

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7451

A Novel Technique - Absolute High Utility Itemset Mining

(AHUIM) Algorithm for Big Data

Dr. Sandeep Dalal1, Vandna Dahiya2
1Maharshi Dayanand University, Rohtak, India, sandeepdalal.80@gmail.com

2Maharshi Dayanand University, Rohtak, India, vandanadahiya2010@gmail.com

ABSTRACT

Utility itemset mining has manifested as a significant method
for mining the data, which finds the itemsets grounded on the
utility factors. The utility is defined in terms of quantity and
some factor of interest and the algorithm aims to find the
itemset, for which the utility is more than a predefined
threshold. In the big data era, conventional high utility
itemset (HUI) mining techniques are not appropriate for
mining the HUIs on an individual system with limited
processing capabilities. A distributed algorithm to mine the
HUIs for big data has been proposed in this paper called as
Absolute High Utility Itemset Mining algorithm or AHUIM
algorithm. AHUIM mines the data efficiently on a multi-
node cluster using the Apache Spark framework. Various
experiments are carried out, which signify that the proposed
algorithm outperforms in mining the HUIs in terms of
execution time, scalability, storage, etc.

Key words: big data, data mining, distributed computing,
Spark, utility mining

1. INTRODUCTION

Frequent Itemset Mining (FIM) is a technique to mine the
datasets based on the frequency of occurrence of the items
[1]. It discovers the itemsets created on the support and
confidence standards of the itemsets. Nevertheless, FIM does
not pay attention to the importance of the items. For
example, sales of milk and butter might be more frequent in
a general store but more profit will be generated from a
microwave oven. FIM also considers the presence of the
items only once in a particular transaction, whereas, the
items with more profit value but with less occurrence may be
vital for the users. To overcome these limitations of FIM,
high utility itemset mining has surfaced as a superior
technique for data mining, that mines the itemsets based on
their utility factors. The utility factor of items is composed of
two terminologies - internal utility and external utility. The
internal utility depends upon the quantity of the item,
whereas the external utility can be in the form of cost,
weight, profit, effect or any other user objective or
preference. Thus utility mining discovers the most useful or
valuable items, which are difficult to mine using frequent
itemset mining. An itemset is discovered and termed, as a
HUI if and only if its utility is greater or equal to a
predefined threshold value. The utility values are usually
related to various profit factors and are remarkable for a

business. For example, in case of retail stores, whereas the
FIM only discovers the frequent items bought by the
customer, the HUIM discovers the itemsets, which are more
profitable for the store also, when they are bought together.
These itemsets are then bundled together in the store,
proposed to the customers and some discount may also be
offered. Recommender systems thus can be developed based
on the purchasing history of the customers. Another example
of HUIM is click-stream analysis. If a user clicks on various
links on the Internet, FIM would recommend all the similar
links to the user. But user might be interested in only some of
those clicked links. HUIM would recommend the kind of
links where user spent more time. Time spent on a particular
page is the utility factor here. Other applications areas of
utility mining are cross marketing, smarter healthcare, e-
commerce, drug designing, etc.

Various HUI techniques have been proposed in recent times
for itemset mining but most of them are for small datasets
and centered on single machines. The performance of mining
starts to degrade with increase in the size of datasets. To
mine large datasets, the computing resources of one machine
are not enough and put constraints on the scalability of the
algorithm. A parallel or distributed framework is required to
mine the large datasets. Very few HUIM algorithms have
been developed for large datasets that can run on a parallel
framework. Vo et al. proposed DTWU-Mining in 2009,
which is a distributed algorithm and based on message
passing system [2]. The master node distributes the data to
the slave nodes, which then compute HUIs locally. But the
algorithm deficits the feature of fault-tolerance. Subramanian
et al. [3] developed FUM-D in 2013. This algorithm is also
based on master-slave architecture but the cost of
communication is very high. Lin et al. planned another
method called as PHUI-Growth [4] in 2015. PHUI extends
the Apriori algorithm with the help of MapReduce
framework. Novel strategies like discarding of local
unpromising items were proposed. The algorithm scales well
with the growing data and can mine the HUIs from huge data
but it undergoes from the drawback of manifold scans of the
database. Another distributed algorithm is PHUI-Miner [5]
that was proposed by Chen et al. in 2016. PHUI-Miner is
being implemented on Apache Spark framework using Scala,
where the exploration space is alienated equally between the
nodes. Sampling and compression techniques have been
implemented in this algorithm to mine the data efficiently
from large datasets. But these methods also ground the
approximation in the mining results. In 2016, Zihayat et al.
proposed BigHUSP [6]. BigHUSP is also based on Spark
framework. Items with low utility are discarded locally using
an overestimated utility model. The pruning strategies in this

ISSN 2278-3091
Volume 9, No. 5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse78952020.pdf

https://doi.org/10.30534/ijatcse/2020/78952020

	 	

	 	

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7452

algorithm lessen the search space and utility matrix is used to
store the utility information. Ashish Tamrakar proposed
another Spark-based algorithm EFIM-Par in 2017 [7]. This
extends the famous one phase HUIM method EFIM. P-
FHM+ was proposed by Sethi et al. [8] in 2018, which
extends FHM+ in the parallel system. Itemsets of any desired
length can be generated with the help of FHM+. The latest
HUIM algorithms for large datasets are pEFIM [9] and
PHAUIM [10]. pEFIM was suggested by Nguyen et al. in
2018. It outspreads the EFIM but the framework is different
from EFIM-par. pEFIM uses multi-core processor and
shared-memory based systems to implement the algorithm.
Using depth-first searching approach, various nodes can run
independently without overlapping. Sethi et al. developed the
algorithm PHAUIM in 2019 where the itemsets are mined by
an average factor of utility. It outperforms the other state-of-
the-art algorithms for HUI mining of large datasets.

