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 
ABSTRACT 
 
In this study, a global maximum power point tracking 
technique based on invasive weed optimization algorithm for 
PV array under partial shading conditions is proposed. This 
technique is not used before with this problem. The 
power-voltage curve of the PV array has several local 
maximum power points. The proposed method converges 
successfully to the global maximum. An overall statistical 
appraisal of the proposed technique compared with different 
meta-heuristic techniques mentioned in literature is executed 
under di�erent scenarios of shading conditions to estimate 
the superiority of the proposed technique over all other 
techniques. The statistical metrics are including geometric 
mean, the root mean square error, mean absolute error, 
standard deviation, arithmetic mean, significance, and 
e�ciency, in addition to a proposed one for measuring 
solution stability. The proposed algorithm is considered to be 
the most efficient and outstanding optimization technique 
compared to corresponding ones. 
 
Key words: PV systems; Global maximum power point 
tracking; partial shading; Invasive Weed; Modern 
Optimization. 
 
1. INTRODUCTION 
 
One of the hot topics of research in the improvement of PV 
system efficiencies is the maximum power point tracking 
(MPPT). In the beginning, conventional MPPT techniques 
such as perturb and observe (P&O), incremental conductance 
(IC), hill climbing and constant voltage techniques are used 
for several years to do the job of MPPT under uniform 
radiation [1]. 
Due to partial shading conditions (PSCs), which can create 
one Global Maximum Power Point (GMPP) and multiple 
 

 

Local Maximum Power Points (LMPPs), these techniques are 
likely to be trapped at one of the LMPPs as these algorithms 
could not characterize between GMPP and LMPPs [2]. 
To overcome this problem, global MPPT techniques based on 
Meta-Heuristic optimization algorithms such as Particle 
Swarm Optimization (PSO), Differential Evolution (DE), 
Harmony Search Algorithm (HSA), Bat Algorithm (BA), Sine 
Cosine Algorithm (SCA), Wind Driven Optimization 
(WDO), Cuckoo Search (CS) and Genetic Algorithm (GA) 
are previously developed [3].  
Meta-heuristic techniques, which depends on many searching 
criteria, send searching agents to search global maximum 
power and adjust the new positions of the searching agents to 
follow the highest possible values caught in the previous 
positions. Although most of the meta-heuristic techniques can 
reach the GMPP under uniform and PSCs, these techniques 
suffer from some problems [4]. 
For example, GA can handle the MPPT control in PV systems 
operating under partial shaded conditions. Although GA 
distinguishes by fit solutions that can be found in a very less 
time and easy coding compared to other algorithms which 
does the same job, it has drawback, which is not finding the 
most optimal solution to the defined problem in all cases [5]. 
Due to its faster tracking, better efficiency and a reduction in 
PV output power oscillations due to PSCs which ultimately 
reduces the loss in performance faced by the conventional 
algorithms, PSO is proposed. Although PSO can deal with 
optimization problems of large dimensions, often producing 
quality solutions more rapidly than alternative methods, it 
suffers from no general convergence theory for practical, 
multidimensional problems and tuning of input parameters 
[6]. DE is applied in the MPPT controller for the PV modules 
under PSCs. The technique has higher efficiency, ease of 
implementation, the feasibility and keeping the multiplicity of 
population and enhancing the capacity of local search. 
Although the previous merits of DE, its convergence is 
unstable and easy to drop into the pbest [7]. Due to its reliability 
under variable irradiance, variable temperature and variable 
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PV rating, HSA is proposed for PSCs. Despite HSA produces 
better solution than other existing algorithm in less number of 
iterations and not needing initial value for decision variables, 
it suffers from the problem of premature and/or false 
convergence and slow convergence especially over 
multimodal fitness landscape [8]. On other hand, CS is able to 
track the MPP efficiently. Although the simplicity, easiness to 
implement, dealing with multi-criteria optimization problems 
and hybridization with other swarm-based algorithms of CS, 
it suffers from bad accuracy, low convergence rate and 
easiness fall into local optimal value [9]. A fast-converging 
BA is able to track the GMPP for a PV array subjected to 
PSCs. BA is more efficient, faster, sustainable and more 
reliable for PV systems subjected to intensive PSCs. Even 
though the previous merits, BA suffers from leading to 
stagnation after some initial stage if we allow the algorithm to 
switch to exploitation stage too quickly by varying loudness 
and rate of pulse emission too quickly [10]. WDO presents a 
robust global MPPT technique for PV system under 
non-uniform solar irradiance. Despite easiness of WDO to 
carried out, WDO suffers from low convergence speed and 
Trapped on local optima [11]. Although the SCA has 
providing simple implementation strategy, better tracking 
ability, high convergence rate. Unfortunately, it suffers from 
its disability to transcend other algorithms on specific set of 
problems and existence of four random parameters [12]. 
Despite the merits of various meta-heuristic optimization 
techniques in the literature, it has been demonstrated by the 
No-Free-Lunch [4], that none of them are able to solving all 
optimization problems. This clearly detects the importance of 
finding new algorithms to deal with all concerned related 
issues in di�erent fields. Despite the validation of an 
algorithm in solving set of problems does not promise its 
accommodation in different sets of test problems, for example, 
the invasive weed optimization (IWO) algorithm by 
(Mehrabian and Lucas, 2006) didn’t utilize in the field of 
MPPT for partially shaded PV systems. This algorithm 
compared to similar particle-based algorithms has a powerful 
advantageous as it robust, stochastic, and derivative free 
optimization algorithm for the solution of complex real-world 
problems. This encourages us to use IWO for first time in 
solving the problem of PSC of PV systems [13]. 
 
