
Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

836


ABSTRACT

In software development, the software fault is dealing an
important task. The faults presence is not reduce the software
quality and increase the cost development. The software
system has the prediction in the cross project for the software
system, the large number of models is presented. The task of
fault prediction is difficult because most of them provide the
information as inadequate. The proposed method of this paper
is hybrid model for predicting the cross project faults using
the random forest (RF) technique and multi-objective Ant
Lion optimization (MO-ALO) approach in the given software
system. By using the eight software projects, the data in
PROMISE data repository is used for the experimental results
have been done. The performance evaluation of the method is
evaluated with the existing techniques which are Support
Vector Machine (SVM), RF and the K-nearest Neighbor
(KNN). The results for the number of cross project faults
prediction shown in the RF and MOALO based model.

Key words: Faults prediction, multi-objective ant lion
optimization, prediction, PROMISE

1. INTRODUCTION

While programming the fault prediction is the most important
and most effective in the cost. The framework is hard to build
in fault free software [1-6]. Hence, most software system
advancement affiliations are trying to acknowledge and
proper the fault. In any case, to boost the strategy and venture
execution before they unharnessed their software system
product [7, 8]. Distinctive forms of fault prediction
instruments (or models) are created to predict fault modules
or elements in software system real frameworks. These
procedures unremarkably use varied options, e.g., method
metrics, past defect metrics, source text file metrics, etc, to
characterize a class/document/module and use a
characterization calculation to predict if a class/file/module is
insufficient or not [7]. The varied need methodologies are:
cross-version prediction, cross-validation prediction,
cross-project fault prediction [8].

Cross-Project fault Prediction has beginning late complete up
being necessary stream within the field of software package
fault prediction. It had been overall viewed as a binary
classification issue or a regression issue in most of the past
examinations [9, 10]. Here, the prediction models are worked
by exceptive knowledge from completely different ventures
because the coaching data and a take a look at set got from the
close enterprise because the objective venture data [11, 12].
To wear down this, instances of supply knowledge like target
knowledge are picked to manufacture classifiers.
Programming datasets have category awkwardness issue that
means the extent of disadvantage category to shortcoming
class is much lower. It typically cuts down the execution of
classifiers [13, 14]. Cross-project fault prediction is grounded
on participating (i) it licenses anticipating deserts in ventures
that the provision of knowledge is confined, and (ii) it grants
creating generalizable want models [13, 15-17]. Regardless,
existing strategies prescribes that cross-project prediction is
very making an attempt and prediction precision is not
unremarkably extraordinary thanks to non-uniformity of
activities [18, 19]. Completely different techniques to predict
cross project fault are multi-target cross-project fault
prediction, Multi-Objective (MO) Learning techniques,
ROCPDP (Ranking oriented CPDP) technique, HISNN
(Hybrid Instance selection using Nearest-Neighbor), HYDRA
(Hybrid Model Reconstruction Approach) and etc.

Although, the cross-project fault prediction is completely
addicted to multi-objective logistic regression. Rather than
equipping the product engineer with one predictive model,
the multi-target approach licenses software engineers to
choose predictors achieving a exchange between varied
possible defect-prone artifacts (adequacy) and LOC to be
analyzed/attempted (which may be thought of as a delegate of
the expense of code examination) [1, 19]. A selective learning
dependent on the nearby information of CP information is
performed by the HISNN method. K-closest neighbor is
received for predictor defects on test information when the
nearby learning is solid. Something else, Naive Bayes using
worldwide learning is embraced. Precedents having strong
close-by data are recognized by methods for closest neighbors

 Hybrid Model for Cross Project Fault Prediction Using Random Forests and

Multi-Objective Ant Lion Optimization

Yogomaya Mohapatra1*, Dr. Mitrabinda Ray2

1*Assistant Professor, Computer Science & Engineering, Orissa Engineering College, Bhubaneswar, Odisha,
India

* E-mail: yogomaya0201@gmail.com
2 Associate Professor, Computer Science & Engineering, S'O'A University, Bhubaneswar, India

 ISSN 2278-3091
Volume 8, No.3, May - June 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse78832019.pdf

https://doi.org/10.30534/ijatcse/2019/78832019

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

837

with a similar class mark. In any case it's low Pd (probability
of detection) or high PF (probability of false alarm) that is
unreasonable to use. [4]. Powerful Multi-Objective Improved
Teaching–Learning based optimization technique
(MO-ITLBO) calculation uses a grid based methodology with
a particular true objective to keep not too bad assortment in
the external record. This count is beneficial and has centered
execution over the MO issues. Regardless, these figuring have
needed in improving a bit of the multi-target issues [1,
18].Genetic rule (GA) [20] section and Ensemble Learning
(EL) phase are the two periods of Hybrid model
reconstruction approach (HYDRA) for cross-project fault
prediction. These 2 phases create a massive composition of
classifiers [19].