As the big data mining is a novel area, the algorithms in this
field are in their early stages of research. The challenges in
mining large datasets are different from traditional data
mining. This research work contributes the following-

i. A novel high utility itemset mining technique,
AHUIM is developed for big datasets that works in
the parallel environment of distributed systems.

ii. Pruning strategies for unpromising items.
iii. The technique AHUIM is being assessed for

parameters such as storage, scalability, and
execution time.

The paper is systematized as follows: Section 2 explains
various fundamentals for mining HUI. The new algorithm is
being discussed in the next section. Section 4 briefly
demonstrates all the experiments conducted for the
assessment of the technique. The conclusion and future
scope of this research work are followed in the last section.

2. PRELIMINARIES AND PROBLEM STATEMENT
2.1 Distributed Framework

With the arrival of big data, computing resources of one
machine are not enough to mine the large datasets. The
hardware limits the size of the dataset to be mined based on
the processing capability of CPU and storage. The whole
scalability of the algorithm also suffers. Efficient and
parallel computations are required to mine the big data.
Subsequently, to process the huge datasets and extract
significant information, a distributed framework is used,
which also increases the scalability of the algorithm. There
are various distributed frameworks available in the research
field such as Apache Hadoop, Apache Spark, etc. [11, 12]
Apache Spark has been used for the implementation of the
proposed algorithm because of its advantages over other
frameworks. It is several times faster than Hadoop as the
Hadoop is a disk-based system. Spark does in-memory
computations and is used for various data processing
applications. The key role is played by a resilient distributed
dataset (RDD), which is an assemblage of partitioned-read-
only objects. An RDD has the reference to a partitioned
object, which is a subdivision of dataset. There is one master
node in the Spark environment and multiple worker nodes

that perform map-reduce operations. The map operation
performs preprocessing on the data for each node and the
reduce operation combines the results produced by the
mapper.

2.2 Fundamentals of HUI
Consider a transactional dataset DS = {T1, T2, T3…Tn};
where each transaction Tr ∈ DS and 1 ≤ r ≤ n has a
distinctive identifier, known as Transaction ID. Assume, I be
the set of Q unique items; I = {I1, I2, I3…IQ}. Let X be the
itemset with k unique items and is called as k-itemset or
itemset with length k. Every item in I has a utility factor
associated with it which is composed of its quantity, called as
internal utility Q and importance factor, called as external
utility P. Internal utility is denoted as Q (Ii, Tr) and external
utility is denoted as P(Ii). The example dataset with five
transactions and seven different items can be seen in the table
1 given below. Table 2 displays the profit value of each item.
Some of the important definitions are described briefly in this
section.

Table 1: Transactional Dataset - DS
Transaction

ID
Transactions (item:quantity) Transaction-

Utility
1) (t:1), (v:2), (w:2) 15
2) (t:2), (v:2), (x:1), (z:2) 32
3) (t:1), (u:1), (w:3), (x:2), (y:3) 37
4) (u:1), (v:3), (w:2), (x:2) 17
5) (u:1), (v:3), (x:1), (y:3), (z:2) 43

Table 2: Item-Profit Table

Item t u v w x y z
Profit
value

5 1 2 3 2 6 8

Definition 1: Utility of an item Ii for a transaction Tr; is
expressed by U(Ii, Tr) and expressed as the multiplication of
quantity of the item in the transaction and its profit value,
i.e., Q(Ii, Tr) * P(Ii).
Example, here the utility for the items t, v and w in
transaction T1 is 1*5 = 5, 2*2 = 4 and 2*3 = 6 respectively.

Definition 2: Utility for an itemset X in a transaction Tr; is
expressed as U(X, Tr) = ∑ U(Ii, Tr) for Ii ∈ X.
Example, for itemset {t, w} in T1, the utility is U(t, T1) +
U(w, T1) = 1*5 + 2*3 = 11, itemset {t, v, w} in T1 = U(t, T1)
+ U(v, T1) + U(w, T1) = 1*5 + 2*2 + 2*3 = 15.

Definition 3: Transaction Utility; the transaction utility for a
transaction Tr is symbolized as TU(Tr). It is stated as
addition of utilities of all the items for that transaction.
Example, for T1 transaction utility is (1*5+2*2+2*3) = 15.
Table 1 shows the TU for all the transactions.

Definition 4: Utility for an Itemset X, U(X) in a dataset DS;
is defined as addition of utilities of the itemset X from every
transaction of DS. U(X) = ∑(X, Tr) for Tr ∈ DS ∧ X ⊆ Tr
Example, utility for itemset {v, w} in the above DS is U({v,

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7453

w}, T1) + U({v, w}, T4) is 10 + 12 = 22.