2. PV UNDER PARTIAL SHADING 
 
A PV array consisting of four modules connected in series in 
different cases is shown in Figure 1. Figure 1 (a) shows 
unshaded PV array on the other side Figure1 (b, c, d) shows a 
partially shaded PV array in different scenarios. The 
equivalent circuit of PV array is shown in Figure 2. 

 
           (a)              (b)            (c)               (d) 

Figure 1: (a) Unshaded PV array, (b, c, d) Shaded PV array 

 
Figure 2: Equivalent circuit of PV array 

The optimal value from the PV array under partial shading 
will be reached by maximizing the expected power from the 
PV system by using the following objective function [14]: 
Maximize:             , , ,*p v a rra y p v a rra y p v a rra yP I V            (1) 
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Where the parameters: 
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Where, 
Nser: Number of series modules. 
Npar: Number of parallel modules. 
Ns: Number of cells in one module. 
A; Ideality factor of diode, A(T)=A*(Tstc/T). 
T, Tstc: The temperature of the PV array under normal 
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operation and at standard test condition. 
G, Gstc: Irradiance level under normal operation and at 
standard test condition, W/m2. 
K: Boltzmann’s constant, 1.3805*10-23J/K. 
q: Electron charge, 1.6*10-19c. 
Rs, Rsh: Panel series resistance and parallel (shunt) resistance. 
Voc: Open circuit voltage. 
Isc: Short circuit current. 
Tak, Trk: Actual and Relative temperature in Kelvin. 
Kv and Ki:: Temperature coefficient of Voc and Isc 
Vt: The junction thermal voltage, (K*Tak)/q. 
Due to the presence of PSC [4], several peaks divided into one 
GMPP and several LMMPs appear on the expected power 
curve from the PV array under PSC as shown in Figure 3 in 
which there are three curves, the 1st under no partial shading 
under STC (25°C, 1000 W/m2 applied to the four arrays), the 
2nd under PSC(1) under (25°C, [1000 800 700 600]) and the 3rd 
under PSC(2) under (25°C, [900 700 400 200]). 

 
Figure 3: The expected power from the PV system under partial 

shading 
 

3. PROPOSED IWO TECHNIQUE 
 
Invasive weed optimization algorithm was first proposed by 
Mehrabian and Lucas (2006), [15]-[17]. The idea of IWO 
algorithm originates from the evolution principle of weeds in 
nature, which is implemented by the simulation of five basic 
steps, initialization, reproduction, spatial dispersal, 
competitive exclusion and termination condition. The basic 
IWO algorithm can be briefed as follows: 

1) Initialization a population: A population of a set of 
initial solution i.e. seeds are randomly dispreads over the 
search space with random positions. The dimension of 
the search space is determined by the numbers of 
variables. 
2) Reproduction: The fitness values of the seeds are 

evaluated. At this stage, the seeds have grown to become 
weeds. These weeds are ranked on the basis of their 
fitness values in the colony. Now each weed is capable of 
producing new seeds according to its rank. Higher is the 
fitness of the weed, more is the numbers of seeds 
produced by the weed. The number of seeds produced by 
each weed is given by [16]: 

 min
max min min

max min
n

f f
Weed s s s

f f


  
                       (5) 

Where f is the fitness of the current weed. fmin and fmax 
respectively represent the least fitness and the maximum 
of the current population. smin and smax respectively 
represent the least and the maximum value of a weed. 
 
