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 
ABSTRACT 
 
Identification and classification of brain tumors play an 
incredibly significant role in patients 'medical diagnosis and 
treatment plans. MR Imaging modality is most preferable for 
Brain images due to no ionizing radiation and superior quality 
of the soft tissues of the Brain. The increasing quantity of 
magnetic imaging brain data and substantial challenges facing 
by traditional methods of using small data for image 
classification. Deep learning (DL) has become common in 
image classification problems in recent years and has become 
powerful. A deep neural network trained from scratch is 
proposed in this work to classify brain tumors in two publicly 
available datasets. The former is Brain image datasets 
collected from BRATS MRI brain datasets and other one is 
CE-MRI. The performance of the proposed Tumor Net 
(T-Net) is assessed with the state of art models and T-net 
performance is outstanding with an accuracy of 98% for 
BTDS-3 dataset and 99.3% for CE-MRI dataset. 
 
Key words: Brain tumors, Classification, CNN, Deep 
learning, MRI, Hyper Parameters. 
 
1. INTRODUCTION 
 
Brain tumors are cell growth that is abnormal and uncontrolled 
in the brain. The brain is surrounded by a hard core structure 
called the skull, which restricts the uncontrolled growth of 
cells in that region. The growth of abnormal cells may cause 
different functional problems in other organs of the body [1]. 
There are two groups of brain tumors that can be categorized 
as primary and secondary tumors. The primary tumors arise in 
their own brain tissues and most of them are benign and 
secondary tumors develop in other body organs and spread to 
the brain [2]. 
 

WHO (World Health Organization) specified that, 2% of 
overall cancers are brain tumors [3]. The identification and 
classification of brain tumors can be observed using various 
imaging techniques. MRI is therefore one of the most popular 
non-invasive methods. The success of MRIs stems from the 
fact that during scanning no ionizing radiation is used, its 
superior soft-tissue quality and the ability to aquire different 
images using different image constraints [4], [5]. 

Nevertheless, with the progress in brain science and brain 

 
 

imaging expertise, growing amounts of brain imaging data are 
being collected, and large quantities of samples are being 
collected. Modern, single-site and small-sample approaches to 
statistical analysis are problematic when approaching multiple 
center big data. The previous approaches would be 
unsuccessful due to large individual variations and 
discrepancies between centres. 

With the growing number of MRI data for brain imaging, 
conventional methods of study are beginning to lose 
effectiveness. Many standard statistical techniques, such as 
principal component analysis (PCA), independent component 
analysis (ICA), and classifications dependent on feature 
description and feature selection strategies, such as scale 
invariant feature transform (SIFT) [6], 3D descriptors, support 
vector machine (SVM) [7] and MVPA [8] are unable to 
accommodate broad datasets. As traditional methods have to 
fed complete training data features to construct a classification 
model, the cost of memory becomes excessive as the total data 
samples proliferations to complete the computation. The deep 
learning methodology has an inherent advantage in tackling 
big data, as opposed to conventional approaches. The method 
of separating huge training data sets into smaller lots and using 
iterations to minimize feature loss by speeding up the GPU 
easily complies with the computational promptness 
requirement [9]. 

Academicians and industry professionals has proposed 
different types of deep learning models to address the image 
classification tasks on huge datasets such as Imagnet 
Challenge [10]. In this challenge different types of deep 
learning models are proposed like AlexNet, VGGNet, 
googLeNet and ResNet etc.  

Over the years, the Brain tumors classi cation was 
conducted using various machine learning methods and 
imaging modalities. In some research [11] suggested a method 
for classifying various grades of glioma in addition to using 
SVMs and KNN as a hierarchical classification for high and 
low grades. El-Dahshan et al. [12] Developed a system to 
classify 80 normal and abnormal brain tumor images using 
Discrete Wavelet Transform (DWT) to extract features, 
Principal Component Analysis (PCA) to minimize features, 
and then ANN and KNN to classify images with 97 percent 
and 98 percent overall accuracy, respectively. In the year 
2015. 

