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 
ABSTRACT 
 
The frequency chaos game representation (FCGR) is a simple 
yet powerful visualization method of DNA sequences. It 
provides the possibility of representing genomes by images, 
revealing in such a way different fractal structures. In this 
paper, we perform a fractal and multifractal analysis of 
Human chromosome 22 and some complete genomes based 
on the FGCR image. We used the fractal dimension (FD) and 
the multifractality degree (ΔDq) to characterize and 
distinguish genomes. First, we construct the FCGR image 
with different orders of human chromosome 22. Next, we 
calculate the fractal dimension, the general dimension 
spectrum and the multifractal spectrum of each FCGR image 
using the box-counting method. Then, we examine the FCGR 
image fractal and multifractal characteristics impact on 
highlighting the existence of repetitive DNA sequences in 
human chromosome 22.   We also observe the relationship 
between fractality and multifractality.  After that, we apply 
this study to bacteria completes genomes and C.elegans 
chromosome I. The obtained results show that the multifractal 
spectra of all organisms studied are multifractal-like and 
chromosome 22 strong multifractality proves its richness of 
repetitive sequences. Also, we observed that with the 
increasing the FCGR order value, the multifractality grows 
and the fractal dimension lessens. Finally, by assigning to 
each sequence a point in two-dimensional space (FD, ΔDq), 
we obtained three classes of genomes. We can easily 
distinguish the human chromosome 22 from other genomes 
and Bacteria are almost close in the spaces (FD, ΔDq). 
 
Keywords:Box-counting methode, DNA sequence, Frequency 
Chaos game representation, Fractal images, Multifractal analysis 
 
1. INTRODUCTION 
 
The genetic information of all living is encoded in a 
macromolecule called DNA. This DNA by its appearance, its 
composition and its complexity, contains preciously the 

 
 

elementary details of each organism. Microscopically, the 
DNA reveals chains of characters constituted by the bases 
adenine (A), thymine (T), cytosine (C) and guanine (G) [1].   
DNA molecule structure is described by the double helix. This 
helix folds to fit into the nucleus of an organism cell, which is 
only about a hundredth of a millimetre in diameter. So it has a 
very particular fractal characteristic which is to have an 
infinite length, whereas it is contained only in surface a 
bounded and reduced. This helix particularity is shown that 
DNA is a fractal [2]. 
Fractal analysis is a nontraditional mathematical approach for 
studying objects which irregularity exclude fromEuclidean 
geometry [3], [4]. It has proven to be a useful tool in the 
analysis of medical signals [5] like electrocardiogram (ECG) 
[6] and electroencephalogram (EEG) [7] signals and DNA 
sequence [8]. 
The DNA sequences fractality is studied in the long-distance 
correlation [2], [9], [10]. In fact, the appearance of a 
nucleotide in a specific position depends on the previous 
nucleotides and the appearance of a small nucleotide segment 
depends on large-scale segments. Such long-range correlation 
is directly related to the power-law and fractal structure of the 
DNA sequence [11]. However, due to the DNA complexity, 
one exponent may not be enough for its characterization. The 
multifractal formalism allows using more exponents [12]. It is 
a powerful tool in both the theory and practice to describe the 
spatial heterogeneity of the fractal object systematically [13]. 
In this case, the analysis object is divided into several fractal 
sets, each generating a fractal dimension that is then translated 
into a continuous exponents spectrum. 

