
Anatolii Balanda et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4724 – 4728

4724

ABSTRACT

The article reviews methods based on the Hopfield neural
network for solving CSP and FCSP problems. The first
attempt to apply this type of neural network to solving the
CSP problem was made by Hopfield himself, after which a
number of modifications of the original algorithm took place.
That is, all the methods presented in the article are
modifications of each other and have developed consistently.
Some characteristics of Hopfield network-based methods in
comparison with other (non-neural network-based)
algorithms and CSP solutions are also given.
In the field of artificial intelligence, there is a class of
combinatorial problems called CSP problems (Constraint
satisfaction Problems). They are a powerful tool for solving
practical problems that can be designed for many variables
that are bound together by constraints.

Key words : CSP, constraint satisfaction problem, neural
network, Hopfield neural network.

1. INTRODUCTION

At the same time, the classic CSP model is quite primitive
in order to be the prototype of most real-life AC applications.
Sometimes it is difficult to formulate constraints in real
problems in a rigid form, that is, in such a way that it is
possible to determine unambiguously whether this restriction
is sufficient or not. Another way in which such problems can
occur is if it is acceptable to partially satisfy the restrictions.
Moreover, in some situations, it is not possible to fully satisfy
all the constraints of the task [1-4].

All these factors caused the appearance of a variety of CSP
tasks, which became known as FCSP (Fuzzy Constraint
Satisfaction Problem). In contrast to CSP tasks, FCSP tasks
operate with fuzzy logic and flexible constraints, which
allows for incomplete satisfaction of constraints in the task
[5].

Today, there is a large Arsenal of methods for solving CSP
problems [1], while the number of algorithms for solving
FCSP problems is quite small. Basically, FCSP is solved by
raising it to the CSP of a task or a number of CSP tasks and

then solving them. However, there are other methods, in
particular, algorithms for solving FCSP problems based on
neural networks. Traditionally, neural networks are used to
solve problems of prediction, classification and pattern
recognition, but history shows that there have also been
numerous attempts to apply them to solving combinatorial
optimization problems. Many of these attempts were
successful, and the effectiveness of the constructed methods
was comparable to alternative approaches [10]. However,
despite this, it is generally considered that neural networks
"are not very successful when applied to solve optimization
problems and they do not go into any comparison with the
best metaeuristics", such as the annealing method, taboo
search, and genetic algorithms [15]. This article is intended to
rehabilitate the authority of neural networks, at least in the
field of CSP problem solving.

Historically, only neural networks with training without a
teacher have been used to solve CSP tasks. They are best
suited for this purpose, since they do not require generating
training examples [6-9]. This can easily be explained by a
simple example: if we assume that the input of a neural
network under control is a solution to the CSP problem, then a
"good" training example for the network would have to be a
valid CSP solution, hence we would already have
denouements, which is obviously absurd. However, this does
not mean that neural networks with teacher training are not
applicable to CSP tasks, just that the CSP task must be
correctly designed for a neural network.

The most popular neural network for solving CSP problems
was the Hopfield network, which will be discussed in the
article.

2. MATERIALS AND METHODS

2.1 CSP issue
A Constraint Satisfaction Problem is a problem consisting of
N variables, a set of domains Ai(i = 1...n) these variables and
the set of constraints imposed on these variables C(P1)...C(Pr),
where C(Pj) is the set of values of variables associated with
these constraints [3].
For example, such a problem is the graph coloring problem,
where x1 is the variable...Xnare the vertices of the graph, and the
value of the variable Xiis the color in which the vertex is
colored. The constraints have the form C(Xi, Xj) = {(a, b): a, b

Applying Hopfield Neural Networks To Solve CSP Problems

Anatolii Balanda1, Mykola Pohoretskyi2, Diana Serhieieva3, Mikhail Hribov4, Zoriana Toporetska5
1The Special Department Military Diplomatic Academy named after Yevheniy Bereznyak, Kyiv, Ukraine

2Department of Justice, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
3Department of Justice, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

4Department of operational investigative activities, National Academy of Internal Affairs of Kyiv, Kyiv, Ukraine
5Department of Justice, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

ISSN 2278-3091
Volume 9, No.4, July – August 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse77942020.pdf

https://doi.org/10.30534/ijatcse/2020/77942020

Anatolii Balanda et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4724 – 4728

