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ABSTRACT 

Utility itemset mining has manifested as a significant method 
for mining the data, which finds the itemsets grounded on the 
utility factors. The utility is defined in terms of quantity and 
some factor of interest and the algorithm aims to find the 
itemset, for which the utility is more than a predefined 
threshold. In the big data era, conventional high utility 
itemset (HUI) mining techniques are not appropriate for 
mining the HUIs on an individual system with limited 
processing capabilities. A distributed algorithm to mine the 
HUIs for big data has been proposed in this paper called as 
Absolute High Utility Itemset Mining algorithm or AHUIM 
algorithm. AHUIM mines the data efficiently on a multi-
node cluster using the Apache Spark framework. Various 
experiments are carried out, which signify that the proposed 
algorithm outperforms in mining the HUIs in terms of 
execution time, scalability, storage, etc. 
 
Key words: big data, data mining, distributed computing, 
Spark, utility mining 
 
1. INTRODUCTION 

Frequent Itemset Mining (FIM) is a technique to mine the 
datasets based on the frequency of occurrence of the items 
[1]. It discovers the itemsets created on the support and 
confidence standards of the itemsets. Nevertheless, FIM does 
not pay attention to the importance of the items. For 
example, sales of milk and butter might be more frequent in 
a general store but more profit will be generated from a 
microwave oven. FIM also considers the presence of the 
items only once in a particular transaction, whereas, the 
items with more profit value but with less occurrence may be 
vital for the users. To overcome these limitations of FIM, 
high utility itemset mining has surfaced as a superior 
technique for data mining, that mines the itemsets based on 
their utility factors. The utility factor of items is composed of 
two terminologies - internal utility and external utility. The 
internal utility depends upon the quantity of the item, 
whereas the external utility can be in the form of cost, 
weight, profit, effect or any other user objective or 
preference. Thus utility mining discovers the most useful or 
valuable items, which are difficult to mine using frequent 
itemset mining. An itemset is discovered and termed, as a 
HUI if and only if its utility is greater or equal to a 
predefined threshold value. The utility values are usually 
related to various profit factors and are remarkable for a 

business. For example, in case of retail stores, whereas the 
FIM only discovers the frequent items bought by the 
customer, the HUIM discovers the itemsets, which are more 
profitable for the store also, when they are bought together. 
These itemsets are then bundled together in the store, 
proposed to the customers and some discount may also be 
offered. Recommender systems thus can be developed based 
on the purchasing history of the customers. Another example 
of HUIM is click-stream analysis. If a user clicks on various 
links on the Internet, FIM would recommend all the similar 
links to the user. But user might be interested in only some of 
those clicked links. HUIM would recommend the kind of 
links where user spent more time. Time spent on a particular 
page is the utility factor here. Other applications areas of 
utility mining are cross marketing, smarter healthcare, e-
commerce, drug designing, etc. 
 
Various HUI techniques have been proposed in recent times 
for itemset mining but most of them are for small datasets 
and centered on single machines. The performance of mining 
starts to degrade with increase in the size of datasets. To 
mine large datasets, the computing resources of one machine 
are not enough and put constraints on the scalability of the 
algorithm. A parallel or distributed framework is required to 
mine the large datasets. Very few HUIM algorithms have 
been developed for large datasets that can run on a parallel 
framework. Vo et al. proposed DTWU-Mining in 2009, 
which is a distributed algorithm and based on message 
passing system [2]. The master node distributes the data to 
the slave nodes, which then compute HUIs locally. But the 
algorithm deficits the feature of fault-tolerance. Subramanian 
et al. [3] developed FUM-D in 2013. This algorithm is also 
based on master-slave architecture but the cost of 
communication is very high. Lin et al. planned another 
method called as PHUI-Growth [4] in 2015. PHUI extends 
the Apriori algorithm with the help of MapReduce 
framework. Novel strategies like discarding of local 
unpromising items were proposed. The algorithm scales well 
with the growing data and can mine the HUIs from huge data 
but it undergoes from the drawback of manifold scans of the 
database. Another distributed algorithm is PHUI-Miner [5] 
that was proposed by Chen et al. in 2016. PHUI-Miner is 
being implemented on Apache Spark framework using Scala, 
where the exploration space is alienated equally between the 
nodes. Sampling and compression techniques have been 
implemented in this algorithm to mine the data efficiently 
from large datasets. But these methods also ground the 
approximation in the mining results. In 2016, Zihayat et al. 
proposed BigHUSP [6]. BigHUSP is also based on Spark 
framework. Items with low utility are discarded locally using 
an overestimated utility model. The pruning strategies in this 
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algorithm lessen the search space and utility matrix is used to 
store the utility information. Ashish Tamrakar proposed 
another Spark-based algorithm EFIM-Par in 2017 [7]. This 
extends the famous one phase HUIM method EFIM. P-
FHM+ was proposed by Sethi et al. [8] in 2018, which 
extends FHM+ in the parallel system. Itemsets of any desired 
length can be generated with the help of FHM+. The latest 
HUIM algorithms for large datasets are pEFIM [9] and 
PHAUIM [10]. pEFIM was suggested by Nguyen et al. in 
2018. It outspreads the EFIM but the framework is different 
from EFIM-par. pEFIM uses multi-core processor and 
shared-memory based systems to implement the algorithm. 
Using depth-first searching approach, various nodes can run 
independently without overlapping. Sethi et al. developed the 
algorithm PHAUIM in 2019 where the itemsets are mined by 
an average factor of utility. It outperforms the other state-of-
the-art algorithms for HUI mining of large datasets.  
 
