
Javairya Nadeem et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2072 – 2079

2072

ABSTRACT

This research discloses how to utilize machine learning
methods for anomaly detection in real-time on a computer
network. While utilizing machine learning for this task is
definitely not a novel idea, little literature is about the matter of
doing it in real-time. Most machine learning research in PC
network anomaly detection depends on the KDD '99 data set and
means to demonstrate the proficiency of the algorithms
introduced. The emphasis on this data set has caused a lack of
scientific papers disclosing how to assemble network data,
remove features, and train algorithms for use in real-time
networks. It has been contended that utilizing the KDD '99
dataset for anomaly detection is not appropriate for real-time
network systems. This research proposes how the data gathering
procedure will be possible utilizing a dummy network and
generating synthetic network traffic by analyzing the
importance of One-class SVM. As the efficiency of k-means
clustering and LTSM neural networks is lower than one-class
SVM, that is why this research uses the results of existing
research of LSTM and k-means clustering for the comparison
with reported outcomes of a similar algorithm on the KDD '99
dataset. Precisely, without engaging KDD ’99 data set by using
synthetic network traffic, this research achieved the higher
accuracy as compared to the previous researches.

Key words: Anomaly Detection, Computer Networks, Data
Generation, Machine Learning, Network Security, Real-Time.

1. INTRODUCTION

Computer security is a consistently advancing issue as
innovation turns out to be progressively powerful. The strategies
for the protection of data and data systems of yesterday cannot
guarantee the security of the present systems. A dynamic piece
of computer security is knowing whether a system has been or is
being altered. These systems are called intrusion detection
systems and are made to alleviate the dangers of system failure
and misuse [1]. Network intrusion detection systems can be
isolated into anomaly-based systems and signature-based
systems. A signature-based system works by automatically

making signatures that check for known attacks or
malfunctions. The issue with this sort of system is that new or
unknown attacks are difficult to deal with. Ongoing advances in
network technology and the public accessibility of modern
hacking instruments permit users with practically zero
specialized understanding to submit complex system attacks [2],
[3]. These attacks have gotten difficult to detect and making
signature-based detection is a bulky and costly cycle. An
anomaly-based detection system could be much more successful
in this situation [4]. Anomaly-based systems rather attempt to
recognize what an ordinary condition of the system looks like
and reports when the system is not in this state. These systems
are efficient at detecting unknown system behavior which can be
resulted from either an attack or a system failure.
Anomaly-based systems are frequently utilized in
inter-connection with signature-based security systems to
protect against as many dangers as could reasonably be
expected. Machine learning has been utilized for anomaly-based
intrusion detection systems for a considerable length of time.
These sorts of algorithms are acceptable at detecting patterns in
data, which causes them to perform well as a part of an
anomaly-based intrusion detection system. Although, a great
deal of examination on the algorithms in this field depends on
utilizing a single data set, specified as the KDD '99 data set [4],
[5]. This data set is presently 20 years of age and over the most
recent twenty years, computer network systems and attacks have
developed massively. The KDD '99 data set depends on the 1998
DARPA intrusion detection evaluation program's gathered data
[6]. The data set was gathered more than 9 weeks on a system
made to copy commonplace U.S air force LAN network traffic.
The data set doesn't contain data dependent on singular packets
sent over the network system. Rather every packet is appointed
to a connection from where the data is determined. A connection
is characterized as a grouping of TCP packets beginning and
ending at some well-defined time. This data set doesn't contain
some other protocol than TCP. Despite the fact that the KDD '99
data set is broadly utilized it has been criticized for having a lack
of quality [7], [8], [9]. The nature of the data set is basic in
machine learning and it has been contended that this lessens
papers dependent on the dataset of KDD ’99. When a dataset is
assorted as the KDD '99 dataset is admissible, there exists a gap
in the academia demonstrating the cycle from gathering
network traffic to executing a live system. This project means to

Detection of Abnormalities in Real-Time Computer
Network Traffic Empowered by Machine Learning

Javairya Nadeem1, Arfan Ali Nagra2, Muhammad Asif3, Aqsa Iftikhar4

1 Lahore Garrison University, Pakistan, javairyakhan@gmail.com
2 Lahore Garrison University, Pakistan, arfan137nagra@gmail.com

3 Lahore Garrison University, Pakistan, drmuhammadasif@lgu.edu.pk
4 Lahore Garrison University, Pakistan, aqsaiftikhar@lgu.edu.pk

ISSN 2278-3091
Volume 10, No.3, May - June 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse811032021.pdf

https://doi.org/10.30534/ijatcse/2021/821032021

Javairya Nadeem et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2072 – 2079

2073

help fill this gap by looking at preparing said traffic, training
algorithms by utilizing the traffic as data and lastly assessing the
algorithms on a real-time network archiving how this can be
practiced.

