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ABSTRACT 
 

This research discloses how to utilize machine learning 
methods for anomaly detection in real-time on a computer 
network. While utilizing machine learning for this task is 
definitely not a novel idea, little literature is about the matter of 
doing it in real-time. Most machine learning research in PC 
network anomaly detection depends on the KDD '99 data set and 
means to demonstrate the proficiency of the algorithms 
introduced. The emphasis on this data set has caused a lack of 
scientific papers disclosing how to assemble network data, 
remove features, and train algorithms for use in real-time 
networks. It has been contended that utilizing the KDD '99 
dataset for anomaly detection is not appropriate for real-time 
network systems. This research proposes how the data gathering 
procedure will be possible utilizing a dummy network and 
generating synthetic network traffic by analyzing the 
importance of One-class SVM. As the efficiency of k-means 
clustering and LTSM neural networks is lower than one-class 
SVM, that is why this research uses the results of existing 
research of LSTM and k-means clustering for the comparison 
with reported outcomes of a similar algorithm on the KDD '99 
dataset. Precisely, without engaging KDD ’99 data set by using 
synthetic network traffic, this research achieved the higher 
accuracy as compared to the previous researches.  
 
Key words: Anomaly Detection, Computer Networks, Data 
Generation, Machine Learning, Network Security, Real-Time. 
 
1. INTRODUCTION 
 

Computer security is a consistently advancing issue as 
innovation turns out to be progressively powerful. The strategies 
for the protection of data and data systems of yesterday cannot 
guarantee the security of the present systems. A dynamic piece 
of computer security is knowing whether a system has been or is 
being altered. These systems are called intrusion detection 
systems and are made to alleviate the dangers of system failure 
and misuse [1]. Network intrusion detection systems can be 
isolated into anomaly-based systems and signature-based 
systems. A signature-based system works by automatically 

making signatures that check for known attacks or 
malfunctions. The issue with this sort of system is that new or 
unknown attacks are difficult to deal with. Ongoing advances in 
network technology and the public accessibility of modern 
hacking instruments permit users with practically zero 
specialized understanding to submit complex system attacks [2], 
[3]. These attacks have gotten difficult to detect and making 
signature-based detection is a bulky and costly cycle. An 
anomaly-based detection system could be much more successful 
in this situation [4]. Anomaly-based systems rather attempt to 
recognize what an ordinary condition of the system looks like 
and reports when the system is not in this state. These systems 
are efficient at detecting unknown system behavior which can be 
resulted from either an attack or a system failure. 
Anomaly-based systems are frequently utilized in 
inter-connection with signature-based security systems to 
protect against as many dangers as could reasonably be 
expected. Machine learning has been utilized for anomaly-based 
intrusion detection systems for a considerable length of time. 
These sorts of algorithms are acceptable at detecting patterns in 
data, which causes them to perform well as a part of an 
anomaly-based intrusion detection system. Although, a great 
deal of examination on the algorithms in this field depends on 
utilizing a single data set, specified as the KDD '99 data set [4], 
[5]. This data set is presently 20 years of age and over the most 
recent twenty years, computer network systems and attacks have 
developed massively. The KDD '99 data set depends on the 1998 
DARPA intrusion detection evaluation program's gathered data 
[6]. The data set was gathered more than 9 weeks on a system 
made to copy commonplace U.S air force LAN network traffic. 
The data set doesn't contain data dependent on singular packets 
sent over the network system. Rather every packet is appointed 
to a connection from where the data is determined. A connection 
is characterized as a grouping of TCP packets beginning and 
ending at some well-defined time. This data set doesn't contain 
some other protocol than TCP. Despite the fact that the KDD '99 
data set is broadly utilized it has been criticized for having a lack 
of quality [7], [8], [9]. The nature of the data set is basic in 
machine learning and it has been contended that this lessens 
papers dependent on the dataset of KDD ’99. When a dataset is 
assorted as the KDD '99 dataset is admissible, there exists a gap 
in the academia demonstrating the cycle from gathering 
network traffic to executing a live system. This project means to 
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help fill this gap by looking at preparing said traffic, training 
algorithms by utilizing the traffic as data and lastly assessing the 
algorithms on a real-time network archiving how this can be 
practiced.  

