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ABSTRACT 
 

 

This paper proposes an innovative algorithm for designing 2-
DOF robust controllers which are supported by loop shaping 
concept. It plays an important role at current mechatronics from 
the requirement of the high productivities, the high qualities of 
products and the total cost reduction. For getting precision 
control, 2-DOF control structure should be suitable for achieving 
two goals of control aims; fast response and precision movement. 
The 2-DOF controllers provide better results for the controllers, 
especially for improvement of precision perspectives and 
smaller settling time.  
 
Key words: Double-sided linear induction motor, 2-DOF 
controller, Loop shaping approximation 
 
1. INTRODUCTION  

 
Currently, mechanical linear motion systems, a device for 
processing of semiconductor component, mostly need high-
speed or high-accuracy linear motions. Some linear motion 
systems employ rotary motors with mechanical transmission 
components, such as reduction gears and lead screw. Those 
mechanical transmissions are not only providing some ripples on 
linear motion velocity and dynamic response significantly, but 
also generate phenomena of backlash, large frictional and 
inertial loads, and structural flexibility. Therefore the use of 
direct drive linear motors, which exclude the use of mechanical 
transmissions, provide some advantages for widespread employ 
in high-speed or high-accuracy positioning control systems [1]–
[3]. 

.   
Linear induction motors can be clasified as electrical machines 
that transfer electrical energy into the mechanical one of 
translatory moving. The one of type LIMs is a double-sided 
linear induction motor (DSLIM). These machines have special 
structure that consist of two primary parts and single stationary 
part. With short primary part, and ladder seconadry have been 
designed and manufactured for precision motion purposes [4,5].  
Study of precision motion that caused by cogging forces in 
DSLIM have been conducted by authors [6,7].  
 
Due to phenomena of longitudinal end effects in a linear motor, 
its motion is not smooth and generates ripples disturbances as it 
moves. Significant effort has been devoted to solving the 
difficulties in controlling linear motors [8] [9]. Early work 
includes the based linear robust control methods as proposed by 
Alter and Tsao in [1]-[2], the disturbance observer (DOB) [9] 
based disturbance compensation method in [8], and feed-forward 

nonlinear ripple force compensation in [3]. A precision motion 
control can also be improved by modifying the three-phase 
inverter equipment.   By reducing the total harmonic distortion 
(THD), the precision of motion for AC motors can be increased.  
The Fuzzy logic controller can be employed for reducing THD 
and dc-link utilization is improved. The study also shows the 
comparison between the PI controller-algorithm and the fuzzy 
logic algorithm [10].  PID-Robust have also implemented for 
precision motion control of electrical motor. Controller 
parameters of PID have tuned by robust concept, so that the 
motion of position control cannot be influenced by load-
variation [11]. 
 
For using a linear motor for linear motion control perspectives, 
fast response with high precision control motion performance is 
an unavoidable requirement [12]. The improvement of the 
precision motion control, for instance, is aimed for achieving of 
high-performance mechatronic systems including micro- and/or 
nano-scale motions. In addition, it is also aimed to manufacture 
some devices which it can have characteristics of high 
productivity, high quality of products, and total cost reduction. 
In related to the precision motion control, the required 
specifications in motion performance, e.g., response/settling 
time and trajectory/settling accuracy, should be sufficiently 
achieved [13]. 
 
The required characteristics in linear motion performance, e.g. 
settling time and set-point trajectories should be achieved as 
small as possible. The level of robust  against disturbances 
and/or uncertainties should be the essential performances  added  
for high performance. An essential approach for achieving fast 
and precision motion performance is to wide  the control 
bandwidth of a feedback control systems. A higher bandwidth 
can make the system to be more robust against disturbances 
and/or uncertainty. However dead-time or delays components, 
and varieties of nonlinearities generally prevent the control 
bandwidth from being wider than the viewpoint of systems 
stability.  
 