2. BACKGROUND

2.1 Network Intrusion Detection System

Network Intrusion Detection Systems, NIDS, are used to

detect malicious traffic in a computer network. The subject can
be divided into two types, signature based detection and
anomaly based detection [10], [11]. Signature based NIDS
follow a static set of signatures and patterns to detect already
known attacks. Anomaly based NIDS are used to classify
normal traffic and abnormal traffic, where the latter is
considered to be an anomaly in the network. They have detected
anomalies by using a set of procedures and heuristics and this
project focus on these different types of NIDS. Typically,
anomaly based NIDS are developed by gathering data of the
system and feeding it to an algorithm with the intention that the
algorithm should be able to distinguish normal and anomalous
data [11].

2.2 Network anomalies

In computer networks, an anomaly would be unexpected
network traffic or traffic flows [12]. Anomalies can appear in
any network for various reasons and do not necessarily mean
that an intruder or malicious user has tampered with the
network. Examples of anomalies could be a sudden unexpected
spike in network congestion due to a router failure or a denial of
service attack sending many more packets to a node than
normal. Below are examples of three different network
anomalies.
 Node Failure

Node failure occurs when a node in the network suddenly
stops responding. This can be because of a power outage, a
hardware or software failure in the node or because of any
other reason. The node is simply not active in the network any
longer.

 Denial of Service Attacks
DoS attacks is a cyber-attack in which machine and network
resources are unavailable to its intended user. DoS attacks can
also be used to increase network congestion and cause major
slowdowns in network traffic. A DoS attack causes a
noticeable difference in network traffic, as there is a sudden
increase in connections to a specific port that are never
resolved.

 Port Scan
Port scanning is a technique where the user is attempting to
find out what services are running on a remote machine. This
is usually done to find vulnerable ports that the targeted
machine is listening to and either close them, add security
layers on top of the services or, in the case of a malicious user,
exploit these ports.

2.3 Network Traffic Generation
Network traffic fluctuates relying upon what services are

running on the connected systems in the network/topology.
Preferably the network communications should be made to
imitate some type of predefined system. This traffic can be
created by using tools to create synthetic data, replaying
pre-recorded network data or by having people perform actions
over the network simulating real users. Synthetic data is data
that has the same features and behaves the same way as real data
but does not contain any significant information. Below is a
short description of three network traffic generation tools.
 Distributed Internet Traffic Generator (D-ITG)

D-ITG (Distributed Internet Traffic Generator) is a platform
used to generate realistic network traffic. This tool is capable
of using a variety of stochastic processes to simulate real-time
network performance with varying delays and packet sizes
using a large variety of probability distributions [1900].
D-ITG can imitate a large number of different applications
over the network, such as online games or voice
communication. It uses client-server functionality to send and
receive network communication and also keeps a log of
overall network communication that has been sent and
received by D-ITG.

 Iperf
Iperf, also known as iperf3 is an open-source tool for
bandwidth benchmarking in computer networks. It uses
client-server functionality to set up connections and can send
packets using a variety of different protocols and parameters.
When connecting to a server using iperf, it will attempt to
send as much data as possible to the server and report back its
throughput.

 SourcesOnOff
SourcesOnOff was developed to help network engineers
generate network traffic for testing and evaluation of different
applications on computer networks. It attempts to generate
the same type of traffic a network administrator would see in
a local area network and on the internet using client-server
functionality [13]. It supports sending packets with different
delays and sizes using various probability distributions to
mimic realistic network performance.