 
Cheng et al. [13] suggested a method to improve brain 

tumor detection efficiency by growing the tumor area by 
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means of image dilation and subsequently splitting it into 
subregions. In the research work suggested by Ertosun and 
Rubin are used three methods to get features; Gray Level 
Co-occurrence Matrix (GLCM) level histogram and Bag of 
Words (BOW) [14], Paul et al. [15] suggested the CNN 
architecture consisted of 2 convolution layers with two 
corresponding max pooling layers and two fully connected 
layers with a maximum accuracy of 91.43 percent. 

 
Afshar et al. [16] proposed a capsule network (CapsNet) that 

incorporates both the brain picture of MRI and the boundaries 
of coarse tumors to identify the brain tumor. In this analysis, 
90.89% accuracy was obtained. In a different study, Anaraki et 
al. [17] suggested a two-state model for the classification of 
brain tumor images based on Genetic Algorithms and CNN 
with 90.9 percent accuracy was achieved in the rest case study 
in the classification of glioma three grades while 94.2 percent 
accuracy was achieved in the second case study of the  glioma, 
meningioma and pituitary tumors classification. 
 

 
 
2. PROPOSED  T-NET 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Training Phase and Testing Phase of proposed model 
 
Figure 1 shows the training phase and testing phase of the 
T-Net model, the model loaded with extracted pre-processed 
BRATS dataset images and labels, then the BRATS dataset is 
splatted into training, Validation and testing datasets. The 
training and validation sets are fed to augmentation to fit into 
the proposed Tumor Net (T-Net) during the training phase. 
The structure of the proposed architecture is trained with 
augmented trained data and validated with validation data for 
every epoch. The training is performed based on the training 
parameters like no. of epochs, mini batch size, regularization, 
learning rate, etc., in the testing phase the trained model is 
tested on testing dataset and validated with performance 
metrics.    
 
 
 

2.1 Dataset 
To train a deep learning model, huge amount of data is 
required. Such datasets with large amount of labelled data is 
usually not available in medical imaging.  In this work, The 
dataset comprises 2D slices extracted from BRATS 2015, 
BRATS 2017 and BRATS 2018 volumetric data to feed 
proposed DL model. Figure 1 shows the dataset used in this 
work.  The BRATS 2017 & BRATS 2018 consists .nii 
(NIFTI) format and BRATS 2015 consists .mha (metaImage) 
format volumetric data [18], [19]. 2D slices of Axial, Coronal 
and Sagittal modes are extracted from these volumetric 
datasets using ITK Snap tool [20]. The complete dataset is 
called BTDS-3 and details are given in Table 1 and CE-MRI 
dataset details are in Table 2. 
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Figure 2: Collected Dataset (BTDS-3) 
 

 
The BTDS-3 dataset is a combination of different BRATS 
datasets. Table 1 describes the complete details of dataset and 
the contribution of individual BRATS datasets. 
 
 

Figure 3 shows the sample data from the BTDS-3 dataset. 
Figure 4 shows the sample data from CE-MRI. 
 

 
Figure 3: Sample dataset from (BTDS-3)

Table 1: Details of Collected Dataset (BTDS-3) 
 

S.NO. Data set Type of tumor Mode No. of Images Total No. of Images 

 
1. 