This paper introduces a novel hybrid approach for predicting
faults in cross project to reduce the above mentioned
drawbacks. This hybrid approach is based on Random Forest
technique and Multi-Objective Ant Lion Optimization
approach. At first the issue prediction issue is formalized as a
multi target streamlining issue. We detail our multi-target
deficiency prediction issues with the accompanying
differentiating destinations (1) Maximize the likelihood of
recognition (2) Minimize the likelihood of false caution (3)
Minimize misclassification cost. To locate the best number of
trees and leaves per tree in the woodland, the ALO calculation
is utilized for upgrade the RF procedure [21]. From the
Promise vault the aftereffects of an exact assessment on ten
datasets, the prevalence and the convenience of the
multi-target approach as for single-target indicators are
demonstrated by ten datasets. Our results demonstrate that RF
and MOALO based fault prediction models are huge to
anticipate the deficiencies in the product framework. The
evaluation measures of coming about insights affirmed the
prescient precision and consistency of the build prediction
models. Rest of the manuscript is organized as follows:
Section 2 presents a detail discussion on related works on
previous methods. Section 3 presents the hybrid model for
predicting cross project faults using RF technique and
MO-ALO approach. The results and discussion are illustrated
in section 4. Section 5 finalizes the paper with conclusions.

2. RELATED WORKS

The fundamental software engineering activity is software
testing for confirmation of quality that is customarily very
expensive. To tackle this problem improvement and research
in mining repositories can be utilized. For fault prediction this
information can be modelled and applied to future activities.
An extensive variety of statistical models have been created
based on this concept and for fault prediction software is
applied. Some of the related research findings are presented
in this section.

Jayanthi and Florence [22] introduce a combined approach
for software system fault prediction and prediction of software
system bugs was exhibited. Their approach conveys a feature
thought decrease and AI wherever feature diminishment was
applied by well-known principle element analysis (PCA)
theme that was to boot increased by incorporating estimation
of maximum-likelihood for error reduction in PCA
knowledge reconstruction. At last, neural network based
mostly classification technique was applied that demonstrates
the results of prediction.

A Feature Dependent Naive Bayes (FDNB) identification
technique was introduced by Arar and Ayan [23]. Features are
incorporated for estimation as pairs to form reliance between
each other. This methodology was connected to the software
fault prediction issue and examinations were finished
exploitation normally perceived NASA PROMISE
information sets. The obtained results show this new
methodology was additional fruitful than the quality Naive
Bayes approach which it's a competitive performance with
alternative part weight systems. An extra aim of this
examination was to exhibit that to be dependable; a learning
model should be worked by utilizing and just preparing
information, as for the most part deceptive results rise up out
of the use of the entire datasets.

Chen et al. [24] have present a multi-target optimization
based administered procedure MULTI to create JIT-SDP
models. Specifically, they need formalized JIT-SDP as a
multi-target optimization issue. One goal was planned to
spice up the number of perceived carriage changes and
another article was planned to constrain the undertakings in
computer code quality assertion exercises. There exists
associate degree positive conflict between these 2 objectives.
MULTI uses strategic relapse to manufacture the models and
uses NSGA-II to form a great deal of non-commanded
arrangements, wherever each arrangement indicates the
constant vector for the calculated relapse.

Hosseini et al. [25] have used the Nearest Neighbor (NN)-
Filter, implanted in genetic algorithm to convey approval sets
for creating developing preparing datasets to handle CPDP
while speaking to for potential clamor in shortcoming marks.
They in like manner have investigated the impact of using
diverse capabilities. They have expanded their methodology,
Genetic Instance Selection (GIS), by consolidating feature
choice in its setting. They have used 41 arrivals of 11
multi-variant project to assess the exhibition GIS in
correlation with benchmark CPDP (NN-filter and
Naive-CPDP) and within project (Cross Validation (CV) and
Previous Releases (PR)). To review the impact of capabilities,
they have used two arrangements of highlights,
SCM+OO+LOC (all) and CK+LOC just as iterative data
addition sub setting (IG) for feature selection.

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

838

For cross-project fault prediction, Canfora et al. [26] have
used a multi-objective provision regression model
factory-made utilizing a genetic calculation. As opposition
furnishing the software engineer with one predictive model,
the multi-target approach was allowed programming
architects to choose indicators accomplishing a trade-off
between varied possible prediction inclined antiquities
(effectiveness) and LOC to be tested (which are often
thought-about as an proxy of the code- code analysis).

 A Hybrid Model Reconstruction Approach (HYDRA) for
cross-project fault prediction was presented by Xia et al. [27],
genetic algorithm (GA) phase and ensemble learning (EL)
phase are the two phases they are incorporated from the
HYDRA. The classifiers are composite as two phases. The
advantage of HYDRA was analyzed, 29 datasets taken from
the PROMISE repository that contains a total of 11,196
instances (i.e., Java classes) named as fault or clean these
experiments were performed by the authors. The results of
HYDRA have a normal FI-measure as 0.544. Overall sage of
29 datasets the results are compared with the FI-score of
26.22%, 34.99%, 47.83%, 28.61%, and 30.14% with the
methods of TCA+, GP, MO, CODEP and Peters Filter
respectively.

Choi et al. [28] mentioned concerning the package fault
prediction was a standout amongst the foremost essential
tasks for package quality modification. The benefits of CPDP
square measure inspecting the educational in imbalance. In
their approach, the uneven misclassification price and
therefore the similarity weights got from spatial arrangement
qualities square measure nearly associated with management
the correct re-sampling system. A-statistics take a look at is to
access the modification for the impact for enjoying the
estimate. Wilcoxon rank-sum take a look at square measure
used for the take a look at in applied mathematics important.
The explorative results exhibited their approach may offer
higher prediction execution than each the present CPDP
procedure and therefore the current category imbalance
methodology.