Two-DOF (Degree of Freedom) control framework with a 
combination of feedback and feed-forward compensators should 
be a practical technique for achieving desired high motion 
performance. The feedback controller design-algorithm is aimed 
for achieving a stability robust and based on an uncertainty 
model of controlled process. Separately, the feed-forward design 
refers to the loop shaping concept. So, combination of two 
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design-algorithms, will result to precision and fast systems for a 
linear movement application [14]. 
 
Linear induction motors are implemented for widest applications 
for precision motion control purposes, especially for a double-
sided linear induction motor. For instance, in the transportation 
systems, the double-sided linear induction motor with flat-
secondary Industrial tests, like accelerating aircrafts and 
manufacturing processes. Some kind of machine tools are the 
other important utilizations of LIMs [15]. This widely 
applications has provided the idea for previous researcher to 
investigate more intensive on it for command shaping control, 
and produce some papers on DSLIM [16]. This paper develops 
the other shaping concept, loopshaping design algorithm of 
DSLIM using 2-DOF (Dimension of Freedom) control system 
structure .   
 

 
2. PROPOSED 2 DOF STRUCTURE 

 
Figure 1 shows a 2-DOF control system, in which one 

controller is placed in forward path that is directly connected to 
set-point variable. The other one is connected to error variable of 
control system 

 
 

  
 
 
 
 
 
 

 
 
 

Based on 2-DOF structure shown in Figure 1, the process design 
is divided into 2 objectives, such as tracking problem and 
disturbance rejection problem. Both problems commonly are 
solved separately. The tracking problem requires as large as 
possible of the system gain. A large gain system provides an 
improvement of stability level. However, noise signals in this 
case will flow in the inside of system which can generate 
internal disturbance of the systems.  
 
For 2-DOF structure, a Closed loop control system consist of 
two kind of controllers. The first controller 1C  is to handle the 
velocity error so that response system is quicker to achieve 
steady condition.   The second controller input 2C  is aimed to 
coverage the internal (disturbance robust uncertainty) robust of 
system.  

 
The response  performance can be described into sensitivity 
mathematical sensitivity (S) and overall transfer system (T). For 
this case sensitivity and system might be presented  into two 
mathematical equations. It is shown by equation (1).  
 

ST
CG

S 


 1;
1

1
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  (1) 

 

The connectivity between output controlled system – variable of 
the linear velocity - and set-point input signals are represented 
by equation (2). 

 

1SCGT vVY     (2) 
 

The other connectivity between error variable and desired input 
can be  presented in (3).  

 
MSCGMTT vVYer  1   (3) 

 
Based on the mathematical in (3), controller 1C can be 

calculated. If the components of system  vG and M are known, 
and mathematical sensitivity of system as performace are given, 
so that the controller 1C   can be determined  using equation (4). 
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If M is an expected mathematical model, in related with the 
equation (3), connectivity between model-error and both 
controllers can be formulated in equation (5).   
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Based on equation (5), the mathematical controller 2C therefore 
can be obtained easily.  
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Figure 2: Proposed 2-DOF Control Structure

  
Figure 2 illustrates the proposed DSLIM which is employed as 
the test-bed for the experiments.  It has 9 ladder-bars and 10 
winding slots of primary parts (double-sides). The physical 
primary parts are shown in Figure 3. The physical design of this 
motor has been conducted in [15-16].   Controller of this system 
is placed in the feedback path and in the loop path of the system. 
Figure 2 shows the closed loop feedback system with 2 
controllers; one of them  is connected to the output system linear 
with a velocity of the motor, x(t). The second controller is 
placed in the output of the summing point.  
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Figure 1: Standard 2-DOF Control Structure 
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Figure 3 :Manufactured Moving Part of DSLIM 

 
   
3. MATHEMATICAL MODEL OF DSLIM 

 
The principal of mathematical model of DSLIM is represented 
by the relationship between Q-axis voltage to linear speed of the 
moving part. The relationship between q-current ( qi ) with the q-
voltage can described by a second order differential as shown in 
equation (6). 
 

xxqq
q

q vKvi
dt
di

T    (6) 

     

where qT  is the time constant of q-axis circuit, qi  is the Q-axis 

current variation and qv  is the input voltage of Q-axis circuit 

and xK  is the factor of EMF induced voltage  If it is assumed 
that all variables in equation (6) are initially set to zero values,  
the relationship between the voltage input and current can be 
transformed into a Laplace equation.  
 