2.4 Feature Selection
Data must be ordered and labeled clearly to be considered

useful when being collected and processed. This means that all
data gathered must be sorted and put into context. When talking
about feature selection the intent is to extract several
characteristic features that would describe the data accurately.
This allows the algorithms to process the data in a way that
would make it useful for machine learning. There are several
ways this can be done and it depends on how the data processing
algorithms work. There are however indicators that help when
selecting features such as variance. For example, a feature with
zero variance would not be useful since it would never change
and would thus be redundant.

Javairya Nadeem et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2072 – 2079

2074

2.5 Pre-processing
Algorithm to work correctly it requires a numeric

representation with high-quality data set i.e. a data set that the
algorithms understand with minimal inaccuracies [14]. The
data can contain irregularities or other skewed information that
would cause the algorithm to perform poorly. The
pre-processing step is usually done by filtering out faulty data
points. This can be done by removing the faulty data or
correcting it. There is more to pre-processing data than filtering,
such as normalizing the features since they can vary between a
large ranges of values.

3. METHODOLOGY

For the implementation of the proposed methodology, we
create a network environment of integrated systems by using
machine learning techniques to detect the attacks and zombie
PC.

3.1 System Overview

Ongoing cyber-attacks are started by utilizing progressive
social engineering or by sending a targeted email to assault
targets [15]. In the event that a host is infected by malicious
code, an endeavor to speak with a C&C worker is made and a
correspondence channel is framed utilizing Internet Remote
Chat (IRC) or an HTTP protocol. When a communication
channel is set up, the host gets an attack instruction from the
C&C server or updates the file.

For this purpose, the utilization of machine learning
techniques has been designed for the detection of zombie pc to
monitor real-time network traffic and abnormalities. Figure 1
shows the overall structure of this research.

Figure 1: Proposed Methodology

3.2 The Network Structure for Generating and Gathering
Network Traffic

For the detection of an anomaly, we create a setup of one or
more nodes. We create a network in which one or more hosts are
integrated, in this network one or more hosts performing some
task over a network. In this setup, there are one or more hosts
that are not visible by the host on the network. The purpose of
these nodes is to collectively gather all the data in the network.
These nodes are handled by the monitoring system whose task is
to analyze data that come from the internet. Many surveillance
nodes analyze the data. If so, they must communicate separately
from the analyzed network and have some algorithm for
reaching consensus of the network analyses. Figure 1, above
shows the general structure of the network traffic collecting
system.

3.3 Creating a Network Traffic

For the detection of an anomaly, generating traffic between
nodes is the main part of this research. Realistic traffic is
required to fulfill the machine learning and enough to perform
machine learning data well. Many approaches were considered.
Such a network system is to be made that can produce artificial
network traffic. To evaluate network traffic, many tools are used
that generate artificial network traffic to detect anomalies, for
running programs that can generate synthetic network traffic
that behaves like real network traffic. The tools that are utilized
for generating synthetic network traffic are libpcap tool (which
is used with a python API), D-ITG, iperf, and sourcesonoff.
D-ITG was a poor tool for longer sessions of creating network
traffic. Iperf is good for long sessions but it is usually built for
bandwidth testing which causes network flooding with a high
rate of packets per second. Sourcesonoff was able to produce a
good variance of packet rates and was suitable for this research.
Its performance was better than among the three tools.
Synthetic traffic proves to be beneficial for the research. For
checking the accuracy of algorithms we intent to use self-made
datasets. Our experimental results are based on KDD ’99
datasets. By using KDD ’99 datasets, the pre-processing
techniques rely on information extracted per packet based on the
network. This means that different pre-processing methods can
be considered tested and evaluated. Some features were
collected for pre-processing from the IP header of each packet.
These features are based on the report by benferhat et al. [16].
Table 1 shows the features extracted from the IP headers of each
captured network packet. The flag feature only contains SYN,
ACK, and FIN flags. If the transport protocol is UDP. The flag
field is left empty.

Table 1: Features extracted from the IP headers of each captured
network packet

Features Description

Protocol Transport layer protocol.

Source address IP-address of the source node.

Destination address IP-address of the destination node.

Javairya Nadeem et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2072 – 2079

2075

Source port The logical port on the source node
for the connection.

Destination port The logical port on the destination
node for the connection.

Size The size of the packets in bytes.

Timestamp The network packets timestamp.

Flags Status flag for the packet, if available.