2.1 Background of Research Work
From the literature, it can be observed that majority of the
studies have utilized industrial datasets for cross project fault
prediction. The ten open source datasets are used in the
proposed method. The main drawback of the prior studies can
be condensed as: difficult to comprehend the delivered
models, most strategies can't manage with the unbalanced
data, some of them are not require the preprocessing step,
fault dataset have common characteristics are focused on the
restrict of aspects in evaluation and the fault prediction
problem is single in objective when they address. To tolerate
the disadvantages we presented in this paper the RF and

MOALO model, portrayed and assessed in the accompanying
sections.

3. RF AND MOALO BASED FAULT PREDICTION
MODEL
The proposed approach constructs RF-MOALO based fault
prediction model. In every segment the predictor set is first
registered in the system software. To decrease the impact of
data heterogeneity, by preprocessing the computed data.
When performing the cross project fault prediction the
preprocessing step is especially useful, as data from various
projects and in the same project have different properties at
some case [29]. For the most part the prediction model does
not explicitly consider the nearby distinction between
different software projects; its exhibitions can be unsteady
when it endeavors to predict fault across projects. After
preprocessing, a machine learning approach (RF) is utilized
to build a predictive model. The novel and ensemble machine
learning procedure is RF. However, when contrasted the RF
shows a great deal of focal points and that of other modeling
approach inside the classification. The RF can deal with both
discrete and continuous variables which is the fundamental
favorable circumstances. The tree leaves in number (at each
node the number of splits in the subset) and the trees in
number in the forest are the two hyper-parameters of RF.
Optimal number of leaves per tree and number of trees are
selected for guarantee precise cross project fault prediction.
The trees and leaves in number of forest are find for optimize
the RF, the ALO algorithm can be used. Thus, the
optimization is used to enhance the RF execution that implies
less error rate for fault prediction.

3.1 Data Preprocessing

In this paper we perform a standardization data to diminish
the heterogeneity impact in between of various software
objects. That is a z distribution is converted from metrics.
The value of metric is given to compute iM on software
component (jC) of project C is characterized as

),,(CjiM z and changed it into:

),(
),(),,(),,(

Ci
CiCjiMCjiM z 


 (1)

Also, the value of metric (iM) is subtracted, all components
of the system S the mean value),(Ci is acquired, and the
standard deviation),(Ci is used to separate it. Gyimothy et
al. [30] has applied the comparable approach; however such
preprocessing is utilized to decrease metrics to same interim
for inside the prediction of project before joining them. In our
research, the preprocessing technique is utilized to lessen the
project heterogeneity impact in cross project prediction.

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

839

3.2 Multi-Objective Predictive Modeling

The multivariate logistic regression is the broadly utilized
machine learning procedure. For fault prediction such a
technique is especially appropriate, where the two
conceivable results are find the presence of fault prone or not
in the software component. In this manuscript we formulate
the fault prediction model definition in problem of
multi-objective. With the following three objectives: the
probability of detection is maximized (maxPD), the
probability of false alarm is (minPF) minimized, minimize
misclassification cost (minCost) we formulate our
multi-objective fault prediction problems.

The class unbalance context is considered by the
multi-objective optimization technique. In the specific
circumstance, high accuracy is the basic level of training
dataset for the student needs, in the discussion of the non-fault
class. Thus the performance of probability of detection and
false alarm probability are taken into consideration.

)(npp FTTPD  is formulated from the probability of

detection means the ratio of relevant instances among all the
retrieved instances. The false alarm probability is defined as
the portion of non-fault class instances predicted which is
formulated as)(npp TFFPF  . Where, for true class,

the pT (true positive) is denoted as the number of fault class

instances predicted as defective, the number of non-fault class
instances predicted as non defective is nT (true negative),
and pF (false positive) is denoted as the number of fault class

is non- defective, nF (false negative) is denoted as the
number of non fault class is in defective.

)()(maxmax YPDXPD  or)()(maxmax YPDXPD  (2)
The condition is the probability of false alarm is minimized

)()(minmin YPFXPF  or)()(minmin YPFXPF  (3)

The objective function to minimize misclassification of cost
(minCost) is given by





M

i
ici YLYSCost

1
min)().((4)

Here, the Boolean (0 or 1) evaluated fault-proneness of iY is
represented as)(iYS , i.e., the Boolean value indicate the
actual fault proneness of iY and the number of code lines is
measured by)(ic YL .

To acquire the high overall performance as conceivable i.e.,
obtain high PD , low PF and misclassification cost.
However, there has balance between three objectives. While
acquiring the acceptable performance the highest PD can be
the solution. The software quality prioritizes this case than the
effort of testing. On the other hand, the other solution have
the performance is high when the acceptable performance of
PD is acquired. This case organizes the capabilities are
adjusted between the testing effort and software quality. Then
software system is predicted faults in the random forests
technique based on ALO are utilized, discussed in the
accompanying segment.

3.3 Hybrid Random Forests Technique Based on Ant Lion
Optimizer

The Hybrid RF technique is based on ALO is described in this
section. Breiman in 2001 [31] proposed an ensemble learning
method of trees in regression used for RFs are a bagging based
strategy. The combination of the decision tree is RF and it
used to create the bootstrapping technique. CART is respect
to (Regression and Classification Trees) model the principle
of RFs is done [32]. The two contrasts can be noted by
meanwhile. At every node in split in RFs initially, randomly
select the learning dataset and only within this step the best
split is calculated. In the forest all the maximal trees are
supposed tree there is no clipping step is achieved. By a
variable significance measure the RFs rank the input variable,
Based on the prediction accuracy output, the input variables
impact is reflected. The flowchart of fault prediction model is
appeared in figure 1. The following stages depict the fault
prediction model.