Definition 5: Total Utility of dataset; indicated as TU is sum
of all the transaction utilities of the dataset. TU = ∑(Tr) for
Tr ∈ DS.
Total utility = 15+32+37+17+43 = 144

Definition 6: Transaction-Weighted Utility (TWU), for an
itemset X is described as the summation of the utilities from
every transaction having X as an itemset, TWU(X) =
∑TU(Tr) for X ⊆ Tr ∧ Tr ∈ DS.
Example, TWU of {t, v} = TU(T1) + TU(T2) = 15+32 = 47.
Table 3 shows the TWU for the 1-itemsets of the given
dataset.

Definition 7: HTWUI; an itemset X is characterized as high
transaction-weighted utility itemset (HTWUI) if TWU of the
itemset is larger than or equal to minimum threshold. The
minimum threshold Th is defined as product of TU and a
user specified threshold ratio α. Thus, Th = TU× α
HTWUI= {X | TWU (X) ≥ Th}.

Definition 8: High Utility Itemset (HUI); any itemset X is
characterized as high utility itemset (HUI) if its utility is no
less than a minimum utility threshold specified by the user,
otherwise, X is a low utility itemset.

Definition 9: Total Order; represented by symbol ~ is the
itemsets arranged in ascending direction of their TWU
values. According to TWU values of table 3, the total
ordering can be shown as: w ~ z ~ y ~ t ~ u ~ v ~ x. Items are
arranged in the enumerated tree based on this order as shown
in figure 1.

Definition 10: Revised Transactional Dataset; is a dataset
where the items with TWU less than or equal to Th are
clipped and the residual items of transactions are arranged
with ascending values of TWU.
RT-DS ß Sorted TWU. The clipped items are called as
unpromising items. If Th is assumed as 70, item w is called
unpromising item and it is removed from the revised
transaction dataset. Table 4 represents the RT-DS for the
given dataset.

Table 3: TWU for 1-itemset
Itemset t u v w x y z

TWU 84 97 107 69 129 80 75

Table 4: Revised Transactional Dataset (RT-DS)
Tid Transactions (item:utility)

1) (t:5), (v:4)
2) (z:16), (t:10), (v:4), (x:2)

3) (y:18), (t:5), (u:1), (x:4)

4) (u:1), (v:6), (x:4)

5) (z:16), (y:18), (u:1), (v:6), (x:2)

Definition 11: Remaining Utility; RU(A, Tr) for a
transaction Tr from RT-DS is the summation of utilities of
items followed by itemset A of that transaction Tr.
RU(A, Tr) = ∑U(Ii, Tr) for all Ii ~ I, ∀ I ∈ A
Example, RU for itemset {y, t} for transaction T3 = U(u, T3)
+ U(x, T3) = 1+4 = 5

Definition 12: Itemset Extension: For an itemset χ, Ex(χ)
defines the items that are followed by χ in total ordering.
Example, Extension of itemset {u}, Ex(u)= {v, x}; for
itemset {t}, Ex(t) = {u, v, x}

Definition 13: Projected Dataset: For an itemset Ψ, the
projected dataset is denoted as Ψ - DS. It is defined as:
Ψ - DS = { Ψ - Tr | Tr ∈ DS ∩ Ψ - Tr not equals to θ}.
Here, Ψ - Tr is the projection for transaction and Ψ - Tr = {Ii |
Ii ∈ Tr ∩ Ii ∈ Ex(χ)}

Definition 14: Local Utility; LU(χ, q), for an itemset χ and
item q is-
LU(χ, q) = ∑ [U(χ, Tr) + RU(χ, Tr)] for all (χ ∪ q) ∈ Tr
from RT-DS of χ
Example, let χ = t
LU(t, v) = U(t) + RU(t) for all transactions having itemset t
and item v of RT-DS
 = [5+(4)]T1 + [10+(4+2)]T2

 =25

Definition 15: Subtree Utility; SU(χ, q), for an itemset χ and
an item q, which have the extension of χ.
SU(χ, q) = ∑ [U(χ, Tr) + U(q, Tr) + (∑ U(Ii, Tr) for (Ii ∈ Tr
∩ Ex(χ)) for (χ ∪ q) ∈ Tr]
Example, let χ = Φ
SU(Φ, t) =[0 + U(t) + U(Ex(t))] for all transaction having
item t of RT-DS
 = [0+5+(4)]T1 + [0+10+(4+2)]T2 + [0+5+(1+4)]T3
 =35
Now, let χ = t
SU(t, v) = [U(t) + U(v) + U(Ex(v))] for all transactions
having itemset t followed by v of RT-DS
 =[5+4+(0)]T1 + [10+4+(2)]T2
 =25

The SU and LU are the pruning strategies. If SU(χ, q) < Th,
then the itemset {χ∪ q} and its following items can be
clipped from the search space. Similarly if LU(χ, q) < Th,
then the branches with itemset χ and item q can be clipped.

Problem Statement

For a dataset ‘DS’, if the minimum utility threshold is ‘Th',
the aim is to determine all the high utility itemsets in the
distributed environment by parallel mining process over
multiple nodes.