Multifractal analysis has been useful in studying different 
problems at DNA sequence [14], [15]. It has been used to 
reconstruct phylogeny from mitochondria DNA [16] to study 
the proteins [17] and to distinguish coding and non-coding 
sequences in DNA sequences [18]. Also, this formalism was 
applied to study human chromosomes [19] and the C. elegans 
genome chromosomes [20] by using the chaos game 
representation (CGR). The (CGR) is a genomic sequence 
mapping.  It has been proposed by Jeffrey [21]. The frequency 
chaos game representation (FCGR) is a nucleotide frequency 
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matrix extracted from the CGR [22], [23]. It's a way to 
represent the genome in a single image. This image shows the 
DNA fractal structure. In this work, we used the FCGR image 
to perform a fractal and multifractal analysis of human 
chromosome 22 and some complete genomes. 
We choose to study chromosome 22 because it has a high 
gene density and it is repeat sequences rich [24], [25]. We 
studied also the possibility to distinguish genomes and 
classifying bacterias using fractal dimension and 
multifractality degree. 
The paper is organized as follows. In section 2, we give a brief 
overview of the fractal dimension and multifractal analysis. In 
section 3, we present the image construction FCGR and we 
describe our methodology for the fractal and multifractal 
analysis. The results and discussions of the analysis are 
presented in section 4. Finally, section 5 gives the conclusion 
of this paper. 
 
2. FRACTAL AND MULTIFRACTAL THEORY 
 
2.1 Fractal dimension 
 
The fractal dimension (FD) is a useful way for characterizing 
the self-similarity of an irregular fractal object. Indeed, it is a 
parameter which quantifies the complexity and the 
irregularity. 
  A rigorous mathematical definition of fractal dimension has 
been introduced by Hausdorff [24]–[26]. For any subset S of 
the n-dimensional Euclidean space, it is covered by a { ௜ܵ}, 
each of which has a diameter ݀௜=diam(ܨ௜)< ϱ, ϱϵ[0,+∞[. 
The Hausdorff measure ܪఈ(ܵ) is is given by : 

 
ఈܪ = 	 lim

ద→଴
inf
{ௌ೔}

෍݀௜ఈ
௜

, whichαϵ[0, +∞[, 							(1) 

and thus, the fractal dimension FD can be written as: 
 

FD= (ܵ)Hα/ߙ}݌ݑݏ = ∞} = (ܵ)Hα/ߙ}݂݊݅ = 0	}								(2) 
 
The FD is a real number whose value depends on the 
property of the object. It is a non-integer, less than the space 
dimension (SD) and greater than the topological dimension 
(TD) [3],[25]. 
Many methods exist to compute the FD like box-counting 
methods, fractional Brownian motion (fBm) methods and 
area measurement methods [26]. Each method estimates this 
dimension by using a different algorithm. The box-counting 
method is the most popular and suitable method for the object 
FD determination [28], [29]. Indeed, its simple and easy to 
develop. It consists on covering a binary image with boxes of 
size r and counting the boxes number ௕ܰ௢௫(ݎ)that contain 
pixels [30], [31]. This is repeated for different r size boxes. 
For a fractal image, the number of boxes ௕ܰ௢௫(ݎ) and r have 
the following power-law relationship : 
 

Nbox(r) ~  rFD (3) 
 
By using the equation (1), the FD is obtained by: 
 

ܦܨ																							 = 	 lim௥→ାஶ
୪୭୥	(ே್೚ೣ(௥))

୪୭୥	(௥)
                         (4) 

A log–log plot of ௕ܰ௢௫(ݎ) against r then yields a line of slope 
equal to FD. The fractal dimension describes fractals with a 
single scaling factor [12], [13], [32]. However, when the 
fractal object is more complex and several scaling factors are 
present, a more detailed description is required. In this case, 
the multifractal formalism is better suitable to use. 

2.2 The multifractal theory 
A multifractal object is a system of homogeneous fractal 
structure superposition that only one fractal dimension is 
insufficient to describe it. It can be analyzed by an 
interdependent fractal dimensions function or spectrum [33]. 
They exist many methods to approximate the multifractals 
spectrums. They are divided into two classes: the methods 
said box-counting and the methods based on wavelets [26]. 
In this study, we decided to use the box-counting  method 
for our multifractal analysis [34] like for fractal analysis. In 
the multifractal analysis, The object is covered by a boxes 
grid ܤ௜(ݎ)	of normalized size r and the number of pixels mi 
contained in each box is counted. Then the measurement of 
the ith box covering the object is defined as follows: 
 