2. BACKGROUND 
 
2.1 Network Intrusion Detection System 

 
Network Intrusion Detection Systems, NIDS, are used to 

detect malicious traffic in a computer network. The subject can 
be divided into two types, signature based detection and 
anomaly based detection [10], [11]. Signature based NIDS 
follow a static set of signatures and patterns to detect already 
known attacks. Anomaly based NIDS are used to classify 
normal traffic and abnormal traffic, where the latter is 
considered to be an anomaly in the network. They have detected 
anomalies by using a set of procedures and heuristics and this 
project focus on these different types of NIDS. Typically, 
anomaly based NIDS are developed by gathering data of the 
system and feeding it to an algorithm with the intention that the 
algorithm should be able to distinguish normal and anomalous 
data [11]. 
 
2.2 Network anomalies 

In computer networks, an anomaly would be unexpected 
network traffic or traffic flows [12]. Anomalies can appear in 
any network for various reasons and do not necessarily mean 
that an intruder or malicious user has tampered with the 
network. Examples of anomalies could be a sudden unexpected 
spike in network congestion due to a router failure or a denial of 
service attack sending many more packets to a node than 
normal. Below are examples of three different network 
anomalies. 
 Node Failure  

Node failure occurs when a node in the network suddenly 
stops responding. This can be because of a power outage, a 
hardware or software failure in the node or because of any 
other reason. The node is simply not active in the network any 
longer. 

 Denial of Service Attacks 
DoS attacks is a cyber-attack in which machine and network 
resources are unavailable to its intended user. DoS attacks can 
also be used to increase network congestion and cause major 
slowdowns in network traffic. A DoS attack causes a 
noticeable difference in network traffic, as there is a sudden 
increase in connections to a specific port that are never 
resolved. 

 Port Scan  
Port scanning is a technique where the user is attempting to 
find out what services are running on a remote machine. This 
is usually done to find vulnerable ports that the targeted 
machine is listening to and either close them, add security 
layers on top of the services or, in the case of a malicious user, 
exploit these ports. 

2.3 Network Traffic Generation 
Network traffic fluctuates relying upon what services are 

running on the connected systems in the network/topology. 
Preferably the network communications should be made to 
imitate some type of predefined system. This traffic can be 
created by using tools to create synthetic data, replaying 
pre-recorded network data or by having people perform actions 
over the network simulating real users. Synthetic data is data 
that has the same features and behaves the same way as real data 
but does not contain any significant information. Below is a 
short description of three network traffic generation tools. 
 Distributed Internet Traffic Generator (D-ITG) 

D-ITG (Distributed Internet Traffic Generator) is a platform 
used to generate realistic network traffic. This tool is capable 
of using a variety of stochastic processes to simulate real-time 
network performance with varying delays and packet sizes 
using a large variety of probability distributions [1900]. 
D-ITG can imitate a large number of different applications 
over the network, such as online games or voice 
communication. It uses client-server functionality to send and 
receive network communication and also keeps a log of 
overall network communication that has been sent and 
received by D-ITG. 

 Iperf 
Iperf, also known as iperf3 is an open-source tool for 
bandwidth benchmarking in computer networks. It uses 
client-server functionality to set up connections and can send 
packets using a variety of different protocols and parameters. 
When connecting to a server using iperf, it will attempt to 
send as much data as possible to the server and report back its 
throughput. 

 SourcesOnOff 
SourcesOnOff was developed to help network engineers 
generate network traffic for testing and evaluation of different 
applications on computer networks. It attempts to generate 
the same type of traffic a network administrator would see in 
a local area network and on the internet using client-server 
functionality [13]. It supports sending packets with different 
delays and sizes using various probability distributions to 
mimic realistic network performance. 
 

2.4 Feature Selection 
Data must be ordered and labeled clearly to be considered 

useful when being collected and processed. This means that all 
data gathered must be sorted and put into context. When talking 
about feature selection the intent is to extract several 
characteristic features that would describe the data accurately. 
This allows the algorithms to process the data in a way that 
would make it useful for machine learning. There are several 
ways this can be done and it depends on how the data processing 
algorithms work. There are however indicators that help when 
selecting features such as variance. For example, a feature with 
zero variance would not be useful since it would never change 
and would thus be redundant. 
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2.5 Pre-processing  
Algorithm to work correctly it requires a numeric 

representation with high-quality data set i.e. a data set that the 
algorithms understand with minimal inaccuracies [14]. The 
data can contain irregularities or other skewed information that 
would cause the algorithm to perform poorly. The 
pre-processing step is usually done by filtering out faulty data 
points. This can be done by removing the faulty data or 
correcting it. There is more to pre-processing data than filtering, 
such as normalizing the features since they can vary between a 
large ranges of values. 
  