As the big data mining is a novel area, the algorithms in this 
field are in their early stages of research. The challenges in 
mining large datasets are different from traditional data 
mining. This research work contributes the following- 

i. A novel high utility itemset mining technique, 
AHUIM is developed for big datasets that works in 
the parallel environment of distributed systems.  

ii. Pruning strategies for unpromising items. 
iii. The technique AHUIM is being assessed for 

parameters such as storage, scalability, and 
execution time. 

 
The paper is systematized as follows: Section 2 explains 
various fundamentals for mining HUI. The new algorithm is 
being discussed in the next section. Section 4 briefly 
demonstrates all the experiments conducted for the 
assessment of the technique. The conclusion and future 
scope of this research work are followed in the last section. 
 
2. PRELIMINARIES AND PROBLEM STATEMENT 
2.1 Distributed Framework 

With the arrival of big data, computing resources of one 
machine are not enough to mine the large datasets. The 
hardware limits the size of the dataset to be mined based on 
the processing capability of CPU and storage. The whole 
scalability of the algorithm also suffers.  Efficient and 
parallel computations are required to mine the big data. 
Subsequently, to process the huge datasets and extract 
significant information, a distributed framework is used, 
which also increases the scalability of the algorithm. There 
are various distributed frameworks available in the research 
field such as Apache Hadoop, Apache Spark, etc. [11, 12] 
Apache Spark has been used for the implementation of the 
proposed algorithm because of its advantages over other 
frameworks. It is several times faster than Hadoop as the 
Hadoop is a disk-based system. Spark does in-memory 
computations and is used for various data processing 
applications. The key role is played by a resilient distributed 
dataset (RDD), which is an assemblage of partitioned-read-
only objects. An RDD has the reference to a partitioned 
object, which is a subdivision of dataset. There is one master 
node in the Spark environment and multiple worker nodes 

that perform map-reduce operations. The map operation 
performs preprocessing on the data for each node and the 
reduce operation combines the results produced by the 
mapper. 
 
2.2 Fundamentals of HUI 
Consider a transactional dataset DS = {T1, T2, T3…Tn}; 
where each transaction Tr ∈ DS and 1 ≤ r ≤ n has a 
distinctive identifier, known as Transaction ID. Assume, I be 
the set of Q unique items; I = {I1, I2, I3…IQ}. Let X be the 
itemset with k unique items and is called as k-itemset or 
itemset with length k. Every item in I has a utility factor 
associated with it which is composed of its quantity, called as 
internal utility Q and importance factor, called as external 
utility P.  Internal utility is denoted as Q (Ii, Tr) and external 
utility is denoted as P(Ii). The example dataset with five 
transactions and seven different items can be seen in the table 
1 given below. Table 2 displays the profit value of each item. 
Some of the important definitions are described briefly in this 
section. 