 The mathematical model which illustrates these 
relationships is described by equation (7). 
  

1
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
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q

q
q    (7) 

The relationship between the thrust force and q-current 
can be done by measure both variables directly on the test-bed 
experiment. Based on the measurement data on testbed, 
connectivity between thrust force and q-current is shown by 
equation (8).  

qx IF 50.24      (8) 

Based on Newton Rule number 2, that the linear speed 
can be represented as an integral of thrust force. The 
proportional factor of this relationship is opposite by the mass of 
the moving part of DSLIM. The mathematical equation of them 
is presented by equation (9): 

 

  dtF
m

v xx
1

                         (9) 

Based on equations (7), (8) and (9), the block diagram of the 
relationship between Q-axis voltage to linear speed is described 
into Figure 4. 
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Figure 4: Structure of Current Loop 

 The moving part time constant qT can directly be 

obtained from the Baldor controller. The parameter of 
q

K is a 

mass of moving part of motor. The value of parameters gT  is 

0.002312 sec. and qK  is 0.036364.  The parameter of xK  is 
estimated by investigation the relationship between linear speed 
and the Q-axis voltage (Vq- Command signals) of Baldor 
Controller.  

The validation of the mathematical model of DSLIM 
can be conducted by comparing the linear speed of motor with 
the output of model motor with similar input signals. Figure 5 
shows the Vq-command signals of motor (it is taken from 
memory of Baldor Controller).  
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Figure 5 :The Current Controller Output 

       The signals shown in Figure 5 illustrates the current 
controllers. The red curve represents the curve of the Vq-
Command. For estimation of the mathematical model of motor, 
the input of model is provided by the approximation of Vq 
command signals (red curve).   

The output of the model should agree with the linear 
speed of motor.  Since the moving time constant is very small, 
the electrical circuit transfer function can be neglected for 
simplifying the analysis. Therefore, the model shown in Figures 
6 and 8 can be simplified into the second order of transfer 
function. The simplified transfer function is shown in equation 
(10).  
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Equation (10) shows that transfer function of motor which can 
be approximated into a first order equation.  The parameters of 
the first transfer function are a Gain steady state 

mstG and a time 

constant. mstT An unknown parameter in the equation is 

feedback gain xK . The parameter xK can be estimated, if the 
signal output of real motor (speed) is measured.  
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Figure 6 :Current dynamic of DSLIM 

 The real linear speed of the motor is already measured 
and recorded. Figure 6 shows the measured linear speed. In 
order for the output of the model to have a exact similar shape as 
the real linear speed curve shape, the real curve has to be 
approximated as a first order mathematical differential equation. 
Based on the experiment-data, the DC-Gain and time constant 
are 786.16.510   and 4.9 sec respectively.  

Based on the both parameters, the parameter xK  is 
0.56.  For mathematical model validation, the comparison 
between real linear speed of DSLIM with the output of 
mathematical model are compared. The comparison results show 
that the average error between real linear speed and 
mathematical model is 3.9%.  

Figure 7 describes the decoupling process. In the right 
site, the real diagram block, and in the left site consist of the 
controller-decoupling. Using the combination transfer function 
R, the complicated model can be changed into the sinple one. 
Figure 7 shows the modified diagram block of DSLIM. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
The nominal plant is: 
 

22 02.2)02.2*499.1*2(
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And real plant is: 
 

 22 02.2)02.2*9.0*2(
)19.0*3.1*53.0/(43.0




ss
P

  
      (11b) 

     
4. FORMULATION OF L – LOOP TRANSFER 

 
Commonly, the objective of the robust-controller design is to 

obtain the controller transfer function )(sC so that a system 
closed loop has internally stabil and achieve the robust 
performance. In the loop shaping method, The idea is to 
construct the loop transfer L to achieve the approximated 
condition of the inequality equation  

