File systems 7
3 Fundamental of operating system 6
4 I/O_ systems 19
5 Linux system 7
6 Memory management 11
7 Process and thread management 6
8 Protection and security 15
9 System software 6

3. PRIOR WORK ON ONTOLOGY-BASED MCQ
GENERATION SYSTEM

Ontology elements such as classes, instance and properties
are exploited to automatically generate multiple choice
questions (MCQ), true/false(T/F), fill-in the blank (FIB),
short answer questions, and long answer questions. However,
substantial research efforts have been made in the generation
of MCQ based on ontology domain knowledge (concept and
relationship) as the source of knowledge.
The ontology-based MCQ has begun with the work proposed
by [15] in 2008 which proposed three question generation
strategies namely class-based strategy, terminology-based
strategy, and property-based strategy. The question
generation strategy focuses on the generation of appropriate
answer options for MCQ that use “Choose the correct
sentence” question stem. It has been reported that the
class-based strategy generates the least amount of questions
compared to property-based strategy for evaluation on five
domain ontologies. MCQ generation has also been proposed
in [16] by extending work from [15] to increase the difficulty
of questions using annotation-based stem with the assumption
that a greater similarity in answer options will increase
difficulties of selecting a correct answer. The OntoQue using
a semantic-based approach to generate MCQ from four
domain ontologies is presented in [17]. The key answer for
MCQ was chosen from the highest similarity index, while
distractors are chosen from the less similarity index to control
question difficulty. The result obtained showed the high
precision of good question generated on three of the
ontologies. The work exploiting concept and stem similarity
to control question difficulty was also been presented in [18].
Two similarity measures SubSim() and GrammarSim() were
proposed to control question difficulty. The result showed that
out of 50 questions evaluated by three experts, 46 of the
questions were reported as useful questions.

4. METHODOLOGY
This research conducted using standard System Development
Life Cycle methodology. There are five phases involved in
this research.

Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

585

Phase 1
The first phase is data requirement gathering where suitable
course ontology and suitable question templates are
identified.
Phase 2
In the second phase, the analysis of concept in selected
ontology is validated to ensure suitability of the concepts with
keywords represented in Operating System Subject.
Phase 3
The third phase is the most critical phase for MCQ-G
development, which is system design. The detailed system
design is discussed in section 5.
Phase 4
The fourth phase involved MCQ-G development work on
web-based platform using Java programming language.
Phase 5
The last phase is testing the functionality of feature in the
system and validity of the questions output generated. The
result is then reported based on features exist on the system as
well as the different output cases.

5. MCQ-G SYSTEM DESIGN
This section discusses the system design for MCQ-G which
includes the system architecture, OS ontology representation,
algorithm design and interface design.

5.1 System Architecture
The development of MCQ-G is conducted in three phases as
shown in Figure 1.

Figure 1: System architecture

The first phase is pre-processing of ontology elements to
extract concepts that will be assigned as a [KEYWORD] for
the question stems. The relationship between concepts in
ontology is kept in the form of a matrix table. For example, in
the OS ontology, the relationship between concept virtual
memory and memory management as shown in Figure 2 is
“Virtual memory is a sub-concept of Memory management”.
Thus, this information is kept in the matrix table with value 1
to indicate there is a relationship. The algorithm design for
the extraction and keeping relationships in the matrix table is
discussed in section 4.3.

The second phase is question generation where [KEYWORD]
from question stems is instantiated with a concept from
ontology. Information from the matrix table in the first phase
is used to obtain correct and incorrect answer options. The
strategy to select answer options follows the question
generation strategy suggested in [15] where relationship
information between concepts are used. For example, the
question stem “Which of the following is the concept of
Memory management?”. By referring to Figure 2, the correct
answer option is extracted from the sub-concept of Memory
management and the two incorrect answer options are
extracted from sub-concept of other concepts that are of the
same level hierarchy with Memory management which Figure
2 refers to the File system or Protection and security. The
choice of one correct answer will be randomly selected from
the range of Memory management sub-concept (virtual
memory or paging), while the two incorrect answer options
are taken from sub-concept of the File system or Protection
and security.