Table 1: Transactional Dataset - DS 
Transaction 

ID 
Transactions (item:quantity) Transaction-

Utility 
1)  (t:1), (v:2), (w:2) 15 
2)  (t:2), (v:2), (x:1), (z:2) 32 
3)  (t:1), (u:1), (w:3), (x:2), (y:3) 37 
4)  (u:1), (v:3), (w:2), (x:2) 17 
5)  (u:1), (v:3), (x:1), (y:3), (z:2) 43 

 
Table 2: Item-Profit Table 

Item t u v w x y z 
Profit 
value 

5 1 2 3 2 6 8 

 
Definition 1: Utility of an item Ii for a transaction Tr; is 
expressed by U(Ii, Tr) and expressed as the multiplication of 
quantity of the item in the transaction and its profit value, 
i.e., Q(Ii, Tr) * P(Ii). 
Example, here the utility for the items t, v and w in 
transaction T1 is 1*5 = 5, 2*2 = 4 and 2*3 = 6 respectively. 
 
Definition 2: Utility for an itemset X in a transaction Tr; is 
expressed as U(X, Tr) = ∑ U(Ii, Tr) for Ii ∈ X. 
Example, for itemset {t, w} in T1, the utility is U(t, T1) + 
U(w, T1) = 1*5 + 2*3 = 11,  itemset {t, v, w} in T1 = U(t, T1) 
+ U(v, T1)  + U(w, T1) = 1*5 + 2*2 + 2*3 = 15. 
 
Definition 3: Transaction Utility; the transaction utility for a 
transaction Tr is symbolized as TU(Tr). It is stated as 
addition of utilities of all the items for that transaction. 
Example, for T1 transaction utility is (1*5+2*2+2*3) = 15. 
Table 1 shows the TU for all the transactions.  
 
Definition 4: Utility for an Itemset X, U(X) in a dataset DS; 
is defined as addition of utilities of the itemset X from every 
transaction of DS. U(X) = ∑(X, Tr) for Tr ∈ DS ∧ X ⊆ Tr 
Example, utility for itemset {v, w} in the above DS is U({v, 
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w}, T1) + U({v, w}, T4) is 10 + 12 = 22. 
 
Definition 5: Total Utility of dataset; indicated as TU is sum 
of all the transaction utilities of the dataset. TU = ∑(Tr) for 
Tr ∈ DS. 
Total utility = 15+32+37+17+43 = 144 
 
Definition 6: Transaction-Weighted Utility (TWU), for an 
itemset X is described as the summation of the utilities from 
every transaction having X as an itemset, TWU(X) = 
∑TU(Tr) for X ⊆ Tr ∧ Tr ∈ DS. 
Example, TWU of {t, v} = TU(T1) + TU(T2)  = 15+32 = 47. 
Table 3 shows the TWU for the 1-itemsets of the given 
dataset. 
 
Definition 7: HTWUI; an itemset X is characterized as high 
transaction-weighted utility itemset (HTWUI) if TWU of the 
itemset is larger than or equal to minimum threshold. The 
minimum threshold Th is defined as product of TU and a 
user specified threshold ratio α. Thus, Th = TU× α 
HTWUI= {X | TWU (X) ≥ Th}.    
 
Definition 8: High Utility Itemset (HUI); any itemset X is 
characterized as high utility itemset (HUI) if its utility is no 
less than a minimum utility threshold specified by the user, 
otherwise, X is a low utility itemset.  
 
Definition 9: Total Order; represented by symbol ~ is the 
itemsets arranged in ascending direction of their TWU 
values. According to TWU values of table 3, the total 
ordering can be shown as: w ~ z ~ y ~ t ~ u ~ v ~ x. Items are 
arranged in the enumerated tree based on this order as shown 
in figure 1. 
 
Definition 10: Revised Transactional Dataset; is a dataset 
where the items with TWU less than or equal to Th are 
clipped and the residual items of transactions are arranged 
with ascending values of TWU.  
RT-DS ß Sorted TWU. The clipped items are called as 
unpromising items. If Th is assumed as 70, item w is called 
unpromising item and it is removed from the revised 
transaction dataset. Table 4 represents the RT-DS for the 
given dataset. 

Table 3: TWU for 1-itemset 
Itemset t u v w x y z 

TWU 84 97 107 69 129 80 75 

 
Table 4: Revised Transactional Dataset (RT-DS) 
Tid Transactions (item:utility) 

1)  (t:5), (v:4) 
2)  (z:16), (t:10), (v:4), (x:2) 

3)  (y:18), (t:5), (u:1), (x:4) 

4)  (u:1), (v:6), (x:4) 

5)  (z:16), (y:18), (u:1), (v:6), (x:2) 

Definition 11: Remaining Utility; RU(A, Tr) for a 
transaction Tr from RT-DS is the summation of utilities of 
items followed by itemset A of that transaction Tr.  
RU(A, Tr) = ∑U(Ii, Tr) for all Ii ~ I, ∀ I ∈ A 
Example, RU for itemset {y, t} for transaction T3 = U(u, T3) 
+ U(x, T3) = 1+4 = 5 
 