3) Spatial dispersal: The seeds so produced are scattered 
over the search space around their parent by means of 
normal distribution with zero mean and changing 
variance. The normal distribution guarantee that the 
generated seeds are distributed near to their parent. But 
the standard deviation σ of random function goes on 
reducing from previously defined initial value σinit to final 
value σfinal with the increase of number of iterations so 
that the technique can gradually move from exploration 
to exploitation. For a given iteration, the standard 
deviation of the random function is given by [16]: 

 max

max

n

iter init final final
iter iter

iter
   

 
    
                     (6) 

Where σiter is the standard deviation at the current 
iteration iter, and itermax is the maximum number of 
iterations, and n is a nonlinear modulation index having 
the value in the range of 2 to 3. 
4) Competitive exclusion: After passing some iteration, 
all of the weeds and their seeds are combined together to 
form a population for the next generation. If the number 
of weeds in a colony will exceed its maximum (Pmax) by 
fast reproduction, weeds with lower fitness are eliminated 
to reach the maximum allowable population in a colony. 
In this way, weeds and seeds are classified together and 
the ones with higher fitness survive and are permitted to 
reproduce. The reproduction and competitive processes 
give an opportunity for less fit weeds to reproduce. If they 
reproduce fitter offspring, the offspring can survive in the 
competition. 
5) Termination condition: This operation continues 
until a given termination condition, such as the 
maximum number of iterations, or another terminating 
criterion, is reached. 

In this case of study of global MPPT, a weed in a colony 
represents a voltage of the PV array since, the weed of higher 
fitness represented the voltage at which the global power point. 
Figure 4 shows the searching mechanism flowchart that is 
done by IWO for the purpose of MPPT tracking. 
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4. COMPARATIVE STUDY 

 
The validation of the proposed technique was presented in 
four different case studies. A comparative study was 
performed with others optimization techniques to validate it. 
Four Kyocera KD135SX-UPU PV modules were used to study 
the partial shading conditions. The specifications of this 
module are given in Table 1. 

Start

Measure the corresponding current (I) and power 
(P) to Vini 

Initiate a population Pop_size, iter_max, smin,  smax, σinit, 
σfinal, Pop_max,Vini (initial voltage)

     

i=1

Pbest,i=max(P)

Calculate fitness F(i)=P(i)/Pbest,i

Calculate Gbest

i>Pop_maxi=i+1 NO

iter=1

i=1

Yes

Calculate Weedn according to Eq(5).
Calculate σiter according to Eq(6).

Length(Weedn)>Pop_max
Limitation 

Weednew=Gbest
NO

Measure the new power corresponding to the new 
weed, fitness and Gbest

Next seed

Yes

i>Pop_maxi=i+1 NONext weed

Eliminate the weeds with low fitness to reach the 
maximum allowable population in a colony

Yes

Max No. of iteration
NO Next iteration

Output the best position of weed of the 
global MPP

End 

iter=iter+1

Initialization Stage

Reproduction and Spatial dispersal Stages

Competitive 
exclusion Stage  

Termination 
condition Stage

Yes

 
Figure 4: IWO algorithm 
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Table 1: PV module specifications 
Type Kyocera 

KD135SX-UPU 
Maximum power, Pmax 135 W 
Open circuit voltage, Voc 22.1 V 
Voltage at maximum power point 17.7 V 
Short circuit current, Isc 8.37 A 
Current at maximum power 
point 

7.63 A 

Short circuit current 
temperature coe�cient, Ki 

5.02*10-3 A/°C 

Open circuit voltage temperature 
coe�cient, Kv 

-8*10-2 V/°C 

Reference temperature, Tref 25 °C 
 
It is observed from the prior studies that most research had 
considered just a single radiation model or few models of PSC 
to check the strength of the optimization technique for 
tracking the global MPP without an extensive statistical 
analysis (i.e. only one run for each technique). This in turns 
encouraged the authors to put in a global arbitrage via an 
extensive statistical analysis of di�erent global MPPT 
techniques based on modern optimization algorithms. In this 
study, every technique is verified for 50 runs in order to 
evaluate and validate the performance of each one. The 
worthy eight statistical metrics for this evaluation are; the 
Geometric mean (GM) which is an important parameter in 
our comparison and considered to be the best average for the 
construction of index numbers as it is suitable for measuring 
the relative changes and it gives more weights to the small 
values and less weights to the large values [18], Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE), 
Standard Deviation (SD), Arithmetic Mean (AM), stability 
which is defined as the difference between AM and GM, The 
smaller value of stability indicates more solution stability, 
significance using z value and e�ciency. These metrics can be 
estimated as the following [11], [19]. 

,
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                    (14) 
Where 
nr: represents the number of the model runs. 
Ppve,i : current value of obtained PV power by optimizer for 

each run. 
Ppvt: theoretical global PV power. 
Nw: The number of reaches to GMPP of IWO. 
Nc: The number of reaches to GMPP of comparative 

technique with IWO. 
Bw: The percentage of reach to GMPP of IWO, Nw/nr. 
Bc: The percentage of reach to GMPP of comparative 

technique with IWO, Nc/nr 
If z value is higher than 1.96, this indicates that there is a 
significance between IWO and the comparative technique 
[19]. The authors in [11] investigate the problem of MPPT of 
PV array under PSCs using PSO, GA, WDO, HSA, SCA, BA, 
DE and CS. In this paper, the results of proposed technique 
are compared with the results of these eight techniques. 
The input parameters for each optimization technique are 
shown in Table 2. Two different scenarios of shading are 
considered. The idea of changing shading models is to change 
the location of global MPP from left to right or middle to 
measure the response of each technique with different cases 
and affirmation of its stable quality for tracking the global 
MPP. Two different PV system formations are considered: the 
first one contains three series connected PV modules whereas 
the second comprises four series connected PV modules. Two 
different partial shading scenarios are considered according to 
table 3. Figure 5 shows that the first scenario are applied to 
first PV array formation. The solar irradiance levels of 1000, 
800, 600 W/m2 are subjected to first PV modules in the first 
scenario. While the second scenario is done with the second 
PV system. 