௜ܲ(ݎ) = ௠೔
ெ

(5) 
Where M is the total number of image pixels [23]. A-weighted 
factor (mass exponent, qϵ] +∞, -∞ [) is applied to datasets 
extracted from the object giving more or less, importance to 
the high or low mass density areas. Then the partition function 
can be calculated by the following equation : 
 

,ݍ)ܺ (ݎ = ∑ ( ௜ܲ(ݎ))௤ே(௥)
௜ୀଵ (6) 

 
where N(r) is the number of boxes covering the image. For 
a multifractal image this function has the following scaling 
properties: 

,ݍ)ܺ  rτ(q)                          (7)	~	(ݎ
 
Where τ(q) the correlation exponent. For each q, τ(q) may 
be obtained as the slope of a log-log ܺ(ݍ,  against r. The (ݎ
τ(q) curve is a straight line for the monofractal object and it is 
nonlinear for the multifractal object. A generalized dimension 
function Dq is then derived as : 

൞
(ݍ)ܦ = ఛ(௤)

௤ିଵ
				q ≠ 1	

(1)ܦ =
∑ ௉೔(௥)௟௢௚௉೔(௥)ಿ(ೝ)
೔సభ

୪୭୥	(௥)
		q = 1

                  (8) 

The generalized dimension spectrum Dq is a monotonically 
decreasing function, with horizontal asymptotes at 
௤೘ೌೣܦ = lim

௤→ାஶ
௤೘೔೙ܦ ௤ andܦ = lim

௤→ିஶ
 ௤. Their values can beܦ

used to describe the heterogeneity, if ܦ௤೘ೌೣ≠ ܦ௤೘೔೙  the fractal 
is heterogeneous (multifractal), and homogeneous otherwise. 
The multifractality degree ΔDq is defined as [19], [20], [23]: 

(ݍ)ܦ߂ 	= 	 ௤೘ೌೣܦ|                                              ௤೘೔೙|                (9)ܦ	−
We use ΔDq to observe how the values of D(q) change 
along the spectrum. It can be regarded as a direct measure 
of the multifractality complexity degree [19], [20]. It shows 
the length to which the fractal exponent extent in the series, 
being an indicator of the signal structure richness. If ΔDq is 
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high, the multifractal spectrum is rich in information and the 
study object is very irregular, for a small ΔDq, the resulting 
dimension spectrum is poor in information. 
From the correlation exponent τ(q),  we can obtain the 
multifractal singularity spectrum ݂(ߙ). It is a way to study 
the fractal dimensions (Holder exponents) distribution in a 
multifractal object [20], [23], [34]. It provides information 
about the structure scaling properties [19], [20]. The	݂(ߙ) is 
obtained as follows: 
 

(ߙ)݂ 	= (ݍ)ߙݍ	 	−  (10)                       (ݍ)߬	
 
where (ݍ)ߙ = ௗఛ(௤)

ௗ௤
characterizes the singularity strength in 

the ith area. The ݂(ߙ)	 describes the bigger probability subset 
property with smaller α. With bigger α, ݂(ߙ)		describes a 
smaller probability subset property. The spectrum ݂(ߙ)	is 
a single-humped function for a multifractal object. For a 
monofractal signal or image, the spectrum is reduced to a 
point. 
 
3.  MATERIALS AND METHODS 
 
3.1 Materials: Coding DNA by the FCGR image 
 
The input sequence (collected from the NCBI database 
[38]) is a long character string made up of four nucleotides: 
A, C, G and T. To be able to apply the fractal and multifractal 
analysis one must convert the sequence into an image. In 
this work, we choose to use the Frequency Chaos Game 
Representation (FCGR) [21], [22], [23]. In table I, we present 
the list of the genomes considered for analysis, which are 
Homo sapiens chromosome 22, C.elegans chromosome I, 
three archaea and seven bacteria. 