Definition 12: Itemset Extension: For an itemset χ, Ex(χ) 
defines the items that are followed by χ in total ordering. 
Example, Extension of itemset {u}, Ex(u)= {v, x}; for 
itemset {t}, Ex(t) = {u, v, x} 
 
Definition 13: Projected Dataset: For an itemset Ψ, the 
projected dataset is denoted as Ψ - DS. It is defined as:  
Ψ - DS = { Ψ - Tr | Tr ∈ DS  ∩ Ψ - Tr not equals to θ}.  
Here, Ψ - Tr is the projection for transaction and Ψ - Tr = {Ii | 
Ii ∈ Tr ∩ Ii ∈ Ex(χ)}  
 
Definition 14: Local Utility; LU(χ, q), for an itemset χ and 
item q is- 
LU(χ, q) = ∑ [ U(χ, Tr) + RU(χ, Tr)] for all (χ ∪ q) ∈ Tr 
from RT-DS of χ 
Example, let χ = t  
LU(t, v) = U(t) + RU(t) for all transactions having itemset t 
and item v of RT-DS 
 = [5+(4)]T1 + [10+(4+2)]T2 

 =25 
 
Definition 15: Subtree Utility; SU(χ, q), for an itemset χ and 
an item q, which have the extension of χ. 
SU(χ, q) = ∑ [ U(χ, Tr) + U(q, Tr) + (∑ U(Ii, Tr) for (Ii ∈ Tr 
∩ Ex(χ)) for (χ ∪ q) ∈ Tr ] 
Example, let χ = Φ 
SU(Φ, t) =[ 0 + U(t) + U(Ex(t))]  for all transaction having 
item t of RT-DS 
 = [0+5+(4)]T1 + [0+10+(4+2)]T2 + [0+5+(1+4)]T3 
 =35 
Now, let χ = t 
SU(t, v) = [U(t) + U(v) + U(Ex(v))] for all transactions 
having itemset t followed by v of RT-DS 
 =[5+4+(0)]T1 + [10+4+(2)]T2 
 =25 
 
The SU and LU are the pruning strategies. If SU(χ, q) < Th, 
then the itemset {χ∪ q} and its following items can be 
clipped from the search space. Similarly if LU(χ, q) < Th, 
then the branches with itemset χ and item q can be clipped.  
 
Problem Statement 

For a dataset ‘DS’, if the minimum utility threshold is ‘Th', 
the aim is to determine all the high utility itemsets in the 
distributed environment by parallel mining process over 
multiple nodes. 
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Figure 1: 1-HTWUI Tree 

 
3. PROPOSED METHOD – AHUIM 

A novel technique, Absolute High Utility Itemset Mining 
algorithm or AHUIM is presented in this section, which 
extends the state-of-the-art EFIM algorithm. The novel 
algorithm models EFIM on a parallel framework to work in 
the distributed environment. This way, fast and efficient 
processing of large datasets or big data is carried out by 
exploiting the ‘divide and conquer’ approach. AHUIM uses 
Apache Spark framework where RDD is the format for data 
storage. The data is partitioned on multiple nodes, by a 
method inspired from PFP [13], which then process the task 
independently. The algorithm AHUIM can be briefly 
described as follows. 
 
3.1 Tree Structure of the Items 

Utility list is built for all the items based on their quantity 
and profit factor. This utility list is used to compute the 
transaction weighted utility or TWU of all the 1-itemsets. 
Items, whose TWU values are less than the threshold, are 
rejected as unpromising items. Remaining promising items 
are then arranged in the increasing order of their TWU 
values in the transactions and this dataset is called as revised 
transactional dataset. The Spark framework provides the 
functionality of RDD, which is used for this revised dataset 
to read it multiple times. The sorted items are used to build 
the enumerated tree structure, which is distributed among the 
available nodes. 
 