Stage 1: Random Forests Technique: The RFs algorithm
evaluates the variables significance by contrasting prediction
fault with data term OOB (Out-Of-Bag). It gets an unbiased
estimate running of fault prediction as RFs is constructed for
the training phase also used to determine the importance of
variable. The combination of training stage and testing stages
are the RFs algorithm. The structure of RFs algorithm is
appeared in Fig. 2.

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

840

Figure 1: Flowchart of RF-ALO prediction model

Figure 2: Structure of the Random Forests algorithm

The RFs method can be depicted as takes after:

 Initially from the learning datasets with replacement is
randomly form the bootstrap samples. The number of
samples equal to trees. By taking the best one, the
creator [33] recommends attempting the fault (500)
trees and twice the fault of the trees in number and to
set the optimal tress in number of the forest. Diverse
patterns of dataset are utilized to create in each sample
the algorithm model which is developed.

 In a regression tree at every hub various split is chosen
randomly to make binary rule. Be that as it may, the
MSE (mean squared error) is assessed in each split and
the trees in number for the best tree is selected by
contrasted with the OOB acquired data. Amid forest
growing the leaves in number (5 leaves) of tree is held

consistent.
 During the training stage, based on OOB data the

algorithm give the huge measure to important variable
and on the measure of modification significance.
Ascertain the measure of variable importance as the
average in sum of distinction between the accuracy of
prediction after and before changing the variable every
one of the predictors.

T

CNI

CNI

ZV
tnC

X

tn
zab

tnC

X

tn
ab

T

tn
i

tnCa

tnCa

 











































)(

)(14.3,

)(

)(

)(

)(

)(

)(








 (5)

where the particular tree OOB samples relates to)(tnC , the

tree number is represents as tn (T,2,1) the total number of

trees is signified asT , for each sample the predicted classes

are tn
aC and tn

zaC)(14.3, in the before and after adjusting the

variable separately. In the training stage, aX is represent as
the sample value, bN represents the genuine label, I is the
importance function that got based on the value bN , the tree
in number for leaves is sample and is denoted as a and the
tree in number samples in the forest are denoted as b .

 After that the clustering analysis is used to recognize
the outliers in the training dataset. Here, the thickness
model cluster analysis type is utilized. This model can
without quite a bit of a stretch defect points of cluster
and noise that doesn’t have a place with any of these
clusters. In machine learning procedures the learning
information is removed from the data collection will
inside and out extends the results in the accuracy. Here
the training dataset in the outliers are distinguished at
that point supplanted and removed.

 At last to predict values the testing stage is finished.
Then, to locate the last predicted values the predictors
average of all regression trees are ascertained.

Stage 2: Ant Lion Optimizer: The proposed hybrid method
utilized the ALO algorithm for the optimization procedure.
ALO is a nature motivated algorithm that copies ant lions
foraging behavior. The stochastic population based
optimization algorithm is ALO which is considered as
meta-heuristics by Mirjalili in 2015 [34]. The trees and leaves
in number is best of tree in the forest are finding by using the
ALO to optimize the RF. Here, with the optimal number the
variables and samples are distinguished by taking at the trees

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

841

and leaves in number of the forest. The primary objective of
the ALO is utilized for choosing best number of trees and the
leaves in number of the forest. The best trees and leaves in
number is chose based on the error. For the prediction
function aims to modify the optimization techniques RFs
model is developed for execution with the less error rate. For
finding the fault prediction, the distance between the trees is
required. The ALO structure is shown in figure 3.

Figure 3: Structure of ALO algorithm
For optimization problems the ALO approximates the
optimal solutions with utilizing a set of random solutions
similarly to other algorithms. Based on the principles inspired
this set is enhanced from the interaction between ant lions and
ants. In the ALO there are two populations: ants and ant lions
sets. The two sets are changed and estimating the
optimization problem in the global optimum in the ALO
general advances are in the part of the following:

 Around the hunt space ant move randomly, these move
are influenced by ant lions traps

 Highest fitness ant lions build a larger pit.
 Ant lions are utilized for catching as ant, proportional

to the ant lion fitness.
 At iteration, ant lions can get an ant.
 Sliding ants are recreated towards the ant lions; the

random walk range is diminished adaptively.
 If ant lions becomes filter over ant, then ant lions is

caught and pulled to the soil.
 To the latest caught prey the ant lions repositions itself

and constructs the pit after each hunt to enhance its
chances of catching.

Step 1: Random walks: Utilizing random walks around the
hunt space (position updating) ant move at each iteration
based on condition (6).

)]1)(2(,),1)(2(
),1)(2(,0[)(

1

1





tnn

n

mRcumsummR
cumsummRcumsummX


 (6)

where, the aggregate entirety is denoted as cumsum, the
iteration is m , tm is the most number of iteration and the
stochastic function)(2(mRn takes value 1, if a arbitrary value
is less (less than) and generally zero. To guarantee that inside
the limits of hunt space the ants move, utilizing the eq. (7) the
random walks are standardized.

j
j

m
j

m
jjj

m
jm

j c
ad

cdaX
X 1

11
)11().1(

















 (7)

where, the maximum and minimum of random walk of
jth variable are ja1 and jb1 , m

jc1 is the minimum and m
jd1 is

the maximum jth variable in jth iteration.