4725

– different colors} for each pair (Xi, Xj)acent number of graph
vertices.
The CSP model is built on rigid logic, which means that
restrictions can only take the values 0 (the restriction does not
fully satisfy) or 1 (the restriction is fully satisfied). In other
words, in order to get a valid solution to such a problem, all its
limitations must be fully satisfied [11].
2.2 FCSP task
Fuzzy Constraint Satisfaction Problem is a type of CSP
problem. It appeared at a time when the potential of CSP tasks
was fully realized, and it became obvious that CSP is a poor
model for designing real problems on it, where it is often
impossible to do with strict conditions and complete
satisfaction of all constraints. In such a situation, came to the
aid of fuzzy logic Zadeh [21], which, unlike conventional
hard logic, limit yourself to two constants to determine the
falsity or truth of the assertion, that is, 0 (false) and 1 (true),
and proposes to use for this purpose, the whole interval [0, 1].
It also offers a mathematical structure such as fuzzy sets,
which do not consist of a rigidly defined set of elements, but
instead consist of elements that belong to them (sets) to a
certain extent.
Applying the concept of fuzzy logic to CSP problems allowed
us to solve, for example, incompatible problems where all
constraints cannot be fully satisfied simultaneously. The
worst example is problems with a large number of constraints
(over constrained), for which it is also usually difficult or
impossible to find a solution using hard logic [12-15].
The first attempt to formalize FCSP is probably made by
Dubois [5] and Ruttkay [16]. All subsequent attempts were
very similar to the first, so let's consider the FCSP model of
problems described in one of the following articles [7].
Let be the space of all possible solutions to the problem U,
which consists of vectors of the form (x1...xk), where k is the
number of variables in the problem, and x acquires all the
other values from its domains. Enter the "membership
function degree" function») A: U→[0, 1], which will
determine the degree of belonging of each vector (x1...xk) up to
the set of solutions, or more precisely, the degree to which this
solution satisfies all the problems discussed. In normal CSP
issues with strict restrictions, this function looks like A:
U→{0, 1}.
Then any possible solution that belongs to the "alpha slice"
will be considered a solution of the FCSP problem»:
 A |�= {u U A u∈ |() ≥�}.
Moreover, the method of setting the threshold α is either part
of the algorithm for solving the problem, or it is manually
selected during the solution.
2.3 Hopfield neural networks

Figure 1: Hopfield neural network

The Hopfield network (figure 1) is a neural network where all
neurons are connected to each other. Each neuron receives
input from all other neurons and, in turn, sends its signal to all
other neurons in the network. The matrix of connections of
such a network is symmetrical, and the elements of the main
diagonal must be zeros. These zeros mean that the neuron's
signal will not be transmitted to the input itself. This condition
and the symmetry condition should ensure the stability of the
system. In [4], it is stated that a network with gate connections
is stable only if the two conditions mentioned above are met.
Stability means that the system stabilizes after a certain
number of steps and after reaching a certain state, it will
remain unchanged in the future. Otherwise, it may fluctuate
constantly between two different States, unable to reach
equilibrium [16].
The function Φ in formula (1) can be represented in various
variants.
The interaction of neurons in a network is described by a
function that is also called network energy (2). its Main
property is that at each iteration of network operation, the
energy decreases, and not necessarily monotonously. In this
case, the neural network itself becomes a minimizer of the
energy function. That is, after a certain update cycle, the
network should reach the local minimum and then go to a
stable state.

 E x()=−2 ∑∑i= =1 j 1x x wij−∑i=1xi�i . (1)
It should be noted that all this comes true only if the matrix of
network weights is symmetric, then the energy function is a
Lyapunov function.
2.4 Hopfield Tank Network
In 1985 John Hopfield teamed up with Dev Tank to
collaborate on adapting his neural network model to solve
optimization problems [10].
The main idea was to present the problem as a function of
energy, provided that the better the solution, the less energy.
Then we could construct a Hopfield network for this function
and try to minimize this function with it [11].
Thus, if the optimization problem looks like this: minimize
f(x) provided that it is imposed with r constraints of the form
C(x) = b, then the energy function for such a problem can be
described by the formula (2):

