
     Rostam Salleh  et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6), 2019, 514 - 518 

514 
 

 

        A Stochastic Approach in Determining Fire Size and Classification in Fire Risk 
Analysis and Monitoring 

 
Rostam Salleh1 

1Industrial Automation Section 
Universiti Kuala Lumpur Malaysia France Institute 

43560 Bandar Baru Bangi. 
rostam@ 

2 Sallehudin M.Haris /  3 Rizauddin Ramli 
Department of Mechanical and Materials Engineering 

Faculty of Engineering & Built Environment 
Universiti Kebangsaan Malaysia 

43600 Bangi, Selangor Darul Ehsan, Malaysia. 
sallehuddinmh@ukm.edu.my  /  rizauddin@ukm.edu.my 

 
 
 

 
ABSTRACT   
 
This paper proposes to use the stochastic approach in 
evaluating the risk of fire incidents. The proposed 
methodology aims to incorporate the effect of uncertainty into 
the analysis which might produce a better overall assessment 
of the risk of fires. To estimate the probability of the risk of 
fire incidents, the following stochastic variables are used: 
humidity (H), lux or light (L), temperature (T), and pressure 
(P). These variables are then represented with probability 
distribution curves. In this analysis, different curves for 
frequency of release, different fire diameter sizes and different 
leak sizes are also used. To obtain the fire risk as a probability 
distribution, a Monte Carlo simulation using Minitab analysis 
was performed. Finally, in order to estimate the probability of 
satisfying the risk tolerance criterion, the fire risk distribution 
curve obtained via the Monte Carlo simulation. 
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1. INTRODUCTION 
The Director-General of the Malaysian Fire and Rescue 
Department (FRD) has been reported to have said that fires 
throughout Malaysia in the year 2015 have caused losses 
amounting to an assessed value of RM 4.4 billion. According 
to him, the number of deaths increased by 10 percent, from 
139 in 2014 to 153 cases in 2015. Johor recorded the highest 
number of casualties and damage caused by fires involving 11 
deaths, 50 injuries, and an estimated loss of RM 925, 221.25. 
These statistics reveal that much more needs to be done to 
reduce the incidence of fire, which in turn will reduce and 
prevent the loss of life and property. 
 

Structural fire analysis has been highly reliant on prescriptive 
rules in traditional codes. Despite their relatively simple 
implementation, these codes are rigid and they usually lead to 
expensive designs. To address the effects of uncertainty in 
engineering designs, a probabilistic approach has been 
provided as a rational framework, and this has been gradually 
incorporated in performance-based design guidelines [1]. In 
the quantitative structure-fire risk assessment of 
compartments, studies have been devoted to the development 
of stochastic models, experimental in investigations and 
statistical characterization of parameter, the model focuses on 
uncertainly of coefficients associated with burning rate, wall 
heat transfer processes and predicts the fire growth in a 
compartment for fire risk analysis[6]. Brandyberry and 
Apostolakis studied the ignition risk of consumer product in a 
building based on heat transfer mechanisms[3]. The study 
accounted for uncertainties in the ignition source (e.g.,surface 
area, amount of radiated heat) and in the target scenario 
(e.g.,density heat). The probability of ignition of a target 
object for a given exposure was obtained using a direct Monte 
Carlo method[4]. 
 
2. EXPERIMENT METHOD 
 
The physical quantities under observation are given as: 
 
 A. Light: Light is an electromagnetic radiation which is 
visible to human eye. The light incidence over a surface is 
measured by luminance. Common Units: Lux (Lumen/m2), 
Candela (Lumen/Solid Angle) 
B. Voltage: The electric potential difference between two 
points is called electric potential difference. Common Units: 
Volts (V), Joule/Coulomb. 
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C. Temperature: It is a measure of Heat radiations. Common 
Units: Fahrenheit (F), Degree Celsius (o)C), Kelvin (K) 
D. Relative Humidity: The humidity is measured by three 
ways as Absolute, Relative and Specific humidity.  
E. Acceleration: The rate of change of velocity with respect to 
time of an object is called acceleration. Common Unit: meter/ 
sec2. 
 
Crossbow Wireless Sensor Nodes in Figure 1 (popularly 
known as MICAz motes) with Gateway and Local Monitoring 
Server was deployed on a table inside the lab Figure 2. The 
amount of water vapor in the free air is then measured. 
Relative humidity is mostly used in many practical 
applications such as weather forecasting[18]. Common 
Units:[14]The relative humidity is usually expressed by 
percentage %. 
 