Step 2: Ant lions pits trapping: By the traps of ant lions the
random walks of ants are influenced, which is joined by
accompanying equations:

mm
i

m
j cALc 11  (8)

mm

i
m
j dALd 11  (9)

Here, the ant lions is denoted as AL at ith position, the
vectors that represent minimum and maximum value at

thm iteration of all variables are mc1 and md1 .

Step 3: Trap building: To display the ant lions chasing
capability the determination component ought to be utilized.
With the high fitness the ant lion has a higher opportunity to
get an ant. Here, RWS (Roulette Wheel Selection) is utilized
for choosing the ant lions based on the fitness value applied.

Step 4: Sliding ants toward ant lion: The ant endeavors to
escape when it slips into the pit. On the off chance that there is
a prey in the pit the ant lion acknowledges and shoot the sand
towards the pit focus. To display this behavior the range of
random walk of ants is diminished which is scientifically
expressed in underneath eq. (10) and (11).

r
cc

m
m 11  (10)

r
dd

m
m 11  (11)

where, the ration r is characterized as,

max

10
t
mr  (12)

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

842

where the present iteration is m , maxt the maximum iteration,
the constant () can change the accuracy level of
exploitation, the constant is characterized based on the
present iteration.

Step 5: Prey catching and rebuilding the pit: In the chasing
final stage, at the base of the pit the prey reaches and caught
the jaw of ant lions. After that inside the sand the ant pulls by
the ant lions and the body is expends. Here, the ant lion
updates its position to the chased ant position to raise its
chasing ability of new ant by eq. (13).





 


otherwiseAL

ALfantfifant
AL

m
i

m
i

m
j

m
jm

i
;

)()(;
 (13)

Step 6: Elitism: In each iteration, the ant lion with the higher
fitness is considered as elite. The selected and elite ant lion
utilized the selection mechanism to direct the ant random
walk and thus the given ant repositioning follows the
following eq. (14).

2

m
E

m
Am

j
rrant 

 (14)

Where m
Ar is represents the random walk around the selected

ant lion for utilizing the selection mechanism and
m
Er represents the elite ant lion random walk. Finally the ALO

algorithm delivers best tree and leaves of forest in tree.

Stage 3: Fault prediction: Then the produced best tree and
leaves per tree in the forest is given to the Bagger algorithm to
train the RF samples and variables. At that point the trained
samples in forest are given to the classifier for fault
prediction.

4. EXPERIMENTAL METHODOLOGY

4.1 Dataset Description and Performance Measurements

The experimental study is done in this section for the software
defect prediction using the MOALO methods. The
experiment is done by using the PC (personal computer) with
memory of 2GB, 64-bit windows, 8 operating system and with
the Intel ® core (TM) IN THE Java software tools. In this
work, we have considered eight datasets from PROMISE
repository which are named as CM1, KC1, KC2, KC3, MC2,
PC1, PC3 and PC4. These datasets were developed in C/C++
language and it is a NASA MDP software projects form flight
control of satellite, instrumentation spacecraft, storage
management of ground data and scientific data processing.

Table1 gives the description of the dataset, where the dataset
are in language, total number of available modules, defective
modules, non-defective modules, imbalanced ratio and
percentage defect are depicted. The ratio of imbalance is
represented in number of ratio for the defective and
non-defective software modules. The dataset of the software
defect prediction is imbalance in the nature of the defective
software modules where comparing with the non-defective
modules.

Table 1: Description of Dataset

Datas
et

Langua
ge

Module
s

Defectiv
e

Non-defecti
ve

Imbalanc
ed ratio

%
defec

t
CM1 C 498 49 449 9.16 9.83
KC1 C++ 2109 326 1783 5.46 15.45
KC2 C++ 522 107 415 3.87 20.49
KC3 Java 458 43 415 9.65 9.38
MC2 C/C++ 161 52 109 2.09 32.29
PC1 C 1109 77 1032 13.40 6.94
PC3 C 1563 160 1403 8.76 10.23
PC4 C 1458 178 1280 7.19 12.2

Table 2: Performance of predicted class and real class

Predicted Class
Real Class

Defective Non- defective

Fault TP FP

Non- fault FN TN

Table 2 represents the performance of the predicted class and
the real class. The software modules are predicted correctly in
the defective and non-defective modules in the table is
denoted as true prediction (TP or TN), and are predicted
incorrectly that is denoted as false prediction (FP or FN). The
proposed defect predictor model is evaluated by using the
geometric mean (G-mean). The classifier performance is
evaluated by data distribution scenario. The balanced
performance is calculate by using the G-mean by considering
the geometric mean is given as,

  2
1yspecificitysensitivitMeanG  (15)

Specificity and sensitivity are defined as

NN

N
FT

Tyspecificit


 (16)

PP

P
FT

Tysensitivit


 (17)

Using precision and ܨ-measure we have also compared the
proposed method performance which is defined as follows:

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

843

ysensitivitprecision
ysensitivitprecisionmeasureF





)(2 (18)

NP

P
FT

Tprecision


 (19)