3.2 Search Space Division 

The enumerated tree, which is composed of items to explore 
and their sub-trees, is divided among the multiple worker 
nodes so that it can be executed efficiently in the distributed 
framework. The division is made based on the number of 
items and nodes. Y. Chin et al. [13] has proposed a division 
approach, which is being implemented here to divide the 
workload uniformly among the nodes. If there are N nodes, 

and M sorted items according to their TWU values in the 
itemset M= {I1, I2, I3…IM}, then the items are divided among 
the nodes such that item I1, I2, I3… are allotted to node 1, 2, 
3…and N and after that N, N-1, N-2 and henceforth. Aimed 
at the instance of 4 nodes, and 9 items, {O, P, Q … V, W}, 
then the items O, P, Q, R are allotted to nodes 1, 2, 3 and 4. 
The items S, T, U, V are allotted to nodes 4, 3, 2 and 1 and 
the item W is allotted again to node 1. This division of search 
space can be portrayed with the procedure of the algorithm I- 
Node-Item Distribution.  The nodes are the keys and the 
items are the values. The idea is to store the items in a list 
based on their TWU values. Then values and keys are 
fetched from the list and put into a new hashmap. The job is 
to sort the hashmap according to the values.  
 
Algorithm I: Node-Item Distribution 
Input:  N-Number of nodes, 

L-List of sorted-TWU items  
Output: EHP- a hashmap, for mapping the items to nodes 
(N: I) 

1. EHP ←hashmap( ) 
2. N ←1 
3. inc ←1 
4. f ←false 
5. for each item Ii ∈ L do 

a. HP[Ii] ←N 
b. N ←N + inc 
c. If node is the first or last node 

i. If f then 
ii. f ←false 

a) if node is the first one 
b) inc ←1 
c) else 
d) inc ← −1 
e) end  

iii. else 
iv. f ←true 
v. inc ←0 

vi. end 
d. end 

6. end 
7. return EHP 

 
3.3 Pruning Strategies 

Pruning strategies are used to discard the part of search 
space, which seems redundant or unpromising to avoid the 
unnecessary traversing. Apart from transactional weighted 
utility that is discussed in earlier section, two innovative 
strategies are being used called as Absolute Local Utility 
(ALU) and Absolute Subtree Utility (ASU). These absolute 
utilities suggest more absolute upper limit than the defined 
utilities of EFIM algorithm and restrict more items, thus 
boosting the pruning capabilities of the algorithm and reduce 
the search space further. They are stated as follows. 
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Definition 16: Absolute Local Utility (ALU): An absolute 
upper bound than the existing local utility and is represented 
as ALU. Few of the overemphasized utilities are being 
pruned as the utility is calculated from the projected dataset. 
Let there are two itemsets, fi and β.  The itemset fi is defined 
as the following itemset and it is described as:  
f i (ß) = { x ⎢ALU (ß, x ) ≥ Th} 
where, 
ALU(χ, q) = ∑[U(χ, Tr) + ARU(χ, Tr)] for all (χ ∪ q) ∈ Tr, 
from RT-DS of χ]  
 
The following items, fi are utilized for generating a new 
aspirant itemset for assessment. The purpose of absolute 
local utility is to prune some of the overemphasized utilities 
using the constraints given in the definition. 
 
 Definition 17: Absolute Remaining Utility (ARU): The 
absolute remaining utility is used for the computation of 
possible utilities of the following itemset from its projected 
dataset. 
 
The concept of remaining utility is being used for the 
estimation of potential utility for the following items of an 
itemset. If some items are not present in fi(X) and Ex(X), 
then there are least chances by them to offer any kind of 
utility to the following aspirant itemset. Thus the upper 
bound ARU decreases the estimated utility further as it 
traverses the projected dataset and the method could able to 
achieve a reduced upper bound for mining and efficiently 
decreases the expanse of traversing the aspirant itemset. 
Thus, ARU can be expressed as: 
ARU(A, Tr) = ∑U(Ii, Tr) for all [ (Ii ~ I) ∩ (Ii  ∈ fi(A) ∩ (Ii  

∈ Ex(A)), ∀ I ∈ A] from RT-DS of A only. 
 
Example, as calculated earlier, Remaining Utility for itemset 
{y, t} for transaction T3 = U(u, T3) + U(x, T3) = 1+4 = 5. But 
if fi{y, t} and Ex{y, t} does not have an item u, then the 
traversing method will not visit the item u combined with 
itemset {y, t}. So, the utility of u is not required to be added 
here in the remaining utility of {y, t}. Consequently, the 
improved remaining utility called as absolute remaining 
utility for transaction T3 for the itemset {y, t} is calculated 
from the projected dataset of {y, t}= U(x, T3) = 4. This utility 
value is more precise and firmer upper bound and is utilized 
for defining the new absolute local utility. Reading only 
those transactions, which have some item between ß and x in 
the total order, and clipping all other transactions, can do 
another improvement. 
 