Table 2: Input parameters for each optimization technique 
GA [14] 
Crossover Rate           0.8 
Mutation rate              0.1 

CS [14] 
λ       Constant          1.5 

PSO [14] 
W      Inertia weight     0.4 
r1      Random value      [0,1] 
r2     Random value       [0,1] 
c1    Cognitive coefficient   1 

BA [14] 
A       Loudness        0.7 
r        Pulse rate          0.5 
fmin    Min frequency   0 
fmax    Max frequency    1 
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c2   Social coefficient     1 
DE [14] 
F        Mutation ratio      0.6 
CR    Crossover ratio     0.67 

WDO [14] 
RT     RT Coe�ceint           3 
g   gravitational constant   0.2 
α            Alpha                 0.4 
c    Coriolis e�ect            0.4 
     Maximum allowed speed      
0.3 

HSA [14] 
number of new 
harmonics        5 
Harmony Memory 
Consideration Rate         
0.9 
Pitch Adjustment Rate 0.1 
Fret Width Damp Ratio 
0.995 

SCA [14] 
a             Constant             2 
r2       Random value 2pi*rand 
r3       Random value    2*rand 
r4   Random value          [0,1] 

IWO [14] 
Smax     The maximum number of seed generate   15 
Smin     The minimum number of seed generated   1 
σinit      Initial standard deviation                        100 
σfinal    Final standard deviation                       0.001 
n           Modulation index                               [2,3] 
 
Table 3: The PV array with di�erent shading scenarios 

 
Figure 5: The P-V curves of the studied PV array with 

di�erent shading scenarios 

5. SIMULATION AND DISCUSSION 

 
To analyze and estimate the performance of the presented 
algorithms, the algorithms parameters are set to be; 
population size = 5, and no. of executions for each algorithm 
(50 times, i.e. 50 run). The detailed performance of each 
technique for the different scenarios are shown from table 4 to 
table 5. Table 6 shows the number of reaches to GMPP for 
each technique. The statistical measured performance 
evaluation for each technique under different shadow 
scenarios is summarized in table 7. Finally, table 8 shows the 

significance of IWO compared to the previously developed 
techniques using z-value. 

Scenario 
number 

PV array 
structure 

G (W/m2) Power at 
MPP, W 

Position 
of GMPP 

1 Three  1000,800,600 255.7 Right 
2 Four  900,700,400,

200 196.4 2nd left 
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Runs DE HSA PSO CS SCA GA Bat WDO IWO 