3. METHODOLOGY 
 

For the implementation of the proposed methodology, we 
create a network environment of integrated systems by using 
machine learning techniques to detect the attacks and zombie 
PC. 
 
3.1 System Overview 

Ongoing cyber-attacks are started by utilizing progressive 
social engineering or by sending a targeted email to assault 
targets [15]. In the event that a host is infected by malicious 
code, an endeavor to speak with a C&C worker is made and a 
correspondence channel is framed utilizing Internet Remote 
Chat (IRC) or an HTTP protocol. When a communication 
channel is set up, the host gets an attack instruction from the 
C&C server or updates the file. 

For this purpose, the utilization of machine learning 
techniques has been designed for the detection of zombie pc to 
monitor real-time network traffic and abnormalities. Figure 1 
shows the overall structure of this research. 
 

 
Figure 1: Proposed Methodology 

3.2 The Network Structure for Generating and Gathering 
Network Traffic 

For the detection of an anomaly, we create a setup of one or 
more nodes. We create a network in which one or more hosts are 
integrated, in this network one or more hosts performing some 
task over a network. In this setup, there are one or more hosts 
that are not visible by the host on the network. The purpose of 
these nodes is to collectively gather all the data in the network. 
These nodes are handled by the monitoring system whose task is 
to analyze data that come from the internet. Many surveillance 
nodes analyze the data. If so, they must communicate separately 
from the analyzed network and have some algorithm for 
reaching consensus of the network analyses. Figure 1, above 
shows the general structure of the network traffic collecting 
system. 

 
3.3 Creating a Network Traffic 

For the detection of an anomaly, generating traffic between 
nodes is the main part of this research. Realistic traffic is 
required to fulfill the machine learning and enough to perform 
machine learning data well. Many approaches were considered. 
Such a network system is to be made that can produce artificial 
network traffic. To evaluate network traffic, many tools are used 
that generate artificial network traffic to detect anomalies, for 
running programs that can generate synthetic network traffic 
that behaves like real network traffic. The tools that are utilized 
for generating synthetic network traffic are libpcap tool (which 
is used with a python API), D-ITG, iperf, and sourcesonoff. 
D-ITG was a poor tool for longer sessions of creating network 
traffic. Iperf is good for long sessions but it is usually built for 
bandwidth testing which causes network flooding with a high 
rate of packets per second. Sourcesonoff was able to produce a 
good variance of packet rates and was suitable for this research. 
Its performance was better than among the three tools. 
Synthetic traffic proves to be beneficial for the research. For 
checking the accuracy of algorithms we intent to use self-made 
datasets. Our experimental results are based on KDD ’99 
datasets. By using KDD ’99 datasets, the pre-processing 
techniques rely on information extracted per packet based on the 
network. This means that different pre-processing methods can 
be considered tested and evaluated. Some features were 
collected for pre-processing from the IP header of each packet. 
These features are based on the report by benferhat et al. [16]. 
Table 1 shows the features extracted from the IP headers of each 
captured network packet. The flag feature only contains SYN, 
ACK, and FIN flags. If the transport protocol is UDP. The flag 
field is left empty. 
 

Table 1: Features extracted from the IP headers of each captured 
network packet 

Features  Description  

Protocol  Transport layer protocol. 

Source address  IP-address of the source node. 

Destination address IP-address of the destination node. 
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Source port The logical port on the source node 
for the connection. 

Destination port  The logical port on the destination 
node for the connection. 

Size  The size of the packets in bytes. 

Timestamp  The network packets timestamp. 

Flags Status flag for the packet, if available. 

 

3.4 Distinct Features by Creating Anomalies 
 We have arranged each anomaly in such a way that they differ 
from each other. 
1. DoS attack causes an increase in network traffic. The DoS 

attack selected was an SYN flood that sends a lot of SYN 
packets to the targeted node. This attack was selected since 
it is easy to execute and causes a huge disturbance in the 
network flow which would make it perceptible in the 
dataset.  