Subsequently, for the question stems, “Which of the following
is the concept of Memory management?”. By referring to
Figure 2, the correct answer option is extracted from the
sub-concept that is not under Memory management and the
two incorrect answer options are extracted from the
sub-concept of Memory management. The choice of one
incorrect answer will be randomly selected from the range of
other concepts.

Figure 2: Snapshot of OS ontology concept relation

Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

586

In the third phase, question selection will be implemented to
generate questions randomly based on the number of
questions requested by an instructor in MCQ-G. Before the
question is generated, the order of answer options is shuffled,
to display the difference order of correct and incorrect answer
options. The position of answers options of the correct and
incorrect answers will be changed each time the new request
is made.

In the next section, the structure of the OS ontology used in
the first and second phase is discussed.

5.2 OS Ontology Representation
The ontology representation is stored in the notepad in the
form of “Every [concept 1] [relationship] [concept 2]”. This
representation is extracted from the OWL file using
FluentOntarion editor. The example of the OS ontology
representation is shown in Figure 3.

Figure 3: OS Ontology Representation

5.3 Algorithm Design
This section discusses the algorithm design for five functions
created in MQQ-G. The algorithm is designed to
automatically generate MCQ from the Operating System
domain ontology. Each generated question consists of a
question stem and three answer options (one correct answer
and two distractors). Two question stems used in the
experiment are as follow:

 S1: Which of the following is the concept of

[KEYWORD]?

 S2: Which of the following is not the concept of

[KEYWORD] ?

There are 6 modules created in MCQ-G as follows:

A. Extracting concepts from OS domain ontology.
First is to extract all concepts in the OS ontology into an

array of concepts to enable pre-processing of the concepts to
generate MCQ. The converted ontology file in .txt format is
read into array arrConc and split into five tokens based on
the ontology file structure in Figure 4. The split token for
“Every Virtual machine is a Memory Management” in
ontology .txt file is as follows:

Ontology
(in .txt)

Every Virtual
machine

is a Memory
management

token token1 token2 token3 token4 token5

Figure 4: MCQ-G ontology file structure

The important token extracted here is from token1 and token5
which is the ontology concept used as KEYWORD in
question stems S1 and S2 while token3 and token4 are the
relation between token2 and token5. The concepts of token2
and token5 are then stored in different arrays arr1 and
arr2 respectively. The pseudocode is as follows:

Start
while (read from a text file)
add into arrConc
for i less than arrConc size
declare String Tokenizer
while (String Tokenizer has more token)
String T1 = token1;
String T2 = token2;
String T3 = token3;
String T4 = token4;
String T5 = token5;

 add T2 into arr1
 add T5 into arr2
end while

end for
end while
End

B. Creating a matrix table to keep a relationship value
between two concepts.
Next, the matrix table is created to store the relationship

information between concepts T2 and T5. Elements in arr1
and arr2 are combined in arrComb to create list data for row
and column of the matrix table. There are 97 unique concepts
in OS ontology that create matrix table arr2D of size 97 x
97. The LinkedhashedSet from Java function is used to create
this matrix table. The relationship is then inserted into the

Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

587

matrix table with value to indicate the relationship exists and
0 for no relation. The pseudocode is as follows:

Start
Declare int arr2D [97][97]
for i less than arrConc size
Declare int loc1 and loc2 equals to 0
for j less than arrComb size
if (token2 equals (arrComb get j))
loc1 equals j

endif
if (token5 equals (arrComb get j))
 loc2 equals j

endif
arr2D[loc1[loc2] equals 1

end for
end for
End

C. Mapping ontology concept with question stem
Question is generated based on two question stems S1 and

S2 as written at the beginning of this section. The
[KEYWORD] in question stems is first instantiated with
concepts from ontology.

D. Generate answer options
The answer options are attached to the question stem. This

function is divided into two components: i. For correct answer
and ii. For incorrect answers.