                          
 
 
 

                            
                             Figure 1 :  WSN  Meca2 Sensor 
    
From the experiment methods, wireless sensor networks can 
be deployed for online monitoring of Voltage, Humidity, 
Temperature, Pressure, Light, and Acceleration inside a 
building as shown in Figure 4.The Crossbow MICAz motes 
are equipped with temperature, light, humidity, acceleration 
and pressure measurement sensors operating at 2.4 GHz 
frequency[15]. These sensor node s are supplied with a 3 volts 
battery supply (two 1.5 volts, 500mAh, pencil size cells, AA 
ratings)[5]. 
 

                      
 
               Figure 2 :  WSN  Meca2 Sensor Gateway 

           
 
                 Figure 3 :  Stage of Fire based on number of candle 
 

                   

                                           
 
                          

                                      
         
               Figure 4 : Data Collection WSN  Meca2 Sensor 
 
Generally we cannot distinguish changes in the environment 
on the size of 1 to 2 lit candles in terms of brightness, 
temperature, and voltage humidity Figure 3. By using sensor 
techniques and Meca2 UVtron sensor can detect fire in places 
and there can measure the size of the fire-giving to the risk of 
fire[19]. Uvtron sensors used to detect the existence of fire 
even with a small splash[6]. Meca2 sensor is able to measure 
the four variables in the environment, such as temperature, 
humidity, brightness, humidity temperature, pressure and 
voltage. The data obtained are collected for testing. Testing 
data made using statistical stochastics methods[7].  
 
3. RESULTS AND DISCUSSION 
 
The experiment used of several methods to distinguish the size 
of fire measuring the variables such as temperature, light(lux), 
humidity and pressure bar. All data are processed using 
stochastic data analysis method of statistic technique[8]. The 
difference for of the distribution curve be able to distinguish 
for the category type and size of the fire. Some categories are 
divided into surrounding during the no fire (L0), small candle 
flame (L1) and (L2) fire within 1.2 meter. 
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There are four (4) variable data retrieved through the readings 
such as Sensor Temperature (T), Light (L), Humidity (H), and 
Pressure (P). The experiments yielded four (4) different data 
distribution. However, the Humidity (H) data reading provides 
the most significant value because it can distinguish the graph 
curve in three different circumstances. This distribution data 
can also find the value of the probability density function 
(PDF) and the cumulative density function (CDF)[9]. 
Indirectly, the given parameters can build a method to 
distinguish the parameter values of three fire types based on 
the intensity level of the fire. Figure 5 shows the graph 
Density curve for humidity PDF and CDF. From the graph of 
distribution, it is possible to distinguish the size of fire in 
accordance with L0, L1 and L2. The CDF curve in Figure 3 
clearly determines the important range to evaluate the 
differences in the sizes of the fire [10]. Thus, it is easier to 
develop a more accurate algorithm for different fire sizes [11].  
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                 Figure 5: Humidity Probability Density Function 
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                 Figure 6: Humidity Cumulative Distribution Function 
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                              Figure 7 : Summary of Humidity L1 
 

  Table 1: A List of random variable N=99 Humidity in fire models 
 
A List of random variable N=99 Humidity  in fire size models 
 

Variable Distribution Mean Std Deviation Kurtosis Skrew ness Units 

Humd L0  Normal 0.2007 0.2302 -2.004 0.263 c 
Humd L1  Normal  54.964    0.877  6.832  2.497 c 

Humd L2  Normal  69.278   1.733  3.567 2.027 c 

Humd L3  Normal 71.233 1.823 3.888 2.018 c 
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Figure 8: Monte Carlo Probability Density Function 
 

Based on experimental fire data was taken only within a few 
minutes and data samples can be obtained 100 times. The 
candles burn factor could not be measured in the time period. 
Similarly, the factors caused the invoice distribution around as 
wind and so on. The Monte Carlo method is used to add data 
such as sampling was increased to up 10,000 times[12]. The 
reading shows a more accurate output with strengthen and 
support again to find the true value. Monte Carlo Probability 
Function PDF shown in  Figure 8. 
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                 Figure 9: Summary for Monte Carlo Humidity L1 
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Table 2: A List of random variable N=99 Humidity in fire models 
 