1 255.7 250.73 255.7 255.7 249.42 254.58 252.01 255.57 255.7 
2 255.7 216.15 255.69 255.7 255.16 255.7 255.64 255.66 255.7 
3 255.7 255.7 255.7 255.7 255.69 255.4 250.99 255.7 255.7 
4 255.66 251.93 255.7 255.7 255.2 255.69 249.47 255.68 255.7 
5 255.7 245.85 255.7 255.7 254.14 255.57 255.63 255.69 255.7 
6 255.7 228.41 255.69 255.7 255.7 255.65 255.62 254.49 255.7 
7 255.7 255.35 255.7 255.7 253.99 255.7 252.87 255.7 255.7 
8 255.7 255.01 255.61 255.7 255.67 255.55 232.32 255.66 255.7 
9 255.7 242.09 208.13 255.7 255.62 255.69 255.28 255.53 255.7 
10 255.69 248.16 255.7 255.7 253.43 255.69 255.43 255.68 255.7 
11 255.7 242.27 255.68 255.7 253.41 255.69 249.65 255.7 255.7 
12 255.7 255.63 255.55 255.7 253.61 255.66 255.68 255.39 255.7 
13 255.69 241.26 255.68 255.7 252.97 255.33 253.96 255.61 255.7 
14 255.69 255.69 208.14 255.7 240.48 254.84 254.77 255.69 255.7 
15 224.58 252.84 255.7 255.7 254.5 255.51 255.56 255.68 255.7 
16 255.7 243.4 255.69 255.7 255.68 255.4 254.51 255.56 255.7 
17 224.65 215.86 255.7 255.7 255.34 253.54 255.7 255.7 255.7 
18 255.59 248.93 255.7 255.7 254.85 254.83 253.03 255.69 255.7 
19 242.28 255.67 255.7 208.16 253.44 255.7 255.69 255.67 255.7 
20 255.7 254.74 224.66 208.16 252.55 255.61 255.68 255.58 255.7 
21 255.7 248.79 255.67 255.7 251.96 255.7 223.79 255.38 255.7 
22 255.67 225.85 255.7 255.7 245.44 255.7 254.04 255.69 255.7 
23 255.7 245.24 255.7 255.7 250.12 255.7 236.86 255.66 255.7 
24 255.7 254.53 255.69 255.7 254.76 255.62 255.69 255.69 255.7 
25 255.64 240.43 255.69 255.7 242.14 255.7 255.65 224.66 252.09 
26 255.67 255.65 255.7 255.7 254.48 255.7 255.4 255.59 255.7 
27 255.7 253.54 255.7 208.13 255.7 255.58 255.56 255.66 255.7 
28 224.66 224.63 255.7 255.7 238.52 248.62 255.51 254.18 255.7 
29 255.7 255.37 255.69 255.7 254.53 252.77 217.13 255.66 255.7 
30 255.69 253.74 255.7 255.7 249.11 208.16 255.68 255.7 255.7 
31 255.69 242.7 255.69 255.7 253.52 255.7 222.84 255.67 255.7 
32 255.7 255.36 255.68 224.66 255.68 255.7 255.68 255.68 255.7 
33 255.7 253.13 255.7 255.7 253.83 255.55 255.58 255.65 255.7 
34 255.67 250.55 255.7 255.7 255.53 252.62 255.04 255.68 255.7 
35 255.7 255.7 255.7 255.7 253.22 255.7 252.81 255.7 255.7 
36 255.7 255.69 255.7 255.7 255 255.69 244.18 255.67 255.7 
37 255.7 240.7 224.66 255.7 255.66 255.7 254.97 255.66 255.7 
38 255.57 204.21 255.68 255.7 255.59 255.16 255.56 255.54 255.7 
39 255.7 255.59 255.68 255.7 254.5 255.67 255.1 255.57 255.7 
40 255.7 247.61 255.68 255.7 255.29 255.7 251.46 255.68 255.7 
41 242.32 240.79 255.69 224.66 254.79 255.63 252.78 255.65 255.7 
42 255.7 255.04 255.7 255.7 250.13 255.68 239.03 255.65 255.7 
43 224.66 253.26 255.56 255.7 253.23 255.7 253.5 255.59 255.7 
44 255.67 250.87 255.7 255.7 253.98 255.7 208.19 255.67 255.7 
45 255.69 249.81 255.69 255.7 254.91 255.65 255.67 255.69 255.7 
46 255.69 224.51 255.7 255.7 254.72 243.57 224.49 255.38 255.7 
47 255.7 255.68 255.7 255.7 255.53 255.7 255.7 255.69 255.7 
48 255.7 249.41 255.67 255.7 255.69 255.34 255.7 255.65 255.7 
49 255.7 255.6 255.7 255.7 254.35 255.68 249.91 255.39 255.7 
50 255.7 245.55 255.7 255.7 254.97 224.67 255.69 255.67 255.7 

Table 4: The detailed performance of each technique for the 1st shading scenario. 
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Table 5: The detailed performance of each technique for the 2nd shading scenario. 
Runs DE HSA PSO CS SCA GA Bat WDO IWO 