Definition 18: Absolute Subtree Utility (ASU): The subtree 
utility, SU(χ, q) as stated earlier adds the utility of itemset χ, 
the utility of item q, and the utility of  Ex (χ ∪ q) for some 
correlated transaction. It in fact, adds some of the utilities 
from unpromising items. Hence, some of the unpromising 

items are visited and clipped off later. An amendment in this 
technique is suggested with an improved sub tree utility, 
called as absolute sub tree utility that limits the process of 
vising unpromising items by calculating the ASU from the 
projected dataset only. 
 
ASU(χ, q) = ∑ [ U(χ, Tr) + U(q, Tr) + (∑ U(Ii, Tr) for (Ii ∈ 
Tr ∩ Ex(χ)) for ((χ ∪ q) ∩ (q ∈ (fi(χ) ∩ Ex(χ)) ∈ Tr) ], 
from RT-DS of χ 
 
Example, as calculated earlier, SU({t}, v) = [5+4+(0)]T1 + 
[10+4+(2)]T2  = 25 
But assume that there is some present itemset {t} and let 
fi{t} = {v, u, z} and Ex{t} = {v, u, x}. Now SU({t}, v) 
includes the utility of item x also, which is not present in 
fi{t}, x ∉ fi{t}. So, adding the utility of x into SU({t}, v) is 
worthless as the method will not add them in the following 
steps. Absolute subtree utility does not add such utilities. 
Here ASU({t}, v) = [5+4+(0)]T1 + [10+4+(0)]T2  = 23, 
which is much precise and stricter upper bound than SU. 
 
3.4 Proposed Method - AHUIM 

The proposed method AHUIM takes the transactional dataset 
and the minimum utility threshold as input. An itemet F is 
taken as an empty itemset. The method then calculates the 
local utility for all the items, which is initially equal to their 
TWU values. The initial local utilities or TWU values of 
items are used to compute the extension of F by comparing 
with the minimum utility threshold. These items of F are then 
arranged with their sorted TWU values. And the items that 
are not a part of extension of F (i.e. the unpromising items 
based on the TWU value) are discarded here only as they 
cannot be a part of any larger HUI set. Dataset is then 
reviewed by arranging all the remaining items of a 
transaction in order of their rising values of TWU. Any 
empty transaction is deleted here. The algorithm then 
calculates the subtree utility for all the items of F. The 
concept of succeeding and following items of an itemset is 
being used to create larger itemsets based on the local and 
subtree utilities. 
 
The worker nodes in the cluster setup are accountable to 
mine the HUIs for their allotted search space. For example, 
node 1 mines the HUIs for items z and x. The binary 
recursive search procedure is used for recursively identifying 
the HUIs from a node. The main algorithm is displayed as 
Absolute_HUIM, which provides all the HUIs on 
termination. 
 
Algorithm II: Absolute_HUIM 
Input:  DS-Transactional dataset, 

I-List of items  
Th- Minimum threshold rate 

Output: Itemsets with high utility 
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1. F = empty itemset   
2. Compute locU (F, Ii) ∀ items Ii ∈ I by DS scan 
3. Compute fi (F) = {Ii | Ii ∈ I ∧ locU (F, Ii) ≥ Th} 
4. For fi (F), arrange according to increasing TWU 

values 
5. Prune items Ii ∉ fi (F) and remove null 

transactions 
6. Sort the remaining transactions by  ~ 
7. Compute the SU (F, Ii) for every item Ii ∈ fi (F) 

by DS scan 
8. The succeeding_items for F, si (F) = {Ii ∈ fi (F) ∧ 

SU (F, Ii) ≥ Th} 
9. Return Search (F, DS, si (F), fi (F), Th) 

 
A recursive search process is then carried out to execute the 
depth-first search of F. The method is represented in 
algorithm III. Input parameters are current itemset F, 
projected dataset of F, following and succeeding items of 
itemset F and minimum threshold Th. For each item belongs 
to succeeding items of F, a loop is called for another itemset 
Ω such that Ω = F ∪{Ii}.  A dataset scan is done to compute 
utility of itemset Ω. The projected dataset of itemset Ω is 
created in the next step. For the itemset Ω, if the utility is 
larger than or equal to specified minimum threshold, then it 
can be considered as a HUI. The dataset is then visualized 
another time to compute absolute sub tree utility and 
absolute local utility for each item q belongs to Ω. The 
process is then called recursively for Ω to resume the search 
procedure by extending Ω. At the end of the algorithm, high 
utility itemets are reverted as output.  
 