5. RESULT COMPARISON AND DISCUSSION

The results and discussion are discussed for the software
defect predictor with the previous methods, including K-NN,
SVM and random forest. All these approaches are
implemented in Java. The experiment is perform using the
ten-fold cross validation method and the dataset is divided
randomly into a size of equal in ten subsets. For learning
every time nine subsets using the training and for testing
datasets remaining one will be used in the evaluation of the
software defect prediction system. Every ten subsets are using
the training and testing datasets while repeating this process
to ten times. The performance of defect prediction system is
estimate by averaging the ten-fold results. The comparison is
for the precision, sensitivity, specificity, geometric mean and
the F-measure metrics for the proposed and existing
techniques with the 8 datasets of software defect prediction.
Table 3 shows the comparison of sensitivity values on eight
datasets. From the table 4, the comparative results obtained
for the proposed method with the existing for the case of
sensitivity values for CM1, MC2, KC1, KC2, KC3, PC1, PC3
and PC4 datasets. From the table 4, the proposed method
obtains better specificity for CM1, KC1, MC2 and PC1
datasets when compared with SVM. Table 5 and 6 shows the
comparison of precision and F-measure values. The precision
value of proposed method is 0.99 for KC2 dataset, 0.83 for
KC2 dataset, 0.928 for PC3 dataset and the remaining
datasets have the precision value as 1. From the table 6, it is
clear that the F-measure of the proposed method is higher for
all datasets when compared with existing algorithm. The
geometric mean value is better in our proposed method of
defect predictor for the CM1, MC2, PC1, PC3, KC1, KC2,
KC3, and PC4 datasets. From table 7, K-NN and SVM
geometric gains the highest mean value for KC2 dataset.

Table 3: Comparative results for Sensitivity for eight datasets

Dataset K-NN SVM Random
Forest Proposed

CM1 0.54166 0.46153 0.619047 0.65
KC1 0.72727 0.5833 0.6666 0.8
KC2 0.970588 0.94339 0.941747 0.961538
KC3 0.5 0.45454 0.6 0.625
MC2 0.90909 0.75 0.8333 0.9166
PC1 0.3333 0.35 0.378378 0.46875
PC3 0.38028 0.4 0.472727 0.52
PC4 0.48387 0.473118 0.56626 0.6486

Table 4: Comparative results for Specificity for eight datasets

Dataset K-NN SVM Random
Forest Proposed

CM1 1 0.98214 1 1
KC1 1 0.96 1 1
KC2 0.931034 0.96 0.85714 0.96296
KC3 0.97435 0.9736 1 0.9756
MC2 0.95238 0.9 0.95 1
PC1 0.99259 0.9927 0.992857 1
PC3 0.99497 1 0.990697 0.9909
PC4 0.98897 0.985294 0.996454 1

Table 5: Comparative results for Precision for eight datasets

Dataset K-NN SVM Random
Forest Proposed

CM1 1 0.9230769 1 1
KC1 1 0.875 1 1
KC2 0.980198 0.99009 0.96039 0.99009
KC3 0.833333 0.83333 1 0.8333
MC2 0.90909 0.818181 0.90909 1
PC1 0.93333 0.93333 0.93333 1
PC3 0.964285 1 0.92857 0.92857
PC4 0.9375 0.916666 0.979166 1

Table 6: Comparative results for F-measure for eight datasets

Dataset K-NN SVM Random
Forest Proposed

CM1 0.7027 0.615385 0.7647 0.7878
KC1 0.8421 0.7 0.8 0.8889
KC2 0.975369 0.96618 0.95098 0.9756
KC3 0.625 0.588235 0.7499 0.714285
MC2 0.90909 0.7826 0.86956 0.95652
PC1 0.491228 0.50909 0.538461 0.638297
PC3 0.54545 0.57142 0.626506 0.666666
PC4 0.63829 0.624113 0.717557 0.786885

Table 7: Comparative results for geometric mean for eight datasets

Dataset K-NN SVM Random
Forest Proposed

CM1 0.73598 0.6732 0.78679 0.80622
KC1 0.8528 0.74833 0.816496 0.8944
KC2 0.9506056 0.9516 0.898449 0.96225
KC3 0.697982 0.66526 0.77459 0.7808
MC2 0.93048 0.82158 0.88975 0.95742
PC1 0.5752 0.58944 0.61292 0.6846
PC3 0.6151 0.63245 0.68434 0.7178
PC4 0.73598 0.6732 0.78679 0.80622

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

844

Figure 4: Comparison analysis of computational time with various

research works

Figure 5: Performance comparison of predictive accuracy with

various methodologies

The computational time analysis of various cross project fault
prediction works is shown in figure 4. It is observed that from
the figure, the computational time of the proposed method is
vey less of 80.3%, 75.2% and 54.09% when compared with
Ryu et al. [5], Jayanthi et al. [22] and Zhang et al. [35].

Figure 5 shows the performance comparison of predictive
accuracy with various methodologies. It is clearly observed
that, the accuracy of proposed method is better of 7.02%,
3.9% and 1.7% for CM1 dataset, 8.1%, 4.8% and 6.1% for
KC1dataset, 6.6%, 5.5% and 4.7% for KC2 dataset, 5.9%,
5.2% and 4.6% for KC3 dataset, 6.05%, 5.2% and 4.82% for
MC2 dataset, 5.79%, 5.33% and 4.89% for PC1 dataset,
5.63%, 5.02% and 4.81% for PC3 dataset, 5.68%, 4.78% and
4.73% for PC4 dataset when compared with RF-GA,
RF-PSO, and RF-FFA. Therefore for the datasets on 6 to 8 in
every case the performance is better in other three methods in
an effective software prediction of our method

6. CONCLUSION

In this paper, a hybrid model using the Random Forest
technique and multi-objective Ant Lion Optimization is
proposed for predicting cross project faults in software
system. Using the proposed model the multi objective

problems are solved. The experimental study was applied in
the PROMISE repository datasets for eight software fault
prediction. The considered datasets are CM1, MC2, PC1,
PC3, KC1, KC2, KC3, and PC4.The result have been
evaluated in terms of precision, sensitivity, specificity, and
geometric mean, F-measure. The proposed approach show
higher geometric mean, F-measure, sensitivity, precision, and
specificity while comparing with existing techniques like
K-NN, SVM and RF. The software system of accuracy is
predicting the number of faults by using the model of our
proposed fault prediction.