For S1, the correct answer option is taken from the
sub-concept of [KEYWORD] and the incorrect answer
options is a sub-concept that is not under [KEYWORD] in the
OS ontology representation hierarchy. The arr2D is read to
get information about relation. First, the index number for
[KEYWORD] is read and this index number indicates a row
index of arr2D. Then, the index for the column that has a
relationship value of 1 is stored in arrCA (for the correct
answers) and value 0 is stored in arrIA (for incorrect
answers). Next is to run random function to select one concept
from arrCA and two from arrIA. The following is the
pseudocode to create answer options for S1.

for (i < arr2.getSize())
begin for loop
 if(arr2D[KEYWORD index][i] == 1)
 Adding concept arrCon[i] into arrCA;
 else
 Add concept arrCon[i] into arrIA;
end for loop

random function to choose 1 concept from arrCA;
random function to choose 2 concepts from arrIA;

For S2, the correct answer option is taken from the
sub-concept other than [KEYWORD] and incorrect answer
option is a sub-concept of [KEYWORD] in the OS ontology
representation hierarchy. The information is also read from
arr2D. The index number for [KEYWORD] is also read and
indicated the row of arr2D. The difference for this question
stem is the information taken for answer options. In contrast
to S1, the index for the column that has a relationship value 0
is stored in arrCA for correct answer option, while value 1 is
stored in arrIA for incorrect answers. The following is the
pseudocode to create answer options S2.

for (i < arr2.getSize())
begin for loop
 if(arr2D[KEYWORD index][i] == 0)
 Adding concept arrConc[i] into arrCA;
 else
 Add concept arrConc[i] into arrIA;
end for loop
random function to choose 1 concept from arrCA;
random function to choose 2 concepts from arrIA;

E. Shuffling the order of question and answer options
Generated answer options for each question is stored in an

array called arrayOption. This module implements the
shuffling algorithm using the Collection class shuffle() from
JAVA library. The purpose of this module is to allow the
difference order of correct and incorrect answers for each
question. The order of answer options can be one of the
followings:

Order #1:

A. Correct answer
B. Incorrect answer
C. Incorrect answer

Order #2:
A. Incorrect answer
B. Correct answer
C. Incorrect answer

Order #3:
A. Incorrect answer
B. Incorrect answer
C. Correct answer

Next is to rearrange the order of generated questions which is
also using the Collection class shuffle() from JAVA library.

F. Print questions
This module is used to display questions based on the

number of questions requested by the user. The random
function is used to determine which concept is used to extract

Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

588

the question generation. A random number generated
indicates the index number of concepts stored in row exist of
array2D. The concepts which the index number matched
with the random number is used as a [KEYWORD] in
question stems. Next, the answer option module is called to
generate answer options based on the concepts stored in the
matched index position. Then, the shuffled module in E is
called to rearrange the order of question and answer options
for each question.

5.4 Interface Design
A simple interface has been created to allow the user to enter
the number of questions to be generated. This is to avoid over
generation of questions from the system. The snapshot of the
MCQ-G main page is shown in Figure 5.

Figure 5: MCQ-G main page

The simple interface allows a user to enter the number of
questions he/she plans to generate. Upon entering the submit
button, the questions will be generated. Figure 6 and Figure 7
show the example questions generated for S1 and S2,
respectively.

Figure 6: Sample questions generated for S1

Figure 7: Sample question generated for S2

6. FUNCTIONAL AND VALIDATION TEST RESULTS
There are two types of testing conducted for MCQ-G which
are functional and validation test.

The functional test conducted indicated that all the buttons
and text field worked perfectly. As for the text field, it could
enter the number that the user wants where if the submit button
was clicked, it would bring to the next page displaying the list
of questions. When the user clicks on the back button, it will
bring to the page where the user can insert the number of
questions. The MCQ-G could also display the number of
questions as requested. Table 2 shows the functions tested and
its status.

Table 2: Functional test status
Function Status

Text field to input the number of questions (input
number only)

Pass

Submit Button Pass
Save Button Pass
Back Button Pass
Generate several questions based on a request
entered by the user

Pass

Random concept selection for [KEYWORD] Pass
Questions displayed on the screen Pass
Questions have different order each time submit
button is click

Pass

Answer options change order Pass

Validation test was conducted to check whether the selection
of correct and incorrect answer options was accurate. The
accuracy of the answer option was validated for both question
stems S1 and S2. For S1, the correct answer option must be
from the sub-concept of [KEYWORD] in its S1 and the two
answer options must not be the sub-concept from
[KEYWORD] of its S1. While for S2, the correct answer
option must not from the sub-concept of [KEYWORD] in its

Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

589

S2 and the two incorrect answer options are the sub-concept
from [KEYWORD] of its S2.