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7454

Figure 1: 1-HTWUI Tree

3. PROPOSED METHOD – AHUIM

A novel technique, Absolute High Utility Itemset Mining
algorithm or AHUIM is presented in this section, which
extends the state-of-the-art EFIM algorithm. The novel
algorithm models EFIM on a parallel framework to work in
the distributed environment. This way, fast and efficient
processing of large datasets or big data is carried out by
exploiting the ‘divide and conquer’ approach. AHUIM uses
Apache Spark framework where RDD is the format for data
storage. The data is partitioned on multiple nodes, by a
method inspired from PFP [13], which then process the task
independently. The algorithm AHUIM can be briefly
described as follows.

3.1 Tree Structure of the Items

Utility list is built for all the items based on their quantity
and profit factor. This utility list is used to compute the
transaction weighted utility or TWU of all the 1-itemsets.
Items, whose TWU values are less than the threshold, are
rejected as unpromising items. Remaining promising items
are then arranged in the increasing order of their TWU
values in the transactions and this dataset is called as revised
transactional dataset. The Spark framework provides the
functionality of RDD, which is used for this revised dataset
to read it multiple times. The sorted items are used to build
the enumerated tree structure, which is distributed among the
available nodes.

3.2 Search Space Division

The enumerated tree, which is composed of items to explore
and their sub-trees, is divided among the multiple worker
nodes so that it can be executed efficiently in the distributed
framework. The division is made based on the number of
items and nodes. Y. Chin et al. [13] has proposed a division
approach, which is being implemented here to divide the
workload uniformly among the nodes. If there are N nodes,

and M sorted items according to their TWU values in the
itemset M= {I1, I2, I3…IM}, then the items are divided among
the nodes such that item I1, I2, I3… are allotted to node 1, 2,
3…and N and after that N, N-1, N-2 and henceforth. Aimed
at the instance of 4 nodes, and 9 items, {O, P, Q … V, W},
then the items O, P, Q, R are allotted to nodes 1, 2, 3 and 4.
The items S, T, U, V are allotted to nodes 4, 3, 2 and 1 and
the item W is allotted again to node 1. This division of search
space can be portrayed with the procedure of the algorithm I-
Node-Item Distribution. The nodes are the keys and the
items are the values. The idea is to store the items in a list
based on their TWU values. Then values and keys are
fetched from the list and put into a new hashmap. The job is
to sort the hashmap according to the values.

Algorithm I: Node-Item Distribution
Input: N-Number of nodes,

L-List of sorted-TWU items
Output: EHP- a hashmap, for mapping the items to nodes
(N: I)

1. EHP ←hashmap()
2. N ←1
3. inc ←1
4. f ←false
5. for each item Ii ∈ L do

a. HP[Ii] ←N
b. N ←N + inc
c. If node is the first or last node

i. If f then
ii. f ←false

a) if node is the first one
b) inc ←1
c) else
d) inc ← −1
e) end

iii. else
iv. f ←true
v. inc ←0

vi. end
d. end

6. end
7. return EHP

3.3 Pruning Strategies

Pruning strategies are used to discard the part of search
space, which seems redundant or unpromising to avoid the
unnecessary traversing. Apart from transactional weighted
utility that is discussed in earlier section, two innovative
strategies are being used called as Absolute Local Utility
(ALU) and Absolute Subtree Utility (ASU). These absolute
utilities suggest more absolute upper limit than the defined
utilities of EFIM algorithm and restrict more items, thus
boosting the pruning capabilities of the algorithm and reduce
the search space further. They are stated as follows.

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7455

Definition 16: Absolute Local Utility (ALU): An absolute
upper bound than the existing local utility and is represented
as ALU. Few of the overemphasized utilities are being
pruned as the utility is calculated from the projected dataset.
Let there are two itemsets, fi and β. The itemset fi is defined
as the following itemset and it is described as:
f i (ß) = { x ⎢ALU (ß, x) ≥ Th}
where,
ALU(χ, q) = ∑[U(χ, Tr) + ARU(χ, Tr)] for all (χ ∪ q) ∈ Tr,
from RT-DS of χ]

The following items, fi are utilized for generating a new
aspirant itemset for assessment. The purpose of absolute
local utility is to prune some of the overemphasized utilities
using the constraints given in the definition.

 Definition 17: Absolute Remaining Utility (ARU): The
absolute remaining utility is used for the computation of
possible utilities of the following itemset from its projected
dataset.

The concept of remaining utility is being used for the
estimation of potential utility for the following items of an
itemset. If some items are not present in fi(X) and Ex(X),
then there are least chances by them to offer any kind of
utility to the following aspirant itemset. Thus the upper
bound ARU decreases the estimated utility further as it
traverses the projected dataset and the method could able to
achieve a reduced upper bound for mining and efficiently
decreases the expanse of traversing the aspirant itemset.
Thus, ARU can be expressed as:
ARU(A, Tr) = ∑U(Ii, Tr) for all [(Ii ~ I) ∩ (Ii ∈ fi(A) ∩ (Ii

∈ Ex(A)), ∀ I ∈ A] from RT-DS of A only.