 
Table 1: Thegenomesdescriptions 

Species Category  Data lenght 
Homo sapies chromosome22  Human 31264301 
C.elegans chromosome I  Nematode 15072434 
Agrobacterium tumefaciens  Bacteria 6083998 
Achromobacter  Bacteria 5876049 
Bacillus Cereus Bacteria 5221581 
Lactobacillus Bacteria  1026169 
Bordetella bronchiseptica Bacteria 5191712 
Borrelia Garinii Bacteria 904246 
Eubacterium Bacteria 2403485 
Pyrococcus horikoshii Archaebacteria 1738505 
Archaeoglobus fulgidus Archaebacteria 2178400 
Aeropyrum pernix Archaebacteria 1669696 

 
The FCGR is a frequency matrix extracted of the chaos 
game representation (CGR) of genomic sequence [21], [22]. 
Using the FCGR, a given genomic sequence can be displayed 
as a square single image form in which each pixel intensity 
is associated with a specific word frequency (figure 1). The 
grayscale indicates the relative frequency of each word: the 
darker the pixel, the greater the frequency. As an illustrative 
example of FCGR procedure, we consider the sequence of 
Bacillus Cereus bacteria which we encode by FCGR2. 
 
 

 
Figure 1: Illustration of the FCGR2 process to represent the 

sequence ofBacillus Cereus bacteria 
 
The genomic signatures obtained by FCGR8 of allgenomes 
described in table 1 are shown in figure 2. 

Figure 2: Genomic signatures obtained by FCGR8 from bacteria: (a) 
Homosapies chromosome 22, (b) C.elegans chromosome I, 

(c) Agrobacteriumtumefaciens, (d) Achromobacter, 
(e) BacillusCereus, (f) Lactobacillus, (g)Bordetella bronchiseptica, 

(h) Borrelia Garinii, (i) Eubacterium, (j) Pyrococcushorikoshii, 
(k) Archaeoglobus fulgidus, (l) Aeropyrum pernix 
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As shown in figures 2, all genomic signatures images reveal 
different fractal structures. All FCGR images have a structure 
specific to the study genomes. In this work, we applied a 
fractaland multifractal analysis on these FCGR images. These 
twoanalyzes allow us to characterize data that will be useful 
forclassifying the images. 
 
3.2Methods 
The goal of this paper is not only the fractal and multifractal 
analysis of genomes, but also, we want to examine the 
relationship between the fractality and multifractality and to 
provethat this analysis can be employed to distinguish and 
classifygenomes. To this end, we used the box-counting 
method fofractal and multifractal analysis of genome FCGR 
image.The box-counting method algorithms for fractal 
dimension andmultifractal spectrum calculation are given as 
follows: 
Fractal dimension calculation algorithm : 
 

1) Generate an FCGRi image to represent each genome 
(i is the scale of the FCGR image) 

2) Binarization of FCGRi image 
3) Superpose a cubic mesh with ݎ =2k on the surface of 

the image with k ϵ [0,11] 
4) Calculate ௕ܰ௢௫(ݎ), which is the number of all the 

cubes containing at least one pixel of the image 
5) The steps 3 and 4 are repeated until r=211 
6) The FD is given directly by the slope of the graph 

(log(r), log( ௕ܰ௢௫(ݎ))) 
 

Multifractal spectrums calculation algorithm: 
 

1) Generate an FCGRi image to represent each genome 
(i is the scale of the FCGR image) 

2) Divide the FCGRi to N boxes with N=2i×2i 
3) Calculate the partition function  ܺ(ݍ) with  
q ϵ [-40,40] 
4) Calulate ߬(ݍ),(ݍ)ܦ	,ΔDq and f(α) for all q 
5) Represent  ߬(ݍ),(ݍ)ܦand  f(α) spectrums   

Our methodology for fractal and multifractal analysis of 
all genomic images is composed of four phases as shown in 
figure 3.  