A list of random variables N=10k  Humidity in fire size models  

Variable Distribution Mean Std Deviation Kurtosis Skrew ness Units 

Humd L0  Normal 0.2048 0.2306 0.0221 0.0043   c 
Humd L1  Normal  54.981    0.879 -0.01257 -0.01871   c 

Humd L2  Normal  69.269    1.758 -0.016 -0.0336   c 

Humd L3  Normal 71.342    1.834 -0.009  -0.0252   c 

       

       

The distribution Minitab output from the results in figure 9 
was used to generate 10,000 random sample of outcome for 
each control strategies as shown in Table 2.  
The dataset output that was generate indicates that the 
distribution is normally distributed with mean  58.981with a 
standard deviation of 0.879. The AD test statistic confirms the 
results with A-squared value of 0.35 and P-value of 
0.466(P>0.005). On average , the smallest value was 51.795 
and the largest value was 58.163, thus giving the range of 
109.98 .The transmitted variation results in a standard 
deviation 0.879, which is the estimated value for standard 
uncertainly[13]. 
Both the mean and standard deviations are within the 95% 
confident level of estimation , thus giving a probability 
coverage of 95% with a low endpoint of 54.964 and a high 
endpoint of 54.998 for mean. Similarly, the 95% standard 
deviation has a low end point of 0.867 and high endpoint of 
0.892. 
Box plot diagram is used to show a snapshot picture of overall 
pattern of disturbance with respect to chasis twisted. The dark 
overlapping dotted line indicates the extend of disturbance, if a 
very large sample from normal distribution is generated 10000 
samples[14]. The magnitude of disturbance is given by 
maximum = 58.163 and minimum 51.795. 
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Figure 10: Monte Carlo Cumulative Distribution Function 

 
   The distribution of fire sizes and fire growth parameter 

        values observed were both reasonably well approximated 
        by the log-normal distribution. 
 

From CDF diagram of Figure 10: Cumulative Distribution 
Function finding  the Humidity can be read by Matlab 
simulation. For the L0 = 51, L1 = 51 <h <56 and L2 = 

<56 readings can be facilitated to design algorithm for 
variable parameters Humidity.  

    Algorithm 1: Classification of fire distribution( Humidity) 
 

1. Read humidity value, h 
2. If  h < 51 then is level (L0) 
3. else if 51 < h < 56 then is level (L1) 
4. else if 56> is level (L2) 
5. output display level: 

 

22 23 24 25 26 27 28
0

0.5

1

1.5

2

2.5

3

Humidity Temp

D
en

si
ty

Humidty Temp Probability Density Function

 

 
humdL0 data
  fit 0
humdL1 data
  fit 2
humdL2 data
  fit 3

  
 
 
   Figure 11:  Summary of Monte Carlo of Humidity Temp L1 

 
PDF diagram of Figure 11: Probability Density Function find 
the Humidity can be read by Matlab simulation. For the L0 = 
23, L1 = 23 <h <26 and L2 = >26 readings can be facilitated to 
design algorithm for variable parameters Humidity Temp[14]. 
 
Algorithm 2:  Classification of fire distribution ( Humidity 
Temp) 

 
1. Read Hump Temp value, h 
2. If  h < 24 then is level (L0) 
3. else if 24 < h < 26 then is level (L1) 
4. else if 26> is level (L2) 
5. output display level: 

 

4. CONCLUSION 

This paper presents a stochastics analysis of the compartment 
fire using graphical minitab simulation. In addition to 
reliability analysis, the method also allow efficient system 
analysis using samples conditional on failure. Based on the 
experiments that have been carried out different types of fires 
can be made by making a few methods of engineering analysis 
sthochastic where type of distribution sketched by fire as a 
small fire, big fire, and from the experiments to determine the 
risk of a fire that could endanger consumers. Stochastic 
method successfully distinguishes type of fire. The effects of 
the experiment we can determine the impact of these risks. If 
we can measure as little as 1 candle fires, of course, a huge 
fire-giving on fire risk can be measured and identified. From 4 
variable data taken shows two variables such as temperature 
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data. Humidity is very significant in this study. Temperature 
data and pressure distribution function shows a significant 
effect may be due to others factors, including wind, 
environment and others. Through this study fires can be 
avoided and consequently reduce damage caused by fire 
including loss of life. From the graph plots could easily give 
the parameters and algorithm development. 
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