Example, as calculated earlier, Remaining Utility for itemset
{y, t} for transaction T3 = U(u, T3) + U(x, T3) = 1+4 = 5. But
if fi{y, t} and Ex{y, t} does not have an item u, then the
traversing method will not visit the item u combined with
itemset {y, t}. So, the utility of u is not required to be added
here in the remaining utility of {y, t}. Consequently, the
improved remaining utility called as absolute remaining
utility for transaction T3 for the itemset {y, t} is calculated
from the projected dataset of {y, t}= U(x, T3) = 4. This utility
value is more precise and firmer upper bound and is utilized
for defining the new absolute local utility. Reading only
those transactions, which have some item between ß and x in
the total order, and clipping all other transactions, can do
another improvement.

Definition 18: Absolute Subtree Utility (ASU): The subtree
utility, SU(χ, q) as stated earlier adds the utility of itemset χ,
the utility of item q, and the utility of Ex (χ ∪ q) for some
correlated transaction. It in fact, adds some of the utilities
from unpromising items. Hence, some of the unpromising

items are visited and clipped off later. An amendment in this
technique is suggested with an improved sub tree utility,
called as absolute sub tree utility that limits the process of
vising unpromising items by calculating the ASU from the
projected dataset only.

ASU(χ, q) = ∑ [U(χ, Tr) + U(q, Tr) + (∑ U(Ii, Tr) for (Ii ∈
Tr ∩ Ex(χ)) for ((χ ∪ q) ∩ (q ∈ (fi(χ) ∩ Ex(χ)) ∈ Tr)],
from RT-DS of χ

Example, as calculated earlier, SU({t}, v) = [5+4+(0)]T1 +
[10+4+(2)]T2 = 25
But assume that there is some present itemset {t} and let
fi{t} = {v, u, z} and Ex{t} = {v, u, x}. Now SU({t}, v)
includes the utility of item x also, which is not present in
fi{t}, x ∉ fi{t}. So, adding the utility of x into SU({t}, v) is
worthless as the method will not add them in the following
steps. Absolute subtree utility does not add such utilities.
Here ASU({t}, v) = [5+4+(0)]T1 + [10+4+(0)]T2 = 23,
which is much precise and stricter upper bound than SU.

3.4 Proposed Method - AHUIM

The proposed method AHUIM takes the transactional dataset
and the minimum utility threshold as input. An itemet F is
taken as an empty itemset. The method then calculates the
local utility for all the items, which is initially equal to their
TWU values. The initial local utilities or TWU values of
items are used to compute the extension of F by comparing
with the minimum utility threshold. These items of F are then
arranged with their sorted TWU values. And the items that
are not a part of extension of F (i.e. the unpromising items
based on the TWU value) are discarded here only as they
cannot be a part of any larger HUI set. Dataset is then
reviewed by arranging all the remaining items of a
transaction in order of their rising values of TWU. Any
empty transaction is deleted here. The algorithm then
calculates the subtree utility for all the items of F. The
concept of succeeding and following items of an itemset is
being used to create larger itemsets based on the local and
subtree utilities.

The worker nodes in the cluster setup are accountable to
mine the HUIs for their allotted search space. For example,
node 1 mines the HUIs for items z and x. The binary
recursive search procedure is used for recursively identifying
the HUIs from a node. The main algorithm is displayed as
Absolute_HUIM, which provides all the HUIs on
termination.

Algorithm II: Absolute_HUIM
Input: DS-Transactional dataset,

I-List of items
Th- Minimum threshold rate

Output: Itemsets with high utility

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7456

1. F = empty itemset
2. Compute locU (F, Ii) ∀ items Ii ∈ I by DS scan
3. Compute fi (F) = {Ii | Ii ∈ I ∧ locU (F, Ii) ≥ Th}
4. For fi (F), arrange according to increasing TWU

values
5. Prune items Ii ∉ fi (F) and remove null

transactions
6. Sort the remaining transactions by ~
7. Compute the SU (F, Ii) for every item Ii ∈ fi (F)

by DS scan
8. The succeeding_items for F, si (F) = {Ii ∈ fi (F) ∧

SU (F, Ii) ≥ Th}
9. Return Search (F, DS, si (F), fi (F), Th)

A recursive search process is then carried out to execute the
depth-first search of F. The method is represented in
algorithm III. Input parameters are current itemset F,
projected dataset of F, following and succeeding items of
itemset F and minimum threshold Th. For each item belongs
to succeeding items of F, a loop is called for another itemset
Ω such that Ω = F ∪{Ii}. A dataset scan is done to compute
utility of itemset Ω. The projected dataset of itemset Ω is
created in the next step. For the itemset Ω, if the utility is
larger than or equal to specified minimum threshold, then it
can be considered as a HUI. The dataset is then visualized
another time to compute absolute sub tree utility and
absolute local utility for each item q belongs to Ω. The
process is then called recursively for Ω to resume the search
procedure by extending Ω. At the end of the algorithm, high
utility itemets are reverted as output.