Algorithm III: Search 
Input: F: itemset 

F–DS: the projected dataset of F 
si(F): succeeding items of F 
f i(F): following items of F 
Th: minimal threshold 

Output: IHUI: itemsets of high utility  
1. IHUI = emptyset 
2. for every item Ii ∈ si (F) 

a. Ω = F ∪ {Ii} 
b. Scan F−DS 
c. Compute U(Ω) 
d. Construct Ω –DS  // projected dataset of Ω 
e. if U(Ω) ≥ Th, 
f. Ω → IHUI 
g. end 
h. if Ω – DS = empty, 
i. Compute ASU(Ω, q) 
j. Compute ALU(Ω,q) ∀   items q ∈   f i(F) 

from Ω –DS scan 
k. si (Ω) = q ∈  f i(F) | ASU (Ω, q) ≥ Th 
l. fi  (Ω) = q ∈  fi(F) | ALU (Ω, q) ≥ Th 
m. IHUI ∪  Search (Ω, Ω –DS, si (Ω), f i  (Ω), 

Th) 
n. end 

3. end 
4. return IHUI 

 
The overall flow graph of the algorithm AHUIM with the 
parallel framework of Spark is represented in the figure 2. 
 

 
Figure 2: Flow Graph of AHUIM 

 
4. EXPERIMENTAL SETUP 

For experiments, Spark cluster is created with a main/driver 
node and ten slave nodes on a system with 60 GB main 
memory with AMD EPYC 7282 16-Core Processor @ 2.80 
GHz. The operating system is Windows 10. All the nodes 
have following software configuration: Apache spark 3.0, 
python 3.7 and Spyder4 as the IDE. 
 
4.1 Dataset 

The experiments have been performed on three real-world 
datasets- Chess, Connect and Mushroom. Chess and Connect 
are the datasets for game. Mushroom is a dataset for different 
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variety of Mushrooms. These datasets have been taken from 
SPMF Library, which is a data-mining library for various 
algorithms and codes. Attributes of the datasets are shown in 
the table. #Transactions, #Items, #AverageItems, which 
represent the total transactions in the dataset, figure of 
unique items, the mean amount of items for a transaction 
respectively. Detailed information about the datasets has 
been given in the repository [14]. For relatively larger 
datasets, small datasets have been multiplied with a scalar to 
get a larger dataset. The experiments have been conducted 
five times for each threshold ratio and the average values 
have been taken. 
 

Table 5: Various Datasets (Source-SPMF Library) 
Dataset #Transactions #Items #AverageItems 

Chess 3196 75 37 

Connect 67557 129 43 

Mushroom 8416 119 23 

Chess30x 95880 75 37 

Connect2x 135114 129 43 

Mushroom20x 168320 119 23 

 
4.2 Assessment of the Algorithm 

To assess the performance of the algorithm, the AHUIM is 
compared with two versions of itself – AHUI_basic and 
AHUIM_SA. The AHUI_basic does not apply the strategies, 
which have been recommended for the novel algorithm. The 
algorithm AHUIM_SA is a stand-alone system for AHUIM, 
which lanes on only one node without any parallel 
framework. The following measures have been used: A. 
Execution Time, B. Scalability and C. Memory Utilization. 
 
A. Execution Time 
Table 6 displays the time-performance of the three 
algorithms on the datasets with distinctive values of 
threshold. It can be seen that AHUIM performs better than 
other two versions because of the pruning strategies and 
large number of working nodes. For example, for the dataset 
Chess30x, the algorithm AHUIM is around 12 times speedier 
than AHUIM_SA and 5 times speedier than AHUI_basic for 
the threshold value 3.7. Similarly, for the threshold value 2.7, 
the algorithm AHUIM is around 23 times faster than 
AHUIM_SA and 10 times faster than AHUI_basic for the 
threshold value 2.7. Thus, AHUIM is much faster than 
AHUIM_SA since the data is being handled in parallel. 
AHUIM_SA performs all the processing on a single system, 
where as the algorithm AHUIM distributes the data among 
ten nodes to process simultaneously. The average execution 
time of AHUIM on Chess30x is around 1 minute, whereas 
average execution time of AHUIM_SA is around 20 
minutes. 
 