3.4 Distinct Features by Creating Anomalies
 We have arranged each anomaly in such a way that they differ
from each other.
1. DoS attack causes an increase in network traffic. The DoS

attack selected was an SYN flood that sends a lot of SYN
packets to the targeted node. This attack was selected since
it is easy to execute and causes a huge disturbance in the
network flow which would make it perceptible in the
dataset.

2. A node failure causes a decrease in network traffic. Node
failure just needs to make a node not send or receive
packets. This could be brought about by manually
unplugging the node from the system, yet the arrangement
ought to ideally be automated by software. The node could
shut down the system interphase or essentially shut down
the programs in control imparting over the network. Node
failures are not complex and don't need more arrangement.
The significant part is that the node failure makes the node
to be inactive for sufficient time to be perceptible in the
network.

3. A port scan can be designed to not cause any increase or
decrease in the network traffic. Port scan was given a lot of
ports to scan utilizing TCP ACK flag to separate it from
SYN flood. At the point when a large number of packets are
conveyed in a short time, it causes an increase in network
traffic. This can cause an increase in packets sent to
unknown ports just as an increase in ACK packets which
should let the machine learning algorithm detect the port
scan.

3.5 Preprocessing Raw Network Traffic

Data pre-processing is an essential part of this research that
separates the raw network traffic. Capturing a network
generates a lot of data and translates the raw network traffic into
a dataset that can later be fed into a machine learning algorithm.
Different tools are used to pre-process the data which analyzes
this kind of data to detect malicious activities. Also, there are
different techniques for the pre-processing of data, namely:
1. Packet-based numeric
2. Time series
3. connection
All these three techniques are viable for creating a dataset useful
for machine learning. However, the time series pre-processing
technique was the only one implemented in this research mainly
due to the time constraint. Nevertheless, the drawback of the
packet-based numeric technique creates a very large dataset that
impacts the machine learning algorithms. While the connection

technique needs a system that handles the unfinished
connection and out-of-order packets.

3.6 Determining outliers and threshold for three machine
learning techniques LSTM, SVM, K-means clustering

 Long short-term memory neural network

The LSTM network was selected because of a higher
complex nature and its capacity to look at arrangements of the
time series. This algorithm applies a self-supervised approach
which implies that the algorithm is prepared to predict the
following point in the time series. By doing so requires a
sequence of previous time-series data points and utilizes the
subsequent point as target output for error approximations.
Since the LSTM is a sort RNN it stores information from past
data points in the time series and its task can be depicted as in
(1)

 (1)

After the LSTM network is prepared on the network traffic
training set, it is considered by checking the root mean square
error (RMSE) for every one of the data points in the test set.
Expect that is the estimated data point, and is the
actual data point, at that point the root mean square is. As in (2).

RMSE= (2)

Where d is the element of the dataset. Supposing that the data
contains a couple of anomalous points a threshold that separates
normal network traffic data and anomalous data is determined
dependent on RMSE. While presenting another data point it is
delegated as anomalous or normal based on if the RMSE, of the
expectation from the LSTM and the actual point, is less or more
than the threshold as found in condition (3).

 (3)

 SVM (Support Vector Machine)

Support vector machine is a supervised machine learning
model that uses a classified algorithm for two group’s
classification problems. This causes a problem since the dataset
in this research only contains a single class, namely, what is
presumed to be normal network traffic. The one-class SVM
however, handles the one-class problem by calculating a
hyper-sphere around the part of the data it is fed. Normal data
points are those which are inside the hyper-sphere and
anomalous data points are those which are outside the
hyper-sphere. Through this, the algorithm is considered to be
suitable for anomaly detection.
The hyper-parameters to be turned for the one-class SVM are γ
and ν, where is a parameter that takes the
variance of the input dataset into account. A smaller γ value
allows a larger variance in the input data to be mapped as
similar. A larger γ value only allows a small variance in the
input data and will only map data points close to each other as
similar. And the ν parameter governs the upper bound on the
fraction of margin errors and a lower bound on the fraction of
support vector relative to the total number of training examples.