Algorithm III: Search
Input: F: itemset

F–DS: the projected dataset of F
si(F): succeeding items of F
f i(F): following items of F
Th: minimal threshold

Output: IHUI: itemsets of high utility
1. IHUI = emptyset
2. for every item Ii ∈ si (F)

a. Ω = F ∪ {Ii}
b. Scan F−DS
c. Compute U(Ω)
d. Construct Ω –DS // projected dataset of Ω
e. if U(Ω) ≥ Th,
f. Ω → IHUI
g. end
h. if Ω – DS = empty,
i. Compute ASU(Ω, q)
j. Compute ALU(Ω,q) ∀ items q ∈ f i(F)

from Ω –DS scan
k. si (Ω) = q ∈ f i(F) | ASU (Ω, q) ≥ Th
l. fi (Ω) = q ∈ fi(F) | ALU (Ω, q) ≥ Th
m. IHUI ∪ Search (Ω, Ω –DS, si (Ω), f i (Ω),

Th)
n. end

3. end
4. return IHUI

The overall flow graph of the algorithm AHUIM with the
parallel framework of Spark is represented in the figure 2.

Figure 2: Flow Graph of AHUIM

4. EXPERIMENTAL SETUP

For experiments, Spark cluster is created with a main/driver
node and ten slave nodes on a system with 60 GB main
memory with AMD EPYC 7282 16-Core Processor @ 2.80
GHz. The operating system is Windows 10. All the nodes
have following software configuration: Apache spark 3.0,
python 3.7 and Spyder4 as the IDE.

4.1 Dataset

The experiments have been performed on three real-world
datasets- Chess, Connect and Mushroom. Chess and Connect
are the datasets for game. Mushroom is a dataset for different

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7457

variety of Mushrooms. These datasets have been taken from
SPMF Library, which is a data-mining library for various
algorithms and codes. Attributes of the datasets are shown in
the table. #Transactions, #Items, #AverageItems, which
represent the total transactions in the dataset, figure of
unique items, the mean amount of items for a transaction
respectively. Detailed information about the datasets has
been given in the repository [14]. For relatively larger
datasets, small datasets have been multiplied with a scalar to
get a larger dataset. The experiments have been conducted
five times for each threshold ratio and the average values
have been taken.

Table 5: Various Datasets (Source-SPMF Library)
Dataset #Transactions #Items #AverageItems

Chess 3196 75 37

Connect 67557 129 43

Mushroom 8416 119 23

Chess30x 95880 75 37

Connect2x 135114 129 43

Mushroom20x 168320 119 23

4.2 Assessment of the Algorithm

To assess the performance of the algorithm, the AHUIM is
compared with two versions of itself – AHUI_basic and
AHUIM_SA. The AHUI_basic does not apply the strategies,
which have been recommended for the novel algorithm. The
algorithm AHUIM_SA is a stand-alone system for AHUIM,
which lanes on only one node without any parallel
framework. The following measures have been used: A.
Execution Time, B. Scalability and C. Memory Utilization.

A. Execution Time
Table 6 displays the time-performance of the three
algorithms on the datasets with distinctive values of
threshold. It can be seen that AHUIM performs better than
other two versions because of the pruning strategies and
large number of working nodes. For example, for the dataset
Chess30x, the algorithm AHUIM is around 12 times speedier
than AHUIM_SA and 5 times speedier than AHUI_basic for
the threshold value 3.7. Similarly, for the threshold value 2.7,
the algorithm AHUIM is around 23 times faster than
AHUIM_SA and 10 times faster than AHUI_basic for the
threshold value 2.7. Thus, AHUIM is much faster than
AHUIM_SA since the data is being handled in parallel.
AHUIM_SA performs all the processing on a single system,
where as the algorithm AHUIM distributes the data among
ten nodes to process simultaneously. The average execution
time of AHUIM on Chess30x is around 1 minute, whereas
average execution time of AHUIM_SA is around 20
minutes.

Table 6: Execution Time for Different Datasets

Dataset Execution Time in Seconds
Thres
hold

AHUIM AHUIM_
SA

AHUI_Ba
sic

Chess30x 1.7 15.81772 2100.9865 400.872
2.7 101.74081 2208.2558 524.9863
3.7 112.0043 2212.0045 628.6273
4.7 115.5771 2356.5486 690.6457

Connect2x 1.7 481.8532 4092.8372 1012.862
2.7 509.72583 3509.7258 1192.923
3.7 424.0159 3865.8986 978.4588
4.7 411.6716 5698.2656 1361.954

Mushroo
m20x

1.7 36.6659 4792.8372 290.7865
2.7 136.2395 3369.9856 465.5487
3.7 136.5605 3989.4164 498.6584
4.7 34.7257 3549.669 386.5489

The graphical representations of execution time can be
perceived in figures 3, 4 and 5.

Figure 3: Execution Time in Seconds for Chess30x Dataset for

Different Thresholds.

Figure 4: Execution Time in Seconds for Connect2x Dataset for

Different Thresholds.

Figure 5: Execution Time in Seconds for Mushroom20x Dataset for

Different Thresholds.