 E x()= f x()−∑�iP xi (), (2)
where x is the vector of input variables of the problem;
f(x) – the target function; r – the number of constraints; a1...ar
– coefficients reflecting the" relative importance " of
satisfying each of the constraints;
Pi – so-called "penalties", which are directly related to the
level of satisfaction of the corresponding constraints of the
problem and are equal to zero only if the constraint is
completely assaulted. Otherwise, they are proportional to the
satisfaction of the constraint. The higher the level of pleasure
– the lower the coefficient. It is allowed that restrictions in the
issue may represent equalities or inequalities [17-20].
Since the energy function must be at least quadratic, the
constraints-equality in it are presented in this form:

 P xi ()= −(Cbii)2. (3)

Anatolii Balanda et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4724 – 4728

4726

This expression will only be nullif the constraint is completely
satisfied, otherwise its value will be proportional to the degree
of dissatisfaction.
Regarding the representation of constraints-inequalities, they
should look like this:

 P xi () Ω= − (Ci bi). (4)
In this formula, the omega function can be represented, for
example, by the sigmoid function.
It should be noted that the penalty approach was originally
developed to solve combinatorial optimization problems. We
consider it in a narrower context, namely in thecontext of
solving constraint optimization problems, or, in other words,
for constraint satisfaction problems with flexible constraints,
where the goal is to find a solution where the overall level of
constraint violation is optimal (minimum). In suchdachas,
there is no target function as such, that is, the amount of fines
in it is the target function. That is, the first term in formula (3),
in fact, does not exist.
The multipliers that stand in the derived derivatives of xjwill
be the values of the corresponding weight coefficients wij, and
the constant terms are the values of θi.
Most of the questions in the Hopfield – Tank method are
about the selection of coefficients ai in the formula E(x) and
initialization of the network state. An unsuccessful selection
of these parameters can significantly affect the further course
of events. For example, by initializing neurons with values
that are a possible solution or close to a solution, we can
thereby contribute to the fact that the network immediately
falls into the local minimum. It is recommended to use values
of ~0.5 for neuronal initialization, or use the approach [12].
As for the choice of coefficients ai, the authors of the method
did not give any recommendations on this, which later became
the cause of extensive discussions. This will be discussed in
more detail later [18].
The new method was successfully applied by the authors to
solve some optimization problems, including, in particular,
the problem of a traveling salesman. The results obtained
were so inspiring that in 1988, a new study was published.
Wilson and Pavlev wanted to test them, confirm them, and
improve them. It turned out that Hopfield and Tank's results
were valid only for relatively small tasks (for the traveling
salesman's task, they were able to repeat the successful results
only for circles of different cities, no more than 10), but it is
much more difficult to successfully select coefficients for 900
neurons [10]. Subsequently, many methods were proposed to
improve the network developed by Hopfield, but most of them
actually did not significantly increase the effectiveness of the
method, that is, the improvements were generally
insignificant. However, some of them deserve attention.
Modification of the Wilson and Pavlev Hopfield Tank
network
As already mentioned, the cornerstone of the Hopfield – Tank
method is the selection of coefficients for the energy formula.
Wilson proposed a modification of this formula, where all
these coefficients are replaced by one, because the probability
of correctly choosing one coefficient is much greater than
guessing with the values of n coefficients. Therefore, in the
new interpretation, the energy function has the form [10]:

E x()=f x()+ D x(), (5)
where instead of the coefficients ai, there is a single
coefficient γ, and D(x) should be understood as a deviation of
the vector x (i.e., the solution) from the plane of constraints
defined for the problem. Now, if we set a sufficiently large
value for γ, we guarantee that we will find a solution.
In more detail, this is the formulation of the energy function
and the method itself is described in articles [2] and [10].
Lagrange multiplier method for Hopfield-Tank network
It is impossible not to notice that the energy function behind
its appearance closely resembles the Lagrange function. If ai

we substitute Lagrange factors for the coefficients ai, we get
[14]:

 E x(λ)=f x()+∑λiP xi (). (6)
The advantage of this formulation of the energy function is
that the coefficients for penalties Pi no longer need to be
selected at random. They can participate in a neural network
as its elements along with other neurons, which are task
variables.
It follows that the success of the project in the first case will be
related to the choice of a hybrid model of state regulation, and
in the second case - the most effective model will be the state
monopoly.
2.5 GENET and Fuzzy GENET
The GENET algorithm was introduced to the world by Wang i
Tsang in 1991 [6] and was a logical extension of GDS
networks. As in GDS, here neurons are divided into clusters.
If the cluster is a separate task variable, then neurons within
the cluster represent possible values of the variable. All
neurons can take the values 1 or 0, or "on" or "off"
respectively. In each cluster, at any given time, only one
neuron can be in the "on" state, or have a value of 1,
respectively. in Fact, this means that the neuron in the cluster
that is in the "on" state is the value that at that time is assigned
to the variable that this cluster represents.
Neurons from different clusters are connected only by the
variables they represent: if the corresponding variables are
bound by a constraint in the task, then the neurons are also
bound. Moreover, in these clusters, only those neurons have
connections among themselves that represent conflicting
values of variables. For example, if you set a task like in
figure 2, then the GENET network will look like in figure 3.
We recommend initializing the network weights -1.
What is significant in this method is that, unlike many other
methods, the GENET developers conducted experimental
studies comparing the effectiveness of THIS method with the
efficiency of conventional methods for solving CSP
problems. They compared it with two local search algorithms:
GSAT [19]-on a graph coloring problem, and min – conflicts
hill climbing (MCHC)-on random-generated CSP problems
[19].

Anatolii Balanda et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4724 – 4728

4727

Figure 2: Example of a CSP issue

Figure 3: Example of a GENET network for a problem in figure 2

Figure 2 shows us the example of a CSP issue.
As a result of the first comparison, it was found that both
algorithms met all the test tasks. Below are the results in
figures [6].
The second experiment, which tested the effectiveness of
GENET and some of its modifications GENET2, as well as
the MCHC algorithm and its modification MCHC2, showed
that GENET was again the winner, and by a striking margin.
The test tasks were CSPS with Adachi with 50 variables, each
of which had a domain of 10 values. Restrictions for these
issues were generated randomly. The graph (Fig. 3) shows the
success rate of each algorithm, which is measured as a
percentage of the total number of tasks solved [6].
2.6 Fuzzy GENET
Logical continuation GENET became its version for CSP
issues with flexible restrictions, i.e. for Fuzzy CSP (FCSP).
This is how the algorithm called Fuzzy GENET was
developed [20].
The fuzzy GENET algorithm differs from the basic GENET
algorithm in that each connection between neurons in a neural
network is described by a two-level satisfaction level of the
constraint associated with these variables (all constraints in

the problem are binary), and a weight factor
W

i jy z . The

weighting factors are initialized
as W

i jy z =�i jy z −1 . InCE, the
rest is basically the same as in GENET.
The authors of the paper on Fuzzy GENET also conducted a
number of experiments to compare the effectiveness of
GENET and Fuzzy GENET on conventional CSP tasks. Both
algorithms showed similar results, which means that Fuzzy
GENET is universal and in General is a worthy replacement
for its predecessor.

3. CONCLUSION
John Hopfield was a pioneer in trying to adapt his neural
network to solve CSP problems. Despite the failure of the first
attempts and the criticism that his published results were not
confirmed when they were verified by other researchers,
Hopfield's work laid the Foundation for further research on
this topic. The Hopfield-Tank network clearly highlighted all
the problematic areas in the methodology of applying the
Hopfield network to solving CSP problems and thus
stimulated the active development of research aimed at
improving these shortcomings.
The first major improvement of the network was the
introduction of a new energy formula by Wilson and Pavlev
[10], where all coefficients were replaced by a single γ. This
greatly simplified the initialization of the neural network,
which needs to select "magic" values for a large number of
input parameters (constraint coefficients, neuron weights),
because the initial configuration significantly affected how
the network would develop further, whether it would not fall
into a local minimum, or become infinitely oscillatory
between two States. A follower of Wilson and Pavlev was
Lach [14], who saw in the Hopfield network energy function a
similarity with the Lagrange function. He was the first to
compare the results of his experimental studies not only with
their predecessors, but also with completely different
algorithms for solving the same problem, and the results of the
comparison spoke in favor of Lach.
The next step in improving the Hopfield network was its
hybridization with a metaheuristic algorithm – the annealing
method. Thus, the Boltzmann machine, the Cauchy machine,
and a hybrid of these two methods appeared [11]. In General,
according to the author of the article [10], the hybridization of
neural networks with metaheuristic algorithms is one of the
two promising directions for the development of methods
based on neural METAS in the field of CSP problem solving.
The second promising direction is the search for alternative
approaches in the field of neural networks, i.e. the use of other
types of networks to solve CSP, or the development of other
models for designing CSP tasks based on neural networks of
EGE.
The first really serious descendant of the Hopfield network
was the GDS network, which was designed to solve the
problem of scheduling the Hubble telescope schedule [8]. And
its logical extensions – Genet [6] and Fuzzy GENET [20]
algorithms-became the first attempt to apply the Hopfield
network principle to solving the FCSP problem.