 
121 


TWSW    (12) 

  
 The calculation of controller )(sC   can be found by the use 

of a relationship PLC / . The underlying constraint are 
internally stabilized of the nominal feedback system and 
properness of )(sC , therefore L is not freely assignable. In 
terms of Loop transfer (L) and both weighting function, robust 
performance can be written into: 
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wiith: 
 

  1,min 21 WW     (14) 
  

In order to equation (13) and (14) are divided by term L1  

and L1 , both equation can be written into one equation: 
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Suppose that 12 W , so from equation 16 in term of L 
become: 
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5. WEIGHTING FUNCTIONS 
 

In this case, the weighting function can be defined as band 
pass filter. That is due to the specification performance is 
expected in the range frequency 0,1 rad/s. The specifical plant 
for DSLIM (double-sided linear induction motor) will be 
subtituted in the end of calculation process, which is done using 
C=L/P (L= loopshape  and P is transfer function of controlled 
system – plant). For simplicity of calcultaion, the weighting 
function )(2 sW  is defined as equation (17). 
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Figure 7 :Modified Plant Process 
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This weighting function shown in equation (17) is upper 

bound on the magnitude of the relative plant pertubation at 
frequency  . For this function, it is defined that the magnitude 
of pertubation starts at 0.05 and increases monotically up to 5 
crossing 1 at 20 rad/s.  In order for obtaining the transient 
performance good tracking, the reference in this simulation will 
be defined as the sinusoidal function for range frequency 0 to 1 
rad/s. For getting the good tracking problem for the sinusoidal 
refernce, the weighting function )(1 sW should have constant 
magnitude at frequency between 0-1 rad/s. If the normal 
feedback system is internally stabil, then inequality equation 18 
will be hold, 

12 


TW  and 




1
1 2

1

TW
SW

(18) 

     
If and only if the equation (19) is hold.  
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Using above justiification, the weighting function )(1 sW can 

be determined as first orde function with its characterstics is 
shown equation (20). 
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         (20) 
       

This design of feedback control is aimed to have system 
response so quick as possible, so the open loop transfer function 
should be defined in a first order function, that is shown in 
equation (21). 

1
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
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       It 
is reasonable to take c=1 so that L  starts rolling off near the 
upper end of the operating band taht is frequency between 0 – 1 
rad/s. The b parameter is defined as the constrain for the 
magnitude of tracking problem. This parameter should be as 
larger as possible for good tracking. The largest value of b is 
based on: - 

)/(20,11

22

1 srad
WW

W
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
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provides value of 20, so the open loop transfer function is  

1
20)(



s

sL    (23) 

For verification of robust performance level, the a parameter 
should be choosen at as large as possible, so that value of: 

1,
1 2




 
W
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And the function of 

)(1 2 jW
a


   (25) 

       Is 
increasing over the range [0,1], while )( jL  is decreasing. 
Therefore a-value might be found by solve the equation: 

 )1(1
)1(

2 jW
ajL


   (26) 

     
Based on the bode diagram of the weighting function and the 
open loop transfer function, the a-value can be defined as 
a=15.5.  
 
6. ROBUST PERFORMANCE VERIFICATION  

 
The loop transfer )( jL  that have been calculated on 

above section, should be verificated of its robust performance. 
At first step,  equation (18) has to be made in Bode Dagram 
form.  
 

)()()()( 21  jTjWjSjW   (27) 
    

Its maximum value is 0.92. Since this value is under 1-value. So 
the robust performance is verified. Based on the previous 
calculation, the weighting function )(1 sW  can be formulated as 
equation (25).  
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With the open loop transfer function shown equation (7), the 
tracking error is then 7.3%. For the presicion purposes, the 
tracking error of 7.3% is still too large. To improve the 
precision, make L  larger over the frequency range between 0-1 

rad/s. the the the robust performnace is achieved. Therefore, L   
could be changed into equation 26.    
 