The validation test was conducted manually by comparing the
generated answer options with the ontology element in the
ontology file. There were 20 test-runs conducted for each
question stem, with each run generated 10 questions. The
validation test conducted on all 20 test-run showed that all the
generated answer options were generated accurately.

Table 3 shows the sample result obtained from the 1st run of
the validation test for question stem S1. The test checked that
the correct answer is the sub-concept of [KEYWORD] and the
result status is recorded in “CorAns”. The two incorrect
answer options must be the sub-concept of the concept other
than [KEYWORD] and the status is recorded in “IncAns”.

Table 3: Sample result of validation test for S1

Questions generated CorAns IncAns

[KEYWORD]:
 System Software
Correct answer:
 C. Loader
Incorrect answers:
 A. Security
 B. Virtual memory

Yes Yes

[KEYWORD]:
 Secondary storage structure
Correct answer:

A. Disk scheduling
Incorrect answers:
 B. Deadlock
 C. Protection

Yes Yes

[KEYWORD]:
 Concurrency control
Correct answer:

A. Deadlock
Incorrect answers:
 B. Buffering
 C. Swapping

Yes Yes

[KEYWORD]:
 Virtual memory
Correct answer:
 C. Overlay
Incorrect answers:
 A. System software
 B. Assembler

Yes Yes

[KEYWORD]:
 Clock
Correct answer:
 C. Clock hardware
Incorrect answers:
 A. Domain Protection
 B. I/O system

Yes Yes

[KEYWORD]:
 Memory Management
Correct answer:
 B. Virtual memory
Incorrect answers:
 A. File system
 C. Mutual Exclusion

Yes Yes

Table 4 shows the sample result obtained from the 1st run of
the validation test for question stem S2. The test checked that
the correct answer is the sub-concept of the concept other than
[KEYWORD] and the result status is recorded in “CorAns”.
The two incorrect answer options must be the sub-concept of
[KEYWORD] and the status is recorded in “IncAns”. The
results of the experiments show that all questions have
appropriate correct and incorrect answer options attached.

Table 4: Sample result of validation test for S2

Questions generated CorAns IncAns

[KEYWORD]:
 File System
Correct answer:
 C. Overlays
Incorrect answers:
 A. File support
 B. Access method

Yes Yes

[KEYWORD]:
 Virtual memory
Correct answer:

B. Authentication
Incorrect answers:
 A. Overlays
 C. Demand paging

Yes Yes

[KEYWORD]:
 Concurrency control
Correct answer:

C. Operating System
Incorrect answers:
 A. Concurrency and race condition
 B. Mutual Exclusion

Yes Yes

[KEYWORD]:
 I/O system
Correct answer:

B. System threats
Incorrect answers:
 A. Principles of I/O hardware
 C. Principle of I/O software

Yes Yes

[KEYWORD]:
 Memory management
Correct answer:
 C. File systems
Incorrect answers:
 A. Paging
 B. Virtual memory

Yes Yes

Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

590

7. DISCUSSION AND FUTURE WORK
The algorithm design for generating tool that could
automatically generate MCQ from the ontology is discussed.
There are 6 modules proposed that are responsible for
different functions. The main contribution of this paper is the
development of a tool that could automatically generate
answer options for MCQ using the relationship information
in the ontology. The results for functionality and validation
test showed that the MCQ-G was able to generate MCQ from
the ontology knowledge representation. In addition, the
relationship information of ontology representation could be
used to select correct and incorrect answer options for MCQ.
However, the result found in this paper only reported on the
functionality and the accuracy of the algorithm design.
Whether or not the generated questions had a meaningful or
useful question, this will be explored in future studies. The
MCQ-G will also be tested using different ontologies for other
courses. Furthermore, the module for marking user’s answers
will be added.

8. CONCLUSION
The MCQ-G developed had shown a promising result for
automatically generating MCQ with its appropriate answer
options. This system had successfully deployed the ontology
concept and relation to create MCQ with the related concept
for answer options. The main contribution of this work is the
design rule-based reasoning algorithm to generate MCQ
automatically from ontology elements where the strategy for
assigning answer options was adapted previous work. The
limitation of the MCQ-G is it is only able to generate
questions randomly from any concept and in the future, this
function will be expanded to generate questions based on
chapters in the Operating system subject.