REFERENCES

1. P. K. S. Kumar. Defect Prediction Model for

AOP-based Software Development using Hybrid
Fuzzy C-Means with Genetic Algorithm and
K-Nearest Neighbors Classifier, International Journal
of Applied Information Systems, Vol. 11, pp. 26-30, Jul.
2016.
https://doi.org/10.5120/ijais2016451579

2. G. Canfora, A. Lucia, M. D. Penta R. Oliveto and A.
Panichella. Defect prediction as a multiobjective
optimization problem. Software Testing, Verification
and Reliability, Vol. 25, pp. 426-459, Jun. 2015.
https://doi.org/10.1002/stvr.1570

3. T. Khoshgoftaar and Y. Liu. A Multi-Objective
Software Quality Classification Model Using Genetic
Programming, IEEE Transactions on Reliability, Vol.
56, pp. 237-245, Jun. 2007.
https://doi.org/10.1109/TR.2007.896763

4. D. Ryu, J. Jang and J. Baik. A Hybrid Instance
Selection Using Nearest-Neighbor for Cross-Project
Defect Prediction, Journal of Computer Science and
Technology, Vol. 30, pp. 969-980, Sep. 2015.
https://doi.org/10.1007/s11390-015-1575-5

5. D. Ryu and J. Baik. Effective multi-objective naïve
Bayes learning for cross-project defect prediction,
Applied Soft Computing, vol. 49, pp. 1062-1077, Dec.
2016.
https://doi.org/10.1016/j.asoc.2016.04.009

6. G. You, F. Wang, and Y. Ma. An Empirical Study of
Ranking-Oriented Cross-Project Software Defect
Prediction, International Journal of Software
Engineering and Knowledge Engineering, Vol. 26, pp.
1511-1538, Dec. 2016.
https://doi.org/10.1142/S0218194016400155

7. X. Jing, F. Wu, X. Dong and B. Xu. An Improved SDA
Based Defect Prediction Framework for Both
Within-Project and Cross-Project Class-Imbalance
Problems, IEEE Transactions on Software Engineering,
Vol. 43, pp. 321-339, Aug. 2017.
https://doi.org/10.1109/TSE.2016.2597849

8. Z. Zhu, J. Xiao, S. He, Z. Ji, and Y. Sun. A
multi-objective memetic algorithm based on
locality-sensitive hashing for one-to-many-to-one

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

845

dynamic pickup-and-delivery problem Information
Sciences Vol. 329, pp. 73-89, Feb. 2016.
https://doi.org/10.1016/j.ins.2015.09.006

9. C. Hu, X. Xue, L. Huang, H. Lyu, H. Wang, X. Li, H. Liu,
M. Sun, and W. Sun. Decision-Level Defect Prediction
Based on Double Focuses. Chinese Journal of
Electronics, Vol. 26, pp. 256-62 Mar. 2017
https://doi.org/10.1049/cje.2017.01.005

10. Y. Shi, M. Li, S. Arndt and C. Smidts. Metric-based
software reliability prediction approach and its
application, Empirical Software Engineering, Vol. 22,
pp. 1579-1633, Aug. 2016.
https://doi.org/10.1007/s10664-016-9425-9

11. F. Porto and A. Simao, Feature Subset Selection and
Instance Filtering for Cross-project Defect Prediction
- Classification and Ranking, CLEI electronic Journal,
Vol. 19, pp. 4:1-4:17, Mar. 2018.

12. X. Yang, D. Lo, X. Xia, and J. Sun, TLEL: A two-layer
ensemble learning approach for just-in-time defect
prediction, Information and Software Technology, vol.
87, pp. 206-220, Jul. 2017.
https://doi.org/10.1016/j.infsof.2017.03.007

13. T. Lee, J. Nam, D. Han, S. Kim and H. Peter. In,
Developer Micro Interaction Metrics for Software
Defect Prediction, IEEE Transactions on Software
Engineering, Vol. 42, no. 11, pp. 1015-1035, Nov. 2016.
https://doi.org/10.1109/TSE.2016.2550458

14. M. Bisi and N. Goyal. An ANN-PSO-based model to
predict fault-prone modules in software,
International Journal of Reliability and Safety, Vol. 10,
pp. 243, Mar. 2016.
https://doi.org/10.1504/IJRS.2016.081611

15. W. Li, Z. Huang and Q. Li. Three-way decisions based
software defect prediction, Knowledge-Based Systems,
Vol. 91, pp. 263-274, Jan. 2016.
https://doi.org/10.1016/j.knosys.2015.09.035

16. R. Rana, M. Staron, C. Berger et al. Analyzing defect
inflow distribution and applying Bayesian inference
method for software defect prediction in large
software projects, Journal of Systems and Software,
Vol. 117, pp. 229-244, Jul. 2016.
https://doi.org/10.1016/j.jss.2016.02.015

17. F. Zhang, A. Mockus, I. Keivanloo and Y. Zou. Towards
building a universal defect prediction model with
rank transformed predictors, Empirical Software
Engineering, Vol. 21, pp. 2107-2145, Oct. 2015.
https://doi.org/10.1007/s10664-015-9396-2