1
20

1
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
ss
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The factor )1()10(  ss  in equation (29) has magntidue 

nearly 10 in the frequency range 0-1 rad/s, and will be rolled of 
above 10 rad/s. If the weighting function function )(1 sW   use 
equation (28), and a-parameter is calculated which gives 
a=94.36 so tracking error is reduced to 1.07%.  
 
7. RESULTS AND DISCUSSION 
 

Simulation verification of 2-DOF controllers design have 
been conducted using MATLAB. Verification was done and 
shows that the responses of system are exact similar with the 
expected specification design. The input test signals are step 
function, sinusoidal and ramp signals.  Figure 5 illustrates the 
plant outputs for various damping ratios. It also describes the 
characteristic of plant if input signals are given in various 



             
Mochammad Rusli  et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 536 - 542 

   541 
 

Li
ne

ar
 s

pe
ed

 (m
m

/s
)

magnitude for sinusoidal and exponential signals. The 
verification results show that the performance of the closed loop 
system with 2-DOF controllers can be implemented into linear 
speed motion control system by loop-shaping method.   
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Figure 8:Simulation Verification of 2-DOF Structures 

Figure 8 shows a simulation of closed loop control 
system with two controllers (2-DOF).  The controlled system 
part (plant component) is simulated by varying the damping 
ratio of plant. The measurement of the controlled system output 
are aimed to observe the overshoot maximum of linear speed 
variable if motor currents is changed. Fig. 6 presents the 
controlled system output if damping ratio plant are varied.    
 
 
 
 
 
 

 
 
 
  
 
 
 
 
Figures 8 and 9 show that the actual linear speed of motor can 

follow the set-point of some trajectories accurately. It illlustrates 
also that the results of 2-DOF controllers has been compared to 
the response with control system which has only one DOF 
controller. It reaches the desired final linear speeed at the 
specified settling time. On the tracking problem of the figure, it 
shows a close-up view of the tracking with a linear speed 
resolution of 2 mm/s per division. The speed curve in Fig. 7 
shows that the actual motion trajectory follows very well with 
the desired motion profile. From both Figs. 7 and 8, we observe 
that the achievable error speed reaches 0.01% for 2-DOF 
structure and 2.2% for 1-DOF structure.  
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Figure 10 :Responses for set-point of Sinusoidal Signals 

Figure 10 shows that the system can follow the trajectory of 
sinusoidal signals as the set-point. The maximum error between 
the set-point signals and system outputs are located in the 
maximum magnitude of sinusoidal signals. The damping ratio 
for this simulation have been varied. Fig 11 shows the 
comparison of response for 2-DOF and 1-DOF structure with 
exponential signals as set-point. It illustrates that the 1-DOF 
structure generates more error linear than using the 2-DOF 
structure by loop-shaping method. The 2-DOF precision linear 
speed for setpoint exponential is less than 1-DOF structure. The 
erroe-transient of trayectory for 2-DOF is 0.002%, for 2-Dof 
2.12%.  

 
 

 
Figure 11 Responses for set-point Exponential Signals 

 
8. CONCLUSION 
 

In this paper, an innovative loop shaping algorithm has been 
implemented in  motion control linear speed control using 2-
DOF. Both design controllers have been calculated based on 
loop shaping concept. The calculation of 2-DOF controllers are 
done by the consideration of the variation of internal plant-
parameters (robust controllers). The drive of system employs a 
ladder-secondary double-sided linear induction motor. The 
results have been realized in MATLAB-simulation and shows 
that the system always stabile, even though plant-parameters are 
varied. Design-algorithm results have also been verified with 
consideration of parameter model variations (Robustness 
performance). The 2-DOF control system shows that the 
tracking problem can be solved and the steady state performance 
can be achieved for sinusoidal signals as set point and also for 
exponential signals. The damping ratio parameter of model have 
been changed from 0.9 to 1.5, and closed loop system provided 
stabile good and precision performance.  
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