0	

500	

1000	

1500	

2000	

2500	

1.7	 2.7	 3.7	 4.7	

T
I
M
E	

AHUI
M	

AHUI
M_SA	

AHUI_
Basic	

0	

1000	

2000	

3000	

4000	

5000	

6000	

1.7	 2.7	 3.7	 4.7	

T
I
M
E	

AHUIM	

AHUIM
_SA	

0	

1000	

2000	

3000	

4000	

5000	

6000	

1.7	 2.7	 3.7	 4.7	

T
I
M
E	

AHUIM	

AHUIM
_SA	

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7458

B. Scalability
Scalability test has been performed in two ways. First, the
algorithm AHUIM is run on different datasets of fixed size
but with varying number of nodes. The result can be seen in
figure 6 with nodes 1, 5 and 10. With expansion in number
of working nodes, execution time of the algorithm decreases
approximately linearly. This confirms that the algorithm has
the ability to partition the search space among various nodes
efficiently and perform the task of mining independently.

Figure 6: Execution Time in Seconds for Chess30x for Different

Nodes (Th=4.7)

Second method to examine the scalability of the algorithm is
used by increasing the size of the database linearly in some
proportion (like 100%, 200%, 300%, etc.). The dataset can
be duplicated by a scalar d, such that experimental dataset =
original dataset*d, and d = 1, 2, 3 etc. The execution time is
then measured for each of the dataset as shown in table 7.

Table 7: Execution Time in Seconds on Different Size of Dataset

Algorithm Chess10x Chess20x Chess30x
AHUIM 78.9856 94.675 115.5771

AHUIM_SA 872.98 1451.823 2356.548

From figure 7, it can be perceived that running time of
AHUIM breeds very slowly and almost flat with increase in
datasets. Both the methods confirm the scalability of the
algorithm. But as shown in figure 8, the running time for
AHUIM_SA increases with very high pace as the size of data
increases. Thus, it is seen that the novel algorithm
accomplishes better for big data sets. The scalability of the
algorithm can be related to raise the efficiency because of the
suggested strategies of search space pruning and efficient
data partition.

Figure 7: Execution Time in Seconds for Different Size of Chess

Dataset (Th=4.7)

Figure 8: Execution Time in Seconds for Different Size of Chess

Dataset (Th=4.7)

C. Memory Utilization
The utilization of memory is calculated in terms of
percentage of main memory allotment by the algorithm
during run time. The Python has inbuilt system library psutil
to calculate the memory utilization by a process. The values
are shown in the table for different datasets. Although the
memory consumption is almost equal for all the datasets, it
can be seen that dataset Chess30x consumes less memory
than other two datasets as it is having less number of
transactions and distinct items than other datasets.

Table 8: Memory Utilization by AHUIM for Different Datasets
Dataset Connect2x Chess30x Mushroom30x

Main Memory
Utilization by

AHUIM 3.18E-05 2.54E-05 3.19E-05

Figure 9: Memory Utilization by AHUIM for Different Datasets

5. CONCLUSION AND FUTURE WORK

The traditional HUIM algorithms are not suitable for the
storage and processing of big data. The standalone
architecture of the system is being interchanged with the
distributed processing. A novel technique to mine the HUIs
from large datasets is being projected in this research work.
The method extends the EFIM technique of data mining on
the parallel framework of Apache Spark with effective
pruning strategies. Comprehensive experiments advocate the
performance of AHUIM for time, scalability and memory
consumption. As a part of further research, the novel
algorithm can be enhanced with other features of HUIM such
as mining top-k itemsets, rare itemsets, itemsets with
negative utilities, etc.

0	

500	

1000	

1500	

2000	

2500	

1	 5	 10	

T
I
M
E	

Number	 of	 Nodes	

AHUIM	

0	

50	

100	

150	

Chess10x	 Chess20x	 Chess30x	

T
I
M
E	 AHUIM	

0	

500	

1000	

1500	

2000	

2500	

Chess10x	 Chess20x	 Chess30x	

T
I
M
E	 AHUIM_SA	

0.00E+00	
5.00E-‐06	
1.00E-‐05	
1.50E-‐05	
2.00E-‐05	
2.50E-‐05	
3.00E-‐05	
3.50E-‐05	

Connect2x	 Chess30x	 Mushroom30x	

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7459

REFERENCES

1. Agrawal, R. and R. Srikant, Fast Algorithms for

Mining Association Rules in Large Databases,
International conference on very large databases. San
Francisco, Morgan Kaufmann publishers, pp. 487–499,
2003

2. Vo B., Nguyen H., Ho T. B., Le B. Parallel Method
for Mining High Utility Itemsets from Vertically
Partitioned Distributed Databases, International
Conference on Knowledge-Based and Intelligent
Information and Engineering Systems, KES, Volume:
5711 LNAI Issue: PART 1 Page: 251-260, 2009.

3. Subramanian, K., Kandhasamy, P., Subramanian, S.,
“A Novel Approach to Extract High Utility Itemsets
from Distributed Databases”, Computing and
Informatics, 31 (6), 1597-1615, 2013.

4. Lin, J. C. W., Li, T., Fournier-Viger, P., Hong, T.P.,
Zhan, J., Voznak, M., “An Efficient Algorithm to
Mine High Average-Utility Itemsets”, Advance
Engineering Informatics, 30 (2), 233-243, 2016

5. Chen, Y., An, A., “Approximate Parallel High Utility
Itemset Mining”, Big Data Res. 6, 26-42, 2016.

6. Zihayat, M., Hut, Z. Z., an, A., & Hut, Y., Distributed
and Parallel High Utility Sequential Pattern Mining,
In 2016 IEEE International Conference on Big Data
(Big Data) pp. 853-862. IEEE, 2016.