1 196.42 195.98 196.41 196.42 181.74 196.29 167.41 196.34 196.42 
2 196.4 184.81 196.17 196.42 196.37 196.27 170.68 196.08 196.42 
3 196.42 196.11 167.83 196.42 191.23 196.37 189.17 196.24 196.42 
4 167.88 188.84 196.42 167.88 195.39 196.33 167.88 195.92 196.42 
5 184.34 192.61 196.41 196.42 195.56 196 167.87 196.42 196.42 
6 167.88 195.62 196.42 196.42 191 196.42 155.15 196.41 196.42 
7 187.09 167.47 196.42 196.42 195.9 196.41 167.88 196.37 196.42 
8 194.41 194.98 196.41 196.42 190.84 195.1 196.12 196.41 196.42 
9 196.41 195.82 167.88 196.42 183.92 196.4 195.2 195.88 196.42 
10 196.42 196.41 167.88 196.42 196.32 196.42 196.21 196.42 196.42 
11 196.3 167.84 196.42 167.88 196.29 196.06 195.61 196.23 196.42 
12 196.42 195.47 196.42 167.88 196.39 167.88 166.68 196.37 196.42 
13 196.42 196.31 196.42 167.88 186.87 167.88 185.77 196.38 196.42 
14 196.42 189.96 196.41 196.42 167.14 196.36 162.22 196.42 196.42 
15 195.63 186.42 167.88 167.88 195.81 195.45 196.27 196.41 196.42 
16 196.42 195.89 196.42 196.42 195.98 194.41 166.55 196.42 196.42 
17 196.42 196.37 167.88 167.88 196.02 196.42 196.42 196.42 196.42 
18 196.42 196.41 196.42 196.42 196.24 196.4 196.27 196.41 196.42 
19 196.42 195.12 196.33 167.88 196.38 196.4 194.71 196.2 196.42 
20 196.42 193.71 196.41 196.42 195.54 196.2 194.77 196.4 196.42 
21 196.42 196.37 167.87 196.42 196.38 167.84 195.21 196.28 196.42 
22 196.41 193.2 167.88 196.42 196.38 196.42 190.01 196.38 196.42 
23 196.41 186.2 196.42 196.42 196.42 167.88 196.38 167.85 196.42 
24 196.42 144.43 196.4 196.42 195.98 167.84 192.93 196.39 196.42 
25 196.42 192.85 196.42 196.42 195.12 196.42 172.61 195.78 196.42 
26 196.42 196.01 196.41 196.42 196.27 196.41 181.26 196.4 196.42 
27 191.14 176.35 196.4 196.42 164.55 196.31 166.77 196.38 196.42 
28 196.42 184.83 196.31 196.42 195.96 196.42 167.88 196.34 196.42 
29 196.42 196.37 167.87 196.42 195.96 194.03 192.99 196.4 196.42 
30 194.41 196.33 196.42 196.41 194.73 196.39 167.8 196 196.42 
31 196.37 196.01 196.41 196.42 195.96 193.21 195.64 196.42 196.42 
32 196.42 196.02 196.28 196.42 196.38 196.34 196.41 196.4 196.42 
33 196.42 167.77 196.42 196.42 196.33 196.42 195.77 196.42 196.42 
34 196.41 158.46 196.41 167.88 193.63 196.42 167.88 196.34 196.42 
35 196.33 196.41 196.42 167.88 192.85 196.42 195.07 196.41 196.42 
36 196.4 188.66 167.87 167.88 196.36 196.17 196.19 196.4 196.42 
37 196.41 159.38 196.4 196.42 195.61 196.41 192.91 196.4 196.42 
38 196.41 172.51 167.88 167.88 195.41 195.52 192.14 196.16 196.42 
39 196.29 194.46 196.42 196.42 189.22 167.88 172.4 196.32 196.42 
40 196.42 195.09 167.88 196.42 192.92 196.4 167.37 196.41 196.42 
41 196.33 192.68 196.42 196.42 189.5 167.88 195.73 196.34 196.42 
42 167.88 196.17 196.41 196.42 167.84 167.88 186.41 196.35 196.42 
43 195.84 189.53 196.42 196.42 192.67 193.83 196.42 196.41 196.42 
44 192.29 181.69 167.86 196.42 196.38 196.41 166.19 196.36 196.42 
45 196.41 196.31 167.88 196.42 195.3 196.42 182.32 167.88 196.42 
46 196.19 191.4 167.88 196.42 196.4 196.42 191.57 196.41 196.42 
47 196.25 194.19 196.42 167.88 195.58 196.34 191.56 195.07 196.42 
48 196.39 160.37 196.42 196.42 195.67 167.88 187.24 194.99 196.42 
49 196.41 196.39 196.42 196.42 196.35 196.38 193.33 196.41 196.42 
50 171.28 174.17 196.32 167.88 196.4 178.74 192.33 196.35 196.42 
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Table 6: The number of reaches to GMPP for each technique. 

Algorithm DE HAS PSO CS SCA GA Bat WDO IWO 
1st scenario 29,  

58% 
2, 

4% 
26,  

52% 
45, 

90% 
2, 

4% 
16,  

32% 
3, 

6% 
6, 

12% 
49, 

98% 
2nd scenario 20,  

40% 
1, 

2% 
19,  

38% 
36, 

72% 
1, 

2% 
11,  

22% 
2, 

4% 
7, 

14% 
50, 

100% 
Average 25,  

50% 
2, 

4% 
24,  

48% 
41, 

82% 
2, 

4% 
14,  

28% 
2, 

4% 
7, 

14% 
49, 

98% 
Table 7: Evaluation of statistical performance of di�erent global MPPT. 

Algorithm DE HAS PSO CS SCA GA Bat WDO IWO 
GM 

1st scenario 252.51 245.9
9 

252.28 251.26 253.13 253.32 249.3 254.92 255.63 

2nd scenario 193.3 187.2 187.95 188.56 192.56 190.28 183.7 195.04 196.41 
AM 

1st scenario 252.67 246.3 252.54 251.6 253.15 253.46 249.57 254.96 255.63 
2nd scenario 193.46 187.6

6 
188.41 189 192.71 190.62 184.15 195.13 196.41 

Stability 
1st scenario 0.16 0.31 0.26 0.34 0.03 0.14 0.27 0.04 6*10-4 
2nd scenario 0.16 0.46 0.46 0.44 0.15 0.34 0.45 0.09 0.5*10-8 