Figure 3:Fractal and multifractal analysis methodology flowchart 

First, we collect the genomic sequences from the NCBI 
database. Second, we convert the sequences to the image 
by using the FCGR coding. Third, we perform the fractal and 
multifractal analysis by using the box-counting method and 
we obtain the FD and _Dq. Finally, we use the results to 
compare fractality and multifractality, distinguish and classify 
the studied genomes. 
 
4. RESULT AND DISCUSSION 

 
In this section, we study the fractality and multifractality 

of the genomes described in table 1. First, we examine 
theFCGR coding impact on highlighting these characteristics 
in 
the Homosapies chromosome 22 and we also observe the 
relationship between fractality and multifractality. Next, we 
apply this study to C.elegans genome chromosome I and 
bacteria, then, we compare his results whit the human 
chromosome 22. Finally, we attribute to each genome a point 
in two dimensional space (FD, ΔDq) and we evaluate the 
possibility of employed this analysis to distinguish and 
classify genomes. 
 
4.1 Fractal and multifractal analysis of the Homo 
sapienschromosome 22: 
Before calculating the Homo sapiens chromosome 22fractal 
dimensions, we test our program performance by calculating 
the dimension of two deterministic fractals: the Koch 
snowflake and the Sierpinski triangle (figure 4). 

Figure 4: The Koch snow flake and the Sierpinski triangle 
 
In the table 2, we summarize the FDcalculated values, the FD 
theoretical  value and the error of calculation. 
 

Table 2: Theboxcountingresultsthekochsnowflakeand 
thesierpinskitringle 

 
The results illustrated in Tables 2 show that our programme 
gives good results for fractal dimension estimation. 
We applied the box-counting method on each FCGR images 
of human chromosome 22. We summarized the fractal 
dimension for all FCGR images in Table 3. 
 
 
 
 

 FD calculated Theoretical FD error 
Koch snowflake 1,2572 1, 2619 0,0047 
Sierpinski triangle 1,5797 1,5850 0,0053 
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Table 3: The fractal dimension of chromosome 22 FCGR 

images 

 
The fractal dimensions calculated for the different FCGR 
images are between the topological dimension (TD = 1) 
and the space dimension (SD = 2), so all FCGR images 
of human chromosomes 22 are fractal [3], [4]. From the 
table 3, we observed that the FD minimum value is 1.4569 
for FCGR8 image. Its maximum value is 1.7957 for the 
FCGR1 image, which proves that the FCGR1 has a strong 
momofracatlity compared to the other FCGR images. 
 
For multifractal analysis of human chromosomes 22, the 
general dimension spectrum D(q), the multifractal spectrum 
 and the qth mass exponent τ(q) of each FCGR images(ߙ)݂
chromosome 22 are calculated and represented respectevly in 
figure 5, figure 6 and figure 7. We summarize in table 4 the 
D(q) result calculation with qϵ]-40, 40[. 

 
Table 4: MultifractalparametresDq by FCGR images 

chromosome 22 

 
 
 
 
From the table 4, we observe that the D(q) value for all 
data sets depend on q values. The ΔDq minimum value is 
0.4436 for the FCGR1 image. Its maximum value is 1.7068 
for the FCGR8 image. 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 5:The general dimension spectrum D(q) 

Figure 6:Multifractal spectrum݂(ߙ) 
 

 
Figure 7:The qth mass exponentτ(q) 
 
According to the figure 5, the figure 6 and the figure 7 
we observe that : The D(q) values for all FCGR images, 

Image  FD 
FCGR1 1.7957 
FCGR2 1.7613 
FCGR3 1.7545 
FCGR4 1.7292 
FCGR5 1.7289 
FCGR6 1.7223 
FCGR7 1.6775 
FCGR8 1.4569 