2. A node failure causes a decrease in network traffic. Node 
failure just needs to make a node not send or receive 
packets. This could be brought about by manually 
unplugging the node from the system, yet the arrangement 
ought to ideally be automated by software. The node could 
shut down the system interphase or essentially shut down 
the programs in control imparting over the network. Node 
failures are not complex and don't need more arrangement. 
The significant part is that the node failure makes the node 
to be inactive for sufficient time to be perceptible in the 
network. 

3. A port scan can be designed to not cause any increase or 
decrease in the network traffic. Port scan was given a lot of 
ports to scan utilizing TCP ACK flag to separate it from 
SYN flood. At the point when a large number of packets are 
conveyed in a short time, it causes an increase in network 
traffic. This can cause an increase in packets sent to 
unknown ports just as an increase in ACK packets which 
should let the machine learning algorithm detect the port 
scan. 

 
3.5 Preprocessing Raw Network Traffic 

Data pre-processing is an essential part of this research that 
separates the raw network traffic. Capturing a network 
generates a lot of data and translates the raw network traffic into 
a dataset that can later be fed into a machine learning algorithm. 
Different tools are used to pre-process the data which analyzes 
this kind of data to detect malicious activities. Also, there are 
different techniques for the pre-processing of data, namely:  
1. Packet-based numeric 
2. Time series 
3. connection 
All these three techniques are viable for creating a dataset useful 
for machine learning. However, the time series pre-processing 
technique was the only one implemented in this research mainly 
due to the time constraint. Nevertheless, the drawback of the 
packet-based numeric technique creates a very large dataset that 
impacts the machine learning algorithms. While the connection 

technique needs a system that handles the unfinished 
connection and out-of-order packets. 

3.6 Determining outliers and threshold for three machine 
learning techniques LSTM, SVM, K-means clustering 
 
 Long short-term memory neural network 

The LSTM network was selected because of a higher 
complex nature and its capacity to look at arrangements of the 
time series. This algorithm applies a self-supervised approach 
which implies that the algorithm is prepared to predict the 
following point in the time series. By doing so requires a 
sequence of previous time-series data points and utilizes the 
subsequent point as target output for error approximations. 
Since the LSTM is a sort RNN it stores information from past 
data points in the time series and its task can be depicted as in 
(1)  
 

                                     (1) 
 
After the LSTM network is prepared on the network traffic 
training set, it is considered by checking the root mean square 
error (RMSE) for every one of the data points in the test set. 
Expect that  is the estimated data point, and is the 
actual data point, at that point the root mean square is. As in (2). 

RMSE=       (2)    

Where d is the element of the dataset. Supposing that the data 
contains a couple of anomalous points a threshold that separates 
normal network traffic data and anomalous data is determined 
dependent on RMSE. While presenting another data point  it is 
delegated as anomalous or normal based on if the RMSE, of the 
expectation from the LSTM and the actual point, is less or more 
than the threshold as found in condition (3). 

                                              (3) 

 
 SVM (Support Vector Machine) 

Support vector machine is a supervised machine learning 
model that uses a classified algorithm for two group’s 
classification problems. This causes a problem since the dataset 
in this research only contains a single class, namely, what is 
presumed to be normal network traffic. The one-class SVM 
however, handles the one-class problem by calculating a 
hyper-sphere around the part of the data it is fed. Normal data 
points are those which are inside the hyper-sphere and 
anomalous data points are those which are outside the 
hyper-sphere. Through this, the algorithm is considered to be 
suitable for anomaly detection.  
The hyper-parameters to be turned for the one-class SVM are γ 
and ν, where  is a parameter that takes the 
variance of the input dataset into account. A smaller γ value 
allows a larger variance in the input data to be mapped as 
similar. A larger γ value only allows a small variance in the 
input data and will only map data points close to each other as 
similar. And the ν parameter governs the upper bound on the 
fraction of margin errors and a lower bound on the fraction of 
support vector relative to the total number of training examples. 
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A low ν value penalizes data points that are outside the 
hyper-sphere while a higher ν value generalizes a better by 
accepting more outliers. There is no general solution to set the 
value of γ and ν and to find the proper value for 
hyper-parameters a range of different values needs to be tested 
and evaluated. In the live performance assessment, the one-class 
support vector machine outputs the best results. 
 