Average 0.1625 0.395 0.76 1.15 0.1 0.21 0.29 0.25 0.0003 
RMSE 

1st scenario 9.19 15.28 11.36 13.2 4.59 8.3 12.91 4.4 0.51 
2nd scenario 8.19 15.33 15.1 14.55 8.24 12.39 17.76 5.72 6.4*10-6 

Average 8.61 15.09 16.36 16.87 7.28 9.72 13.14 6.93 0.26 
MAE 

1st scenario 3.03 9.4 3.16 4.09 2.55 2.24 6.13 0.74 0.07 
2nd scenario 2.88 8.76 8.01 7.42 3.7 5.8 12.26 1.28 1.44*10-6 

Average 2.65 8.9 7.04 6.17 3.92 3.64 7.38 1.2 0.04 
SD 

1st scenario 8.67 12.05 10.91 12.55 3.82 8 11.37 4.34 0.51 
2nd scenario 7.67 12.58 12.81 12.52 7.36 10.95 12.85 5.57 6.31*10-6 

Average 8.18 12.17 14.68 15.64 6.11 8.96 10.76 6.82 0.26 
Efficiency 

1st scenario 98.81 96.33 98.77 97.4 99 99.12 97.6 99.71 99.97 
2nd scenario 98.54 95.54 95.93 96.23 98.12 97.05 93.76 99.35 99.99 

Average 98.81 95.87 96.58 96.88 98.15 98.3 96.52 99.4 99.98 
Table 8: Significance using z-value of IWO with the comparative techniques 

IWO & DE HAS PSO CS SCA GA Bat WDO 
1st scenario 4.26 6.71 4.6 1.63 6.71 5.58 6.64 6.41 
2nd scenario 5.48 7 5.57 3.74 7 6.24 6.93 6.56 

Table 4 shows the GMPP for the 1st shading scenario in the 50 
runs in which the IWO technique reaches the theoretical 
GMPP (255.7) in 49 of 50 runs flowed by CS technique 
reaches the theoretical GMPP (255.7) in 45 of 50 runs which 
is trapped in LMMPs in 5 runs. 
Table 5 shows the GMPP for the 2nd shading scenario in the 
50 runs in which the IWO technique reaches the theoretical 
GMPP (196.41) in the 50 runs flowed by CS technique 
reaches it in 36 of 50 runs.  

Table 6 shows the number of reaches to GMPP for each 
technique. The first four successful techniques reaching the 
theoretical GMPP are IWO (98%), CS (82%), DE (50%) and 
PSO (48%) on the average.  
Table 7 shows that IWO has the nearest values of GM and 
AM to exact values, compared with the three other 
techniques. For example, in the 1st scenario GM and AM 
equal (255.63) which are the nearest value compared to the 
other techniques to the GMMP (255.7). Also, IWO has the 
highest stability as the difference between AM and GM is 
approximately zero. IWO has the smallest values of MAE, SD 
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and RMSE of all successful techniques.  The e�ciency of 
IWO is 99.98% which is the highest one compared with the 
all other techniques.  
Table 8 shows Significance using z value of IWO with the 
comparative techniques. When the z value is higher than 
1.96, this indicates that there is a significance between the 
IWO and the comparative technique. Table 10 shows that 
IWO has significant differences in 15 out of 16 cases with 
percentage 93.75%.  

6. CONCLUSION 
This paper presents an efficient and a robust GMPPT 
technique based on invasive weed optimization (IWO) 
algorithm for PV system under PSCs. To ensure the 
effectiveness of IWO, a comprehensive comparison between 
the proposed IWO and previously developed techniques such 
as PSO, DE, HSA, Bat, SCA, WDO, CS and GA is carried out 
under di�erent shading scenarios. Eight statistical measures 
show that IWO is more efficient, stable and accurate than the 
other techniques. Ultimately, it can be concluded that, IWO is 
the best optimization technique compared with the others. 

REFERENCES 

[1] Muhammad Ammirrul Atiqi Mohd Zainuri, Ezril Aidil 
Azari, Ahmad Asrul Ibrahim, et al. Analysis of 
Adaptive Perturb and Observe-Fuzzy Logic 
Control Maximum Power Point Tracking for 
Photovoltaic Boost DC-DC Converter, 
International Journal of Advanced Trends in 
Computer Science and Engineering, 2019, pp. 
201–210. 

[2] Jirada Gosumbonggot and Goro Fujita. Partial 
Shading Detection and Global Maximum Power 
Point Tracking Algorithm for Photovoltaic with 
the Variation of Irradiation and Temperature, 
MDPI (Energies), 2019, pp. 1–22. 

[3] Bo Xing and Wen-Jing Gao. Innovative 
Computational Intelligence: A Rough Guide to 
134 Clever Algorithms, London: Springer, (62), 
2014. 