Javairya Nadeem et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2072 – 2079

2076

A low ν value penalizes data points that are outside the
hyper-sphere while a higher ν value generalizes a better by
accepting more outliers. There is no general solution to set the
value of γ and ν and to find the proper value for
hyper-parameters a range of different values needs to be tested
and evaluated. In the live performance assessment, the one-class
support vector machine outputs the best results.

 K-means Clustering

K-means clustering is an unsupervised technique that tries to
express clusters in the data. By utilizing this algorithm to find a
set of clusters such that they represent the normal network
traffic. Squared Euclidean distance determines normal and
abnormal network traffic from the nearest cluster center as
shown in (4).

 (4)

Where d is the squared Euclidean distance, ci is the position of
the cluster centers and is a data point. To be able to decide if a
new point is anomalous or normal a threshold for the maximum
distance squared to the nearest cluster is a set of all network
traffic data points in S, the threshold, T, is selected such that a
subset N S will be classified as normal. Then T is chosen as in
(5).

 (5)

Where € is the allowed percentage of the data point in S that
might contain anomalous data.

4. COMPARATIVE RESULTS OF SVM, LSTM, AND
K-MEANS CLUSTERING

The terms used for the evaluation of these three algorithms
are false positive, false negative, true positive, and true negative.
These values are utilized while calculating the F1-score,
accuracy, and recall values.
1. Classifying normal data as anomalous is called false positive.
2. Classifying anomalous data as normal is called a false
negative.
3. Classifying anomalous data as anomalous is called a true
positive.
4. Classifying normal data as normal is called a true negative.

4.1 Starting Point

These results of the selected algorithms were compared with
the same algorithms found in different papers.

1. The paper of L. Han [17] “Research of K-MEANS
Algorithms Based on Information Entropy in Anomaly
detection” was used for the comparison of k-means clustering.

2. Whereas the paper of Kim et al [18] “Long Short Term
Memory Recurrent Neural Network Classifier for Intrusion
Detection” was considered for the comparison of the LSTM
neural network.

3. The paper of Zhang et al [19] “An Anomaly Detection
Model Based on One-Class SVM to Detect Network Intrusions”
was studied for the comparison of One-class SVM.

4.2 K-means Clustering

The Experimental cluster size selected was 40. It took 4 hours

long liv evaluation resulting in 15,540 time-series data points
for the collection of results. The result of the comparison of
k-means Clustering shows that the overall accuracy was
98.12%. Table 2 shows the classification of statics of k-means
clustering.

Table 2: Classification of Statics of k-means Clustering

 Prediction

Accuracy
Total
number

Percentage

Normal 10101 10303 98.04%

SYN
flood

1368 1370 99.85%

Port scan 2288 2321 98.58%

Node
failure

1492 1546 96.51%

Live evaluation of k-means clustering with synthetic attacks.

Table 3 shows the actual and predicted values of normal and
anomalous data after live evaluation of k-means clustering with
synthetic attacks and Table 4 shows the comparative Results
that were illustrated from the research by L. Han [17] of
k-means clustering.

Table 3: Actual and Predicted Values of Normal and Anomalous data

 Actual Values Predicted Values

 Normal
data

Anomaly
data

Normal
data

Anomaly
data

True
positive

 98.3% 98.3%

True
negative

98.0% 98.0%

False
positive

2.0% 2.0%

False-ne
gative

 1.7% 1.7%

Javairya Nadeem et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2072 – 2079

2077

Table 4: Comparative Results that were illustrated from the Research
by L. Han [17] of k-means Clustering

 Target

score
Achieved
score

Difference

F1-score 93.35 97.25 3.9

Precision
score

95.84 96.22 0.38

Recall score 90.98 98.30 7.32

4.2 LSTM (Long Short-Term Memory)
In the experimental section, selected 4LSTM and 2DENSE-model

with a threshold of 0.79 to be evaluated on the live network. It
took 7.71 hours providing 27,750 evaluated data points. 96.48%
was the overall accuracy of the LSTM algorithm. Table 5 shows
the classification statics of LSTM and Table 6 shows the
comparative results that were illustrated from the research by
Kim et al. [18] of LSTM

Table 5: Classification Statics of LSTM

 Prediction
accuracy

Total
number

Percentage

Normal 17266 18030 95.76%

SYN flood 2667 2714 98.27%

Port scan 4634 4728 98.01%

Node failure 2200 2277 96.62%

Table 6: Comparative Results that were illustrated from the Research

by Kim et al. [18] of LSTM

 Target
score

Achieved
score

Difference

F1-score 94.11 95.11 -1

Precision
score

98.66 92.56 6.1

Recall score 89.96 97.81 -7.85

Live evaluation of LSTM with synthetic attacks.