 D-40 D1 D2 D40 ΔDq 

FCGR1 2.2195 1.9819 1.9610 1.7760 0.4436 
FCGR2 2.6953  1.9582 1.9319 1.7422 0.9531 
FCGR3 2.8916  1.9720 1.9553 1.8711 1.0205 
FCGR4 2.7234  1.9492 1.9159 1.6233 1.1000 
FCGR5 2.7679  1.9414 1.8996 1.5028 1.2651 
FCGR6 2.7989  1.9331 1.8790 1.3813 1.4175 
FCGR7 2.8150  1.9230 1.8455 1.2528 1.5622 
FCGR8 2.8461  1.9133 1.7907 1.1393 1.7068 
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decreasing with increasing q values and this evident in 
multifractal nature. The D(q) curve of FCGR1 is almost 
a horizontal line. All the ݂(ߙ)spectra present the typical 
single-humped shape, that characterizes multifractal signals. 
The differences among the spectra ݂(ߙ)  FCGR8 image 
spectrum ݂(ߙ) is larger than the other FCGRimages 
spectrums. There is a difference between the τ(q)curves of 
FCGR1 and FCGR8. The FCGR8 image τ(q)curve has the most 
nonlinear form than other FCGR imagesτ(q) curves. 
From these results, we can deduce that all FCGR images are 
multifractal images. Also, these results prove that the FCGR8 
image has a strong multifractality compared to the other 
FCGR images while image FCGR1 has a less multifractality. 
 
To study the relationship between fractality and 
multifractality,We represent the fractal dimension and the 
multifractalitydegree for each image in the figure 8: 

Figure 8:The ΔD(q) and the FD for each FCGR image Chromosome 
22 
 
According to figure 7, the curve which corresponds to 
the fractal dimension decreases when the FCGR images 
scale increases, unlike the multifractality degree curve. This 
shows that when the FCGR order k increases, the number 
of repeated sequences of size k increases and new fractal 
structures appearing. This explains the increased complexity 
and heterogeneity of the genomic signature. The FCGR 
image,therefore, becomes less monofractal and more 
multifractal. 
The chromosome 22 low fractal dimension shows that there 
is not just one type of repeating sequence but several. The 
FCGR8 image strong multifractality shows that the number 
of repetitive sequences of 8bp length is very large. Indeed the 
multifractality degree shows that several types of monofractal 
coexist in the same set. 
 
4.2Compare fractality and multifractality between 
genomes: 
In this section, we study the fractal and multifractal behaviour 
of each genome described in table 1 and we compare the 
fractality and multifractality between these genomes and 
Human Chromosome 22. We choose to usethe FCGR8image. 
The general dimensions spectrums D(q) and themultifractal 
spectrums ݂(ߙ)are calculated and representedrespectively in 

figure 9 and figure 10. We summarize in table 5,the ΔD(q) and 
the FD result calculation for all genomes. 
 

Table 5: MultifractaldegreeΔD(q) and FD for all 
genomes 

 
From the values of ΔDq and FD, it is seen that there exists 

a clear difference between the DNA sequences of all 
organismsconsidered. From table 5, we observe that the FD 
maximumvalue is 1.8075 for Lactobacillus. We also observed 
thatLactobacillus has a ΔDq minimum value 0.7864. Hence 
thisgenome has a strong monofractal nature. This result 
suggests astrong periodicity in the nucleotide sequences of 
this bacteria.This bacterium does not have many types of 
sequences repeatsof length 8. We observe also, that the  
C. elegans genomehas a small fractal dimension compared to 
bacteria exceptedEubacterium and Lactobacillus, but it is 
more multifractal thanthe archeobacteria. Human 
chromosome 22 has the ΔD(q)maximum value. This result 
suggests a high aperiodicity ofthe nucleotides along the 
chromosome 22 sequence. Indeed,the human genome is a 
very complex genome and it is repeatsequences rich. 
 