[4] Ali M. Eltamaly, Hassan M.H. Farh and Mamdooh 
S. Al-Saud. Grade point average assessment for 
metaheuristic GMPP techniques of partial 
shaded PV systems, IET Renewable Power 
Generation, 2019, pp. 1–17. 

[5] Mouna BEN SMIDA, Anis SAKLY. Genetic 
based algorithm for maximum power point 
tracking (MPPT) for grid connected PV systems 
operating under partial shaded conditions, 7th 
International Conference on Modelling, 
Identification and Control, December 18-20, 2015, 
pp. 1-6. 

[6] Maneesha Dwivedi, Dr. Gitanjali Mehta, Asif Iqbal, 
et.al. Performance enhancement of solar PV 
system under Partial Shaded Condition using 

PSO, 8th International Conference on 
Communication and Network Technology, July 3-5, 
2017, pp. 2-7. 

[7] Kok Soon Tey, Saad Mekhilef, Hong-Tzer Yang, 
et.al. A Differential Evolution Based MPPT 
Method for Photovoltaic Modules under Partial 
Shading Conditions, International Journal of 
Photoenergy, 2014, pp. 1-10. 

[8] Othman A.M.Omar, Niveen M. Badra, Mahmoud 
A. Atti. Enhancement of On-grid PV System 
under Irradiance and Temperature Variations 
Using New Optimized Adaptive Controller, 
International Journal of Electrical and Computer 
Engineering, 2017, pp. 2650-2660. 

[9] Mohamed I. Mosaad, M. Osama abed el-Raouf, 
Mahmoud A. Al-Ahmar, et al. Maximum Power 
Point Tracking of PV system Based Cuckoo 
Search Algorithm; review and comparison, 
ELSEVIER (Energy Procedia), 2019, pp. 117-126. 

[10] Mehdi Seyedmahmoudian, Tey Kok Soon, Elmira 
Jamei, et.al. Maximum Power Point Tracking for 
Photovoltaic Systems under Partial Shading 
Conditions Using Bat Algorithm. MDPI 
(sustainability), 2018, pp. 1-16. 

[11] Omer Abdalla, Hegazy Rezk, and Emad M. Ahmed. 
Wind driven optimization algorithm based 
global MPPT for PV system under non-uniform 
solar irradiance, ELSEVIER (Solar Energy), 2019, 
pp. 429-444. 

[12] Sanjeevikumar Padmanaban, Neeraj Priyadarshi, 
Jens Bo Holm-Nielsen, et al. A Novel Modified 
Sine-Cosine Optimized MPPT Algorithm for 
Grid Integrated PV System under Real 
Operating Conditions, IEEE (Translations and 
content mining are permitted for academic 
research), 2018, pp. 1-11. 

[13] Zhongshi Shao, Dechang Pi, Weishi Shao, et.al. An 
efficient discrete invasive weed optimization for 
blocking flow-shop scheduling problem, Elsevier 
(Engineering Applications of Artificial 
Intelligence), 2019, pp. 124–141. 

[14] Faiza Belhachat, and Cherif Larbe. Analysis and 
Design of a Maximum Power Point Tracker for a 
Stand-Alone Photo Voltaic System Using 
Simscape, International Journal of Advanced 
Trends in Computer Science and Engineering, 
2019, pp. 54-57. 

[15] Mehmet BEŞKİRLİ, İsmail KOÇ, Halife KODAZ. 
Optimal Placement of Wind Turbines Using 
Novel Binary Invasive Weed Optimization, 
Technical Gazette, 2019, (26), pp. 56-63. 

[16] J. Midhunchakkaravarthy, S. Selva Brunda. A 
novel approach for feature fatigue analysis using 
HMM stemming and adaptive invasive weed 
optimization with hybrid firework optimization 
method, Int. J. Computer Aided Engineering and 



  Hegazy Zaher  et al., International Journal of Advanced Trends in Computer Science and  Engineering, 9(5),  September - October  2020, 7467 –  7477 

7477 
 

 

Technology, 2019, (11), pp. 411-429. 
[17] Lu Hu, Fei Xue, Zijian Qin. Sliding mode 

extremum seeking control based on improved 
invasive weed optimization for MPPT in wind 
energy conversion system, Elsevier (Applied 
Energy), 2019, (248), pp. 567–575. 

[18] Li Li, Hongwei Ge, Jianqiang Gao, et.al. A Novel 
Geometric Mean Feature Space Discriminant 
Analysis Method for Hyperspectral Image 
Feature Extraction, Springer (Neural Processing 
Letters), 2019, pp. 1-28. 

[19] Y.Q. Wang, Z.F. Shang, M. Yue, et.al. Correlation 
between Fe content and z value in 
Sm(CobalFexCu0.06Zr0.025)z permanent magnets, 
Journal of Magnetism and Magnetic Materials, 
2019, pp. 1-20. 
 