REFERENCES
1. Agrawal, D., Trandel, G., Dynamics of policy adoption

with state dependence. Regional Science and Urban
Economics, 79, 2019, p.103471.
https://doi.org/10.1016/j.regsciurbeco.2019.103471

2. Cheng, Y., Ma, H., China Sports Lottery System
Structure Legal Regulation Improvement. DEStech
Transactions on Social Science, Education and Human
Science, 2018.

3. Dorohykh V. M., Administrative and legal regulation
of gambling business in Ukraine. Extended abstract of
candidate’s thesis, 2004.

Anatolii Balanda et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(4), July – August 2020, 4724 – 4728

4728

4. Gataker T., The Nature and Uses of Lotteries. Review
by: Peter Stone History of Political Thought Vol. 34, No.
1, 2013, pp. 172-175.

5. Getmantsev D.O. (2008) Hazart game in Ukraine and
abroad]. SEEM Print

6. Huang, Y., Wen, Q., Auction-lottery hybrid
mechanisms: structural model and empirical analysis.
International Economic Review, 60(1), 2018,
pp.355-385.

7. Kovtun E. V., Gambling in Russia: law regulation.
Yuridicheskiy centr Press, 2005.

8. Lyskov M. O., Public administration of lottery sphere.
Doctor’s thesis, 2017.

9. Osyka S. G., State regulation of global gambling
industry. K.I.S., 2011.

10. Parra, Carlos, Capital Mobility and Regulation
Frictions: Evidence from U.S. Lottery Winners, 2018.

11. Petrychko N. O., Illegal gambling: criminal-law and
criminological research. Candidate’s thesis, 2010.

12. Pinyaga R. O., Investigation of crimes related to
gambling]. Extended abstract of candidate’s thesis,
2015.

13. Pohoretskyi M. A., Toporetska Z. M., Gambling:
history and legal regulation. Dakor, 2014.

14. Pohoretskyi M. A., Toporetska Z. M., Investigation of
gambling business: procedural and forensic
principles. Alerta, 2015.

15. Pohoretskyi M. A., Vakulyk A. O., Serhieieva D. B.,
Investigation of Economic Crimes. Dakor, 2015.

16. Rugh Blair, Banking and Lotteries. This Week's
TriComply Newsletter Article, 2012.

17. Sevostyanov R. A., Problems of criminal liability for
the organization and maintenance of illegal gambling.
Extended abstract of candidate’s thesis, 2009.

18. Vysotska V. V., Conduction of gambling business:
criminal and legal analysis of the crime. Extended
abstract of candidate’s thesis, 2016.

19. Bhardwaj, B. K. (2019). A critically review of data
mining segment: A new perspective. International
Journal of Advanced Trends in Computer Science and
Engineering, 8(6), 2984–2987.
https://doi.org/10.30534/ijatcse/2019/50862019

20. Bhat, A. H., & Balachandra Achar, H. V. (2019). Dual
parametric stabilization of interference and
throughput in wireless sensor network-optical
communication. International Journal of Advanced
Trends in Computer Science and Engineering, 8(5),
1937–1945.
https://doi.org/10.30534/ijatcse/2019/18852019

21. Bindumadhavi, G., Kumar, V. V, & Sasidhar, K. (2019).
A new frame work for content based image retrieval
based on rule based motifs on full texton images.
International Journal of Advanced Trends in Computer
Science and Engineering, 8(4), 1083–1098.
https://doi.org/10.30534/ijatcse/2019/15842019