BRATS  
2015 

Benign 
Axial 333 

757 Coronal 217 
Sagittal 207 

Malignant 
Axial 1789 

4205 Coronal 1072 
Sagittal 1344 

2. 
BRATS  

2017 

Benign 
Axial 340 

1099 Coronal 434 
Sagittal 325 

Malignant 
Axial 1505 

3860 Coronal 1432 
Sagittal 923 

3. 
BRATS  

2018 

Benign 
Axial 364  

1133 Coronal 419 
Sagittal 350 

Malignant 
Axial 1773  

4973 Coronal 1841 
Sagittal 1359 

 
 

2.2 Preprocessing 

De-noising, data augmentation and intensity normalization are 
three pre-processing steps used to fit the dataset to the 
proposed T-Net model. Two datasets are used in this work, 
BTDS-3 and CE-MRI. The BTDS-3 dataset is available in 
PNG format and this dataset is passed through DnCNN and 
median filter for removing the noise. Where CE-MRI data set 
contain gray images, it is passed through the median filter 
only. This de-noising process eliminates Gaussian noise and 
other high frequency artifacts of images which reduces 

computational time. 
Data Augmentation is the main aspect of transfer learning 
pre-processing. This involves other strategies such as resizing, 
tossing, situations, incorporating salt and pepper noise, 
streamlining, Translation, Rotation, and Perspective 
Transform. The BTDS-3 and CE-MRI datasets are with 240 X 
240 X 3, 240 X 155 X 3, 240 X 155 X 3 and 512 X512 image 
sizes respectively. The BT-VGGnet image input layer size is 
224 X 224 X 3. As per our proposed BT-VGGnet model only 
resize is required to fit the dataset into the model.  

Dataset 

BRATS 
 2015 

BRATS 
 2017 

BRATS 
 2018 
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Intensity values of these datasets are not showing a static 
meaning. As per the observations in the datasets intensity 
values of MR images are varying with respect to intra and inter 
subjects. So Normalization is required for datasets in order to 
not to pull the network in ill condition. min-max normalization 
is used as pre-process the datasets to balance the intensity 
value to [0, 1] . 
 

( min( )) / (max( ) min( ))i iy x x x x    (1) 

 
Where the value of normalized intensity with respect to xi is  
yi and max(x) and min(x) is the maximum and minimum 
intensity levels over the whole image. 

 
Figure 4: Sample dataset from CE-MRI 

 
Table 2: CE-MRI Dataset Split-up 

 
S.NO. Data set Type of tumor Mode No. of Images Total No. of Images 

1. CE-MRI Glioma, Meningioma and Pituitary 
Axial 

Coronal 
Sagittal 

3064 3064 

 
2. 

Training set 

Glioma 
Axial 433 

1283 Coronal 448 
Sagittal 314 

Meningioma 
Axial 474 

637 Coronal 211 
Sagittal 252 

Pituitary 
Axial 256 

837 Coronal 286 
Sagittal 295 

3. Testing set 

Glioma 
Axial 61 

143 Coronal 45 
Sagittal 37 

Meningioma 
Axial 34 

71 Coronal 21 
Sagittal 16 

Pituitary 
Axial 433 

93 Coronal 448 
Sagittal 402 

 
2.3 T-Net Architecture 

 
 
 
 
  
 
 
 
 
 

Figure 5: T-Net Architecture 
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Figure 5 shows the T-Net architecture and the explanation of 
every layer as follows. The initial layer is an image input layer 
which takes an image as input with specified input size and 
normalization is performed [21]. T-Net consists three 
convolution layers, with a K number of filters with filter size 
M X N and computes the dot product of filter and input 
throughout the input image. The filters move along the input 
image horizontally and The Stride (S) is called vertically. 
Padding (P) of the original images can occur before the filters 
are slid to keep the information to the edges. The lower level 
layers will take low features like lines and edges, and higher 
level layers will take high level features [22]. The dropout 
regularization is used to avoid over fitting of the network. 
Dropout layer is followed by fully connected, softmax and 
classification layers. 

Table 3: Layer wise description of T-Net 
 

 

 
 

Figure 6: Convolution Layer 
 
Figure 6 shows an example of a convolution layer with kernel 
and output feature map. A kernel of size 3 X 3 is applied on 7 
X 7 input image and got 5 X 5 feature map. The output feature 

map size depends on the following equation. 
 

2 2
1 X 1

W P f H P f

S S

   
   (2) 

     
Where W and H are width and height of the input image, ‘p’