 K-means Clustering 

K-means clustering is an unsupervised technique that tries to 
express clusters in the data. By utilizing this algorithm to find a 
set of clusters such that they represent the normal network 
traffic. Squared Euclidean distance determines normal and 
abnormal network traffic from the nearest cluster center as 
shown in (4). 
 

             (4)   
            
Where d is the squared Euclidean distance, ci is the position of 
the cluster centers and  is a data point. To be able to decide if a 
new point is anomalous or normal a threshold for the maximum 
distance squared to the nearest cluster is a set of all network 
traffic data points in S, the threshold, T, is selected such that a 
subset N S will be classified as normal. Then T is chosen as in 
(5). 
 

         (5) 
 
Where € is the allowed percentage of the data point in S that 
might contain anomalous data. 

4. COMPARATIVE RESULTS OF SVM, LSTM, AND 
K-MEANS CLUSTERING 
 

The terms used for the evaluation of these three algorithms 
are false positive, false negative, true positive, and true negative. 
These values are utilized while calculating the F1-score, 
accuracy, and recall values.  
1. Classifying normal data as anomalous is called false positive.  
2. Classifying anomalous data as normal is called a false 
negative.  
3. Classifying anomalous data as anomalous is called a true 
positive. 
4. Classifying normal data as normal is called a true negative. 
 
4.1 Starting Point 

These results of the selected algorithms were compared with 
the same algorithms found in different papers.   

1. The paper of L. Han [17] “Research of K-MEANS 
Algorithms Based on Information Entropy in Anomaly 
detection” was used for the comparison of k-means clustering.  

2. Whereas the paper of Kim et al [18] “Long Short Term 
Memory Recurrent Neural Network Classifier for Intrusion 
Detection” was considered for the comparison of the LSTM 
neural network.  

3. The paper of Zhang et al [19] “An Anomaly Detection 
Model Based on One-Class SVM to Detect Network Intrusions” 
was studied for the comparison of One-class SVM. 

4.2 K-means Clustering 
 
The Experimental cluster size selected was 40. It took 4 hours 

long liv evaluation resulting in 15,540 time-series data points 
for the collection of results.  The result of the comparison of 
k-means Clustering shows that the overall accuracy was 
98.12%. Table 2 shows the classification of statics of k-means 
clustering. 

 
Table 2: Classification of Statics of k-means Clustering 

 
 Prediction 

Accuracy 
Total 
number 

Percentage 

Normal  10101 10303 98.04% 

SYN 
flood  

1368 1370 99.85% 

Port scan 2288 2321 98.58% 

Node 
failure 

1492 1546 96.51% 

 
Live evaluation of k-means clustering with synthetic attacks.  

Table 3 shows the actual and predicted values of normal and 
anomalous data after live evaluation of k-means clustering with 
synthetic attacks and Table 4 shows the comparative Results 
that were illustrated from the research by L. Han [17] of 
k-means clustering. 
 
Table 3: Actual and Predicted Values of Normal and Anomalous data 

 
 Actual Values Predicted Values 

 Normal 
data 

Anomaly 
data 

Normal 
data 

Anomaly 
data 

True 
positive  

 98.3%  98.3% 

True 
negative 

98.0%  98.0%  

False 
positive 

2.0%   2.0% 

False-ne
gative 

 1.7% 1.7%  
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Table 4: Comparative Results that were illustrated from the Research 
by L. Han [17] of k-means Clustering 

 
 Target 

score  
Achieved 
score  

Difference  

F1-score 93.35 97.25 3.9 

Precision 
score 

95.84 96.22 0.38 

Recall score  90.98 98.30 7.32 

4.2 LSTM (Long Short-Term Memory) 
In the experimental section, selected 4LSTM and 2DENSE-model 

with a threshold of 0.79 to be evaluated on the live network. It 
took 7.71 hours providing 27,750 evaluated data points. 96.48% 
was the overall accuracy of the LSTM algorithm. Table 5 shows 
the classification statics of LSTM and Table 6 shows the 
comparative results that were illustrated from the research by 
Kim et al. [18] of LSTM  

Table 5: Classification Statics of LSTM 
 

 Prediction 
accuracy 

Total 
number 

Percentage  

Normal  17266 18030 95.76% 

SYN flood  2667 2714 98.27% 

Port scan 4634 4728 98.01% 

Node failure 2200 2277 96.62% 

 
Table 6: Comparative Results that were illustrated from the Research 

by Kim et al. [18] of LSTM 
 

 Target 
score 

Achieved 
score 

Difference  

F1-score 94.11 95.11 -1 

Precision 
score 

98.66 92.56 6.1 

Recall score  89.96 97.81 -7.85 
 
Live evaluation of LSTM with synthetic attacks. 
 