7. Ashish Tamrakar, High Utility Itemsets Identification
in Big Data, M.S. thesis, University of Nevada, Las
Vegas, 2017.

8. Sethi, K. K., Ramesh, D. Edla, D.R., “P-FHM+:
Parallel High Utility Itemset Mining Algorithm for
Big Data Processing”, Procedia Computer Science.
132, 918-927, 2018.

9. Nguyen, T. D., Nguyen, L.T., Vo, B., “A Parallel
Algorithm for Mining High Utility Itemsets”,
Springer, Cham, pp. 286-295, 2018.

10. Sethi, K. K., Ramesh, D., Sreenu, M., “Parallel High
Average-Utility Itemset Mining Using Better Search
Space Division Approach”, Springer, Cham, pp 233-
243, 2019.

11. Borthakur, D., “The Hadoop Distribued File System:
Architecture and Design”, Hadoop Project Website
11, 21, 2019

12. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
MaCauley, M., Stoica, I., Resilient Distributed
Datasets: A Fault-Tolerant abstraction for In-
memory Cluster Computing, Proceedings of the 9th

USENIX Conference on Networked Systems Design
and Implementation, 2010.

13. H. Li., Y. Wang, D. Zhang, E.Y. Chang, PFP: Parallel
FP-Growth for Query Recommendation. In:
Proceedings of the 2008 ACM Conference on
Recommender Systems, ACM, 2008, pp. 107-114.

14. www.archive.ics.uci.edu/ml/datasets
15. M. Zihayat and A. A. Mining, “Top-k High Utility

Patterns Over Data Streams”, In Information
Sciences, 2014.

16. C. F. Ahmed, S. K. Tanbeer, and B. Jeong., “A Novel
Approach for Mining High-Utility Sequential
Patterns in Sequence Databases”, In ETRI Journal,
vol. 32, pp. 676–686, 2010.

17. Jimmy Ming-Tai Wu, Jerry Chun-Wei Lin, and Ashish
Tamrakar, “High-Utility Itemset Mining with
Effective Pruning Strategies”, ACM Transactions.
Knowledge Discovery Data 13, 6, Article 58, 22 pages,
2019.

18. Dalal Sandeep, Dahiya Vandna., “Review of High
Utility Itemset Mining Algorithms for Big Data”,
Journal of Advanced Research in Dynamical and
Control Systems- JARDCS, 10(4), pp: 274-283, 2018.

19. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.-W.,
Tseng, V.S., Efficient Mining of High Utility
Sequential Rules, In: Proc. 11th Intern. Conf. on
Machine Learning and Data Mining, pp. 157– 171.
Springer, 2015.

20. Ryang, H., Yun, U., “High Utility Pattern Mining
Over Data Streams With Sliding Window
Technique”, Expert Systems with Applications 57,
214–231, 2016.

21. Vandna Dahiya, Sandeep Dalal, “Big data Mining:
Current Status and Future Prospects”, International
Journal of Advanced science and Technology, Volume
29, No 3, pp. 4659- 4670, 2020.

22. Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.S.,
FHM: Faster High-Utility Itemset Mining Using
Estimated Utility Co- Occurrence Pruning, In: Proc.
21st Inter. Symp. Methodologies for Intelligent Systems,
Springer. pp. 83–92, 2014.

23. Ibrahim A. Atoum, Nasser A. Al-Jarallah, “Big Data
Analytics for Value-Based Care: Challenges and
Opportunities”, International Journal of Advanced
Trends in Computer Science and Engineering. Volume
8(6), pp 3012-3016, 2019.

24. G. Sowmya, N.Sirisha, G. Divya Jyothi, “Use of Big
Data to Measure Attentiveness of the Student”,
International Journal of Advanced Trends in Computer
Science and Engineering. Volume 9(2), pp 2350-2352,
2020.

25. Heungmo Ryang, Unil Yun, and Keun Ho Ryu, “Fast
Algorithm For High Utility Pattern Mining With
The Sum Of Item Quantities”, Intelligent Data
Analysis. 20(2), 395–415, 2016.

26. Guangming Guo, Lei Zhang, Qi Liu, Enhong Chen,
Feida Zhu, Chu Guan, “High Utility Episode Mining
Made Practical and Fast”, Advanced Data Mining
and Applications, pp 71-84, 2014, Springer, 2016.

27. X. Wu, X. Zhu, G. Q. Wu, and W. Ding, Data Mining
with Big Data. Knowledge and Data Engineering,

 Sandeep Dalal et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7451 – 7460

7460

IEEE Transactions. 26 (1) p. 97-107, 2016.
28. Dalal Sandeep, Dahiya Vandna, “Various Research

Opportunities in High Utility Itemset Mining,”
International Journal of Recent Technology and
Engineering (IJRTE), Volume 8(4), pp – 2455-2461,
2019.

29. https://www.philippe-fournier-viger.com/spmf/-
An open source Data Mining Library

30. https://hadoop.apache.org/
31. https://spark.apache.org/