18. D. Ryu, J. Jang and J. Baik. A transfer cost-sensitive
boosting approach for cross-project defect prediction,
Software Quality Journal, Vol. 25, pp. 235-272, Mar.
2015.
https://doi.org/10.1007/s11219-015-9287-1

19. M. Cheng, G. Wu, H. Wan, G. You, M. Yuan, M. Jiang.
Exploiting correlation subspace to predict
heterogeneous cross-project defects. International
Journal of Software Engineering and Knowledge
Engineering, Vol. 26, pp. 1571-80, Dec. 2016 .

https://doi.org/10.1142/S0218194016710017
20. P. Srikanth, M. SrijaM, S. Chakravarthy S, G.V.Rao,

G.A. Raju. Compare various Circuits Area Reduction
using Genetic Algorithm and Hybrid Partitioning
Algorithm, International Journal of Advanced Trends in
Computer Science and Engineering, Vol. 7, no.6,
pp.111-114, Dec 2018.
https://doi.org/10.30534/ijatcse/2018/08762018

21. D. Hema Latha , P. Premchand. Estimating Software
Reliability Using Ant Colony Optimization
Technique with Salesman Problem for Software
Process, International Journal of Advanced Trends in
Computer Science and Engineering, Vol.7, no. 2, pp.
20-29, March –April 2018.
https://doi.org/10.30534/ijatcse/2018/04722018

22. R. Jayanthi and L. Florence. Software defect prediction
techniques using metrics based on neural network
classifier, Cluster Computing, 2018.
https://doi.org/10.1007/s10586-018-1730-1

23. O. Arar and K. Ayan. A feature dependent Naive
Bayes approach and its application to the software
defect prediction problem, Applied Soft Computing,
Vol. 59, pp. 197-209, Oct. 2017.
https://doi.org/10.1016/j.asoc.2017.05.043

24. X. Chen, Y. Zhao, Q. Wang and Z. Yuan,. MULTI:
Multi-objective effort-aware just-in-time software
defect prediction, Information and Software
Technology, Vol. 93, pp. 1-13, Jan. 2018.
https://doi.org/10.1016/j.infsof.2017.08.004

25. S. Hosseini, B. Turhan and M. Mäntylä. A benchmark
study on the effectiveness of search-based data
selection and feature selection for cross project defect
prediction, Information and Software Technology, Vol.
95, pp. 296-312, Mar. 2018.
https://doi.org/10.1016/j.infsof.2017.06.004

26. S. Shukla, T. Radhakrishnan, K. Muthukumaran, and L.
Neti, Multi-objective cross-version defect prediction,
Soft Computing, vol. 22, no. 6, pp. 1959-1980, Mar.
2018.
https://doi.org/10.1007/s00500-016-2456-8

27. X. Xia, D. Lo, S. J. Pan , N. Nagappan, X. Wang.
HYDRA: Massively Compositional Model for
Cross-Project Defect Prediction, IEEE Transactions
on Software Engineering, Vol. 42, pp. 977-998, Oct.
2016.
https://doi.org/10.1109/TSE.2016.2543218

28. D. Ryu, O. Choi and J. Baik. Value-cognitive boosting
with a support vector machine for cross-project
defect prediction, Empirical Software Engineering,
Vol. 21, pp. 43-71, Feb. 2014.
https://doi.org/10.1007/s10664-014-9346-4

29. T. Menzies, A. Butcher, A. Marcus, T. Zimmermann and
D. Cok, Local vs. global models for effort estimation
and defect prediction”, in Proc. of the 26th IEEE/ACM
International Conference on Automated Software
Engineering, New York, USA, pp. 343-351, Nov. 2011.
https://doi.org/10.1109/ASE.2011.6100072

Yogomaya Mohapatra et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 836 - 846

846

30. T. Gyimothy, R. Ferenc and I. Siket. Empirical
validation of object-oriented metrics on open source
software for fault prediction, IEEE Transactions on
Software Engineering, Vol. 31, pp. 897-910, Oct. 2005.
https://doi.org/10.1109/TSE.2005.112

31. L. Breiman. Random forests, Machine learning, vol. 45,
pp. 5-32, Oct. 2001.
https://doi.org/10.1023/A:1010933404324

32. G. Tang, A. Rabie, and U. Hägg. Indian Hedgehog: A
Mechanotransduction Mediator in Condylar
Cartilage, Journal of Dental Research, vol. 83, pp.
434-438, May 2004.
https://doi.org/10.1177/154405910408300516

33. I. Ibrahim and T. Khatib. A novel hybrid model for
hourly global solar radiation prediction using random
forests technique and firefly algorithm, Energy
Conversion and Management, Vol. 138, pp. 413-425,
Apr. 2017.
https://doi.org/10.1016/j.enconman.2017.02.006

34. S. Mirjalili, The Ant Lion Optimizer, Advances in
Engineering Software, vol. 83, pp. 80-98, May 2015.
https://doi.org/10.1016/j.advengsoft.2015.01.010

35. Y. Zhang, D. Lo, X. Xia and J. Sun. An Empirical
Study of Classifier Combination for Cross-Project
Defect Prediction, in Proc. of the 39th Annual
Computer Software and Applications Conference,
Taichung, Taiwan, vol. 2, pp. 264-269, Jul. 2015.
https://doi.org/10.1109/COMPSAC.2015.58