Table 7 shows the actual and predicted values of normal and
anomalous data after live evaluation of LSTM with synthetic
attacks.

Table 7: Shows the Actual and Predicted Values of Normal and
Anomalous Data

 Actual values Predicted values

Normal
data

Anomaly
data

Normal
data

Anomaly
data

True
positive

 97.8% 97.8%

True
negative

95.8% 95.8%

False
positive

4.2% 4.2%

False
negative

 2.2% 2.2%

4.4 One-Class SVM
In experimental results, the One-class SVM with a value of

0.001 and a y value of 0.04 was selected. It took 4.26 hours
providing 15,349 evaluated data points. The overall accuracy
of the one-class SVM algorithm was 98.6%. In Table 8
classification statics of one-class SVM is shown and figure 2
shows classification statics of SVM.

Table 8: Classification Statics of One-Class SVM
 Prediction

accuracy
Total

number
Percentage

Normal 10195 10302 98.96%

SYN flood 1593 1597 99.75%

Port scan 1860 1893 98.26%

Node
failure

1482 1557 95.18%

Figure 2. Classification Statics of SVM

Javairya Nadeem et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2072 – 2079

2078

Live evaluation of SVM with synthetic attacks.
Table 9 shows the actual and predicted values of normal and
anomalous data after live evaluation of one-class SVM with
synthetic attacks while Table 10 shows the comparative results.

Table 9: the actual and predicted values of normal anomaly data
 Actual values Predicted values

Normal
data

Anomaly
data

Normal
data

Anomaly
data

True
positive

 97.8% 97.8%

True
negative

99.0% 99.0%

False
positive

1.0% 1.0%

False
negative

 2.2% 2.2%

Table 10: Comparative Results that were illustrated from the Research

by Zhang et al. [19] of one-class SVM
 Target

score Achieved score Difference

F1-score 98.56 98.48 0.8

Precisio
n score

99.03 97.88 1.15

Recall
score

97.17 97.02 0.15

5. COMPARISION BETWEEN DIFFERENT MACHINE

LEARNING ALGORITHMS

 The Table 11 shows the comparative results of different
algorithms and figure 3 shows the comparison between different
machine learning algorithms.

Table 11: Comparative Results between Different Algorithms
Method Name Evaluation Metrics

Accuracy
Logistic

Regression
Precision 0.64

Recall 0.65
F1- Score 0.61

Training
Accuracy

0.77

Gaussian Naïve
Bayes

Precision 0.60
Recall 0.53

F1- Score 0.53
Training
Accuracy

0.73

KNN
(k-nearest
neighbor)

Precision 0.70
Recall 0.65

F1- Score 0.64
Training
Accuracy

0.70

Random Forest Precision 0.59
Recall 0.61

F1- Score 0.59
Training
Accuracy

0.79

Proposed model
SVM

Precision 0.99
Recall 0.97

F1- Score 0.98
Training
Accuracy

0.96

Testing Accuracy 0.97

Figure 3: Comparative Results

6. CONCLUSION
In this research, the experimental results proved which

algorithm performs best for the detection of an anomaly in a
real-time synthetic network traffic environment. The results
were similar to the ones found in reports using the KDD ’99
datasets. This determines the techniques clarified in this
research can create an anomaly detection system with precision
like the ones created utilizing the KDD '99 dataset without
having similar disadvantages as when utilizing the KDD '99
dataset. The score presented in the result section shows that
k-means clustering and the one-class SVM give almost the same
results of achievement in the case of anomaly detection whereas
the LSTM needs further improvements.

REFERENCES
[1] Warzyński, Arkadiusz, and Grzegorz Kołaczek. "Intrusion

detection systems vulnerability on adversarial
examples." 2018 Innovations in Intelligent Systems and
Applications (INISTA). IEEE, 2018.