 
Table 6: Execution Time for Different Datasets 

Dataset Execution Time in Seconds 
Thres
hold 

AHUIM AHUIM_
SA 

AHUI_Ba
sic 

Chess30x 1.7 15.81772 2100.9865 400.872 
2.7 101.74081 2208.2558 524.9863 
3.7 112.0043 2212.0045 628.6273 
4.7 115.5771 2356.5486 690.6457 

Connect2x 1.7 481.8532 4092.8372 1012.862 
2.7 509.72583 3509.7258 1192.923 
3.7 424.0159 3865.8986 978.4588 
4.7 411.6716 5698.2656 1361.954 

Mushroo
m20x 

1.7 36.6659 4792.8372 290.7865 
2.7 136.2395 3369.9856 465.5487 
3.7 136.5605 3989.4164 498.6584 
4.7 34.7257 3549.669 386.5489 

 
The graphical representations of execution time can be 
perceived in figures 3, 4 and 5. 
 

 
Figure 3: Execution Time in Seconds for Chess30x Dataset for 

Different Thresholds. 
 

 
Figure 4: Execution Time in Seconds for Connect2x Dataset for 

Different Thresholds. 
 

 
Figure 5: Execution Time in Seconds for Mushroom20x Dataset for 

Different Thresholds. 
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B. Scalability 
Scalability test has been performed in two ways. First, the 
algorithm AHUIM is run on different datasets of fixed size 
but with varying number of nodes. The result can be seen in 
figure 6 with nodes 1, 5 and 10. With expansion in number 
of working nodes, execution time of the algorithm decreases 
approximately linearly. This confirms that the algorithm has 
the ability to partition the search space among various nodes 
efficiently and perform the task of mining independently.  
 

 
Figure 6: Execution Time in Seconds for Chess30x for Different 

Nodes (Th=4.7) 
 
Second method to examine the scalability of the algorithm is 
used by increasing the size of the database linearly in some 
proportion (like 100%, 200%, 300%, etc.). The dataset can 
be duplicated by a scalar d, such that experimental dataset = 
original dataset*d, and d = 1, 2, 3 etc. The execution time is 
then measured for each of the dataset as shown in table 7. 

 
Table 7: Execution Time in Seconds on Different Size of Dataset 

Algorithm Chess10x Chess20x Chess30x 
AHUIM 78.9856 94.675 115.5771 

AHUIM_SA 872.98 1451.823 2356.548 
 

From figure 7, it can be perceived that running time of 
AHUIM breeds very slowly and almost flat with increase in 
datasets. Both the methods confirm the scalability of the 
algorithm. But as shown in figure 8, the running time for 
AHUIM_SA increases with very high pace as the size of data 
increases. Thus, it is seen that the novel algorithm 
accomplishes better for big data sets. The scalability of the 
algorithm can be related to raise the efficiency because of the 
suggested strategies of search space pruning and efficient 
data partition. 
 

 
Figure 7: Execution Time in Seconds for Different Size of Chess 

Dataset (Th=4.7) 
 

 
Figure 8: Execution Time in Seconds for Different Size of Chess 

Dataset (Th=4.7) 
 

C. Memory Utilization 
The utilization of memory is calculated in terms of 
percentage of main memory allotment by the algorithm 
during run time. The Python has inbuilt system library psutil 
to calculate the memory utilization by a process. The values 
are shown in the table for different datasets. Although the 
memory consumption is almost equal for all the datasets, it 
can be seen that dataset Chess30x consumes less memory 
than other two datasets as it is having less number of 
transactions and distinct items than other datasets. 
 

Table 8: Memory Utilization by AHUIM for Different Datasets 
Dataset Connect2x Chess30x Mushroom30x 

Main Memory 
Utilization by 

AHUIM 3.18E-05 2.54E-05 3.19E-05 
 

 
Figure 9: Memory Utilization by AHUIM for Different Datasets 

 
5. CONCLUSION AND FUTURE WORK 

The traditional HUIM algorithms are not suitable for the 
storage and processing of big data. The standalone 
architecture of the system is being interchanged with the 
distributed processing. A novel technique to mine the HUIs 
from large datasets is being projected in this research work. 
The method extends the EFIM technique of data mining on 
the parallel framework of Apache Spark with effective 
pruning strategies. Comprehensive experiments advocate the 
performance of AHUIM for time, scalability and memory 
consumption. As a part of further research, the novel 
algorithm can be enhanced with other features of HUIM such 
as mining top-k itemsets, rare itemsets, itemsets with 
negative utilities, etc.  
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