ACKNOWLEDGEMENT

This work is supported by Universiti Teknologi MARA under
the TEJA 2020 Internal Grant (GDT2020-41).

REFERENCES

1. S. Chen, B. Mulgrew, and P. M. Grant. A clustering

technique for digital communications channel
equalization using radial basis function networks,
IEEE Trans. on Neural Networks, Vol. 4, pp. 570-578,
July 1993.

2. A. C. Graesser and N. K. Person. Question asking
during tutoring, American Educational Research
journal, vol. 31, no. 1, pp. 104-137, 1994.

3. P. Gadge, V. Ravikant and G. Divya, Advanced
question paper generator using fuzzy logic,

International Research Journal of Engineering and
Technology, vol. 4, no. 03, 2017.

4. F. K. Angar, H. G. Gori and A. Dalvi. Automatic
question paper generator system, International
Journal of Computer Applications, vol. 66, no. 10, pp.
42-47, 2017.
https://doi.org/10.5120/ijca2017914138

5. X. Yao, G. Bouma and Y. Zhang. Semantics-based
question generation and implementation, Dialogue &
Discourse, vol. 3, no. 2, pp. 11-42, 2012.

6. M. A. Musen. The protégé project: a look back and a
look forward, AI matters, vol. 1, no. 4, pp. 4-12, 2015.

7. M. G. Galety, S. B. Balaji and M. S. Basha. OSSR-P:
Ontological Service Searching and Ranking System
for PaaS Services, International Journal of Advanced
Trends in Computer Science and
Engineering(IJATCSE), vol. 8, no. 2, pp. 271-276, 2019.
https://doi.org/10.30534/ijatcse/2019/28822019

8. B. Saravana, R.S Rajkumar and B.F Ibrahim. Service
Profile-based Ontological System for Selection and
Ranking of Business Process Web Services,
International Journal of Advanced Trends in Computer
Science and Engineering(IJATCSE), vol. 8, no. 1, pp.
18-22, 2019.
https://doi.org/10.30534/ijatcse/2019/04812019

9. V. N. Dolzhenkov, I. D. Maltzagov, A. I. Makarova, N.
S. Kamarova and P. V. Kukhtin. Software Tools for
Ontology Development, International Journal of
Advanced Trends in Computer Science and Engineering
(IJATCSE), vol. 9, no. 2, pp. 935 -941, 2020.
https://doi.org/10.30534/ijatcse/2020/05922020

10. Y. Ma, S. Gnaneswaran, M. Hardas and J. I. Khan.
Ontology of Operating System, Networking and Media
Communications Research Laboratories, Department of
Computer Science, Kent State University, Kent, UK,
2006.

11. A. Silberschatz, P. B. Galvin and G. Gagne. Applied
Operating System Concepts, Windows XP Update,
New Jersey, USA: Wiley, 2002.

12. A. Silberschatz, P. B. Galvin and G. Gagne. Operating
System Concepts, Reading, Massachusetts, John Willy
& Son., 2004.

13. A. S. Tanembaum. Modern operating systems, Upper
Saddle River, New Jersey: Prentice-Hall, Inc, 2001.

14. K. Viljanen, J. Tuominen and E. Hyvönen. Ontology
libraries for production use: The Finnish ontology
library service ONKI, in European Semantic Web
Conference., Berlin, Heidelberg, 2019.

15. A. Papasolourus, K. Kanaris and K. Kotis. Automatic
generation of multiple-choice questions from Domain
ontologies, In e-Learning, pp. 427-434. 2008.

16. M. Cubric and M. Tosic. Towards automatic
generation of e-assessment using semantic web
technologies, International Journal of e-Assessment.
2011.

17. M. Al-Yahya. OntoQue: a question generation engine
for educational Assessment based on domain

Noor Hasimah Ibrahim Teo et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 583 - 591

591

ontologies, In 2011 IEEE 11th International Conference
on Advanced Learning Technologies. 2011.

18. T. Alsubait, B. Parsia and U. Sattler. Generating
Multiple Choice Questions From Ontologies: How
Far Can We Go?, In International Conference on
Knowledge Engineering and Knowledge Management.
2014.