Javairya Nadeem et al ., International Journal of Advanced Trends in Computer Science and Engineering, 10(3), May - June 2021, 2072 – 2079

2079

[2] Flood, Jason, Mark Denihan, Anthony Keane, and Fredrick
Mtenzi. "Black hat training of white hat resources: The
future of security is gaming." In 2012 International
Conference for Internet Technology and Secured
Transactions, pp. 488-491. IEEE, 2012.

[3] Kao, Da-Yu, and Shou-Ching Hsiao. "The dynamic
analysis of WannaCry ransomware." In 2018 20th
International Conference on Advanced Communication
Technology (ICACT), pp. 159-166. IEEE, 2018.

[4] Sommer, Robin, and Vern Paxson. "Outside the closed
world: On using machine learning for network intrusion
detection." In 2010 IEEE symposium on security and
privacy, pp. 305-316. IEEE, 2010

[5] D. C. St. Clair. Learning programs. Volume 11, pages
19–22 Institute of Electrical and Electronics Engineers,
October 1992.

[6] The association for computing machinery’s special interest
group on knowledge discovery and data mining.
https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Tasks.
Accessed: 2019-04-05.

[7] KDDCup ’99 dataset (Network Intrusion) considered
harmful. https://www.kdnuggets.com Accessed:
2019-04-17.

[8] Divekar, Abhishek, Meet Parekh, Vaibhav Savla, Rudra
Mishra, and Mahesh Shirole. "Benchmarking datasets for
anomaly-based network intrusion detection: KDD CUP 99
alternatives." In 2018 IEEE 3rd International Conference
on Computing, Communication and Security (ICCCS), pp.
1-8. IEEE, 2018.

[9] Tavallaee, Mahbod, Ebrahim Bagheri, Wei Lu, and Ali A.
Ghorbani. "A detailed analysis of the KDD CUP 99 data
set." In 2009 IEEE symposium on computational
intelligence for security and defense applications, pp. 1-6.
IEEE, 2009.

[10] Warzyński, A., & Kołaczek, G. (2018, July). Intrusion
detection systems vulnerability on adversarial examples.
In 2018 Innovations in Intelligent Systems and
Applications (INISTA) (pp. 1-4). IEEE.

[11] Debar, H., Dacier, M., & Wespi, A. (2000, July). A revised
taxonomy for intrusion-detection systems. In Annales des
telecommunications (Vol. 55, No. 7-8, pp. 361-378).
Springer-Verlag.

[12] Samrin, R., & Vasumathi, D. (2017, December). Review on
anomaly based network intrusion detection system. In 2017
International Conference on Electrical, Electronics,
Communication, Computer, and Optimization Techniques
(ICEECCOT) (pp. 141-147). IEEE.

[13] M. Alkasassbeh, G. Al-Naymat, and E. Hawari. Towards
generating realistic snmp-mib dataset for network anomaly
detection. International Journal of Computer Science and
Information Security ISSN 1947 5500, Vol. 14 :(pp.
1162–1185), September 2016.

[14] Varet, A., & Larrieu, N. (2014, July). How to generate
realistic network traffic. In 2014 IEEE 38th annual
computer software and applications conference (pp.
299-304). IEEE.

[15] Tankard, Colin. "Advanced persistent threats and how to
monitor and deter them." Network security 2011, no. 8
(2011): 16-19.

[16] Benferhat, Salem, Karim Tabia, and Karima Sedki.
"Preprocessing rough network data for intrusion detection
purposes." 2007.

[17] Han, L. (2012, November). Research of K-MEANS
algorithm based on information entropy in anomaly
detection. In 2012 Fourth International Conference on
Multimedia Information Networking and Security (pp.
71-74). IEEE.

[18] Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016, February).
Long short term memory recurrent neural network
classifier for intrusion detection. In 2016 International
Conference on Platform Technology and Service
(PlatCon) (pp. 1-5). IEEE.

[19] Zhang, M., Xu, B., & Gong, J. (2015, December). An
anomaly detection model based on one-class svm to detect
network intrusions. In 2015 11th International Conference
on Mobile Ad-hoc and Sensor Networks (MSN) (pp.
102-107) IEEE.

[20] lbor, Ayei, Nitish Achar, and Purushottam Patil. “Machine
Learning for Cyber Threat Detection.” International
Journal 9.1.1 (2020).