Figure 9:The general dimension spectrum D(q) of each genomes 
 
 
 
 
 
 

Species FD  ΔD 
Homo sapies chromosome 22 1.4569 1.7068 

C.elegans chromosome I 1.6163 1.3221 
Agrobacterium tumefaciens 1,7072 1,4207 

Achromobacter 1.7588 1.4147 
Bacillus Cereus 1.7634 1.2216 
Lactobacillus 1.8075 0.7864 

Bordetella bronchiseptica 1.7017 1.4333 
Borrelia Garinii 1.7250 1.1391 

Eubacterium 1.8008 0.9340 
Pyrococcus horikoshii 1.7875 0.9834 

Archaeoglobus fulgidus 1.7864 1.0107 
Aeropyrum pernix 1.7648 1.0461 
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Figure 10:Multifractal spectrum݂(ߙ)of each genomes 
 
 
From the figures 9 and 10 we observed that, the D(q) values 
of all genome, decreasing with increasing q values. Hence 
the D(q) spectra of all organisms are multifractal-like. Each 
genome has a very distinct D(q) and ݂(ߙ) curves. The 
spectrum (ߙ)݂ of bacteria except Eubacterium and 
Lactobacillusare larger than archaebacteria ݂(ߙ)spectrum. 
 
The fractal and multifractal analysis of each genome show 
that exists a difference between genome. The bacterias 
havestrong multifractality than the Archaebacteria except for 
theEubacterium and Lactobacillus, they have a strong 
monofractality.This shows that the Archaebacteria have a low 
density ofsequences repeats of different types. We can easily 
distinguishthe human chromosome 22 from other genomes. 
 
In order to more distinguish the genomes themselves 
we use two-dimensional points (FD, ΔD(q)) represented in 
figure 11. 

Figure 11:Distributions of two-dimensional points (FD, ΔD(q)) 
all genomesselected. 
 
 
From figure 11 it is clear that genomes roughly gather 
into three classes. The first one is for human chromosome 
22, the second is for C. elegans chromosome I and the last 
class is for bacteria and archaea. Using the distance between 
the points, one can obtain a classification of genomes. We can 

see also that all archaebacteria are grouped with each other. 
The Eubacterium is very closed to archaebacteria. Indeed, its 
genomic signature obtained by FCGR8 looks like that of the 
archaea Afulgidus (Figure 2). The Atumefaciens and 
Bordetellaare very close in the space (FD, ΔD(q)). The same 
thingis observed for the two Archea Afulgidus and 
Pyrococcus. Ingeneral, genomes that are close 
phylogenetically are almostclose in the space (FD, ΔD(q)). 
 

5. CONCLUSION 
Frequency Chaos Game Representation provides a powerful 
tool for visualizing fractal structures that derive from 
the repetition of some patterns in DNA sequences. In the 
present paper, we perform a fractal and multifractal analysis 
of human chromosome 22 and some bacteria based on FCGR 
images. The fractal dimension, the general dimension 
spectrumDq and the multifractal spectrum are calculated 
using the box-counting method. We have used the result to 
compare fractality and multifractality between the studied 
genomes and for examining the variation impact of FCGR 
images scales on the fractal dimension values and the 
multifractality degree.  
The results show the fractality decreases when the FCGR 
images scale k increases, unlike the multifractality, it 
increases when the FCGR images scale k increases. This 
shows that there exist many sequence repeats of length 8 of 
different types. Indeed, the multifractality degree shows that 
several types of monofractal coexist in the same set. Also, 
from FD andΔD(q) values we can conclude that human 
chromosome 22has a strong multifractality and it is repeat 
sequences rich.We prove also that the Archea have a strong 
monofractalitycompared to other bacteria. Moreover, the 
representation of all studied genomes in the two-dimension 
space (FD,ΔD(q)),show that the FD and ΔD(q) are useful and 
powerful toolsfor classification genomes. Indeed, genomes 
that are close phylogenetically are almost close in the space 
(FD,ΔD(q)) like archaebacteria. Finally, we will use this 
analysis in our futures works to classified the bacteria and 
study other genomes. 
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