Table 7 shows the actual and predicted values of normal and 
anomalous data after live evaluation of LSTM with synthetic 
attacks. 

 
 
 
 

Table 7: Shows the Actual and Predicted Values of Normal and 
Anomalous Data 

 
 Actual values Predicted values 

Normal 
data 

Anomaly 
data 

Normal 
data 

Anomaly 
data 

True 
positive  

 97.8%  97.8% 

True 
negative 

95.8%  95.8%  

False 
positive 

4.2%   4.2% 

False 
negative 

 2.2% 2.2%  

4.4 One-Class SVM 
In experimental results, the One-class SVM with a value of 

0.001 and a y value of 0.04 was selected. It took 4.26 hours 
providing 15,349 evaluated data points. The overall accuracy 
of the one-class SVM algorithm was 98.6%. In Table 8 
classification statics of one-class SVM is shown and figure 2 
shows classification statics of SVM. 

Table 8: Classification Statics of One-Class SVM 
 Prediction 

accuracy 
Total 

number 
Percentage 

Normal  10195 10302 98.96% 

SYN flood  1593 1597 99.75% 

Port scan 1860 1893 98.26% 

Node 
failure 

1482 1557 95.18% 

 

 
Figure 2. Classification Statics of SVM 
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Live evaluation of SVM with synthetic attacks. 
Table 9 shows the actual and predicted values of normal and 
anomalous data after live evaluation of one-class SVM with 
synthetic attacks while Table 10 shows the comparative results. 

Table 9: the actual and predicted values of normal anomaly data 
 Actual values Predicted values 

Normal 
data 

Anomaly 
data 

Normal 
data 

Anomaly 
data 

True 
positive  

 97.8%  97.8% 

True 
negative 

99.0%  99.0%  

False 
positive 

1.0%   1.0% 

False 
negative 

 2.2% 2.2%  

 
Table 10: Comparative Results that were illustrated from the Research 

by Zhang et al. [19] of one-class SVM 
 Target 

score Achieved score Difference 

F1-score 98.56 98.48 0.8 

Precisio
n score 

99.03 97.88 1.15 

Recall 
score  

97.17 97.02 0.15 

 
 
5. COMPARISION BETWEEN DIFFERENT MACHINE 

LEARNING ALGORITHMS 

  The Table 11 shows the comparative results of different 
algorithms and figure 3 shows the comparison between different 
machine learning algorithms. 
 

Table 11: Comparative Results between Different Algorithms 
Method Name Evaluation Metrics 

Accuracy 
Logistic 

Regression 
Precision 0.64 

Recall 0.65 
F1- Score 0.61 

Training 
Accuracy 

0.77 

Gaussian Naïve 
Bayes 

Precision 0.60 
Recall 0.53 

F1- Score 0.53 
Training 
Accuracy 

0.73 

KNN 
(k-nearest 
neighbor) 

 

Precision 0.70 
Recall 0.65 

F1- Score 0.64 
Training 
Accuracy 

0.70 

Random Forest Precision 0.59 
Recall 0.61 

F1- Score 0.59 
Training 
Accuracy 

0.79 

Proposed model 
SVM 

Precision 0.99 
Recall 0.97 

F1- Score 0.98 
Training 
Accuracy 

0.96 

Testing Accuracy 0.97 
 

 
 

Figure 3: Comparative Results 

6. CONCLUSION 
In this research, the experimental results proved which 

algorithm performs best for the detection of an anomaly in a 
real-time synthetic network traffic environment. The results 
were similar to the ones found in reports using the KDD ’99 
datasets. This determines the techniques clarified in this 
research can create an anomaly detection system with precision 
like the ones created utilizing the KDD '99 dataset without 
having similar disadvantages as when utilizing the KDD '99 
dataset. The score presented in the result section shows that 
k-means clustering and the one-class SVM give almost the same 
results of achievement in the case of anomaly detection whereas 
the LSTM needs further improvements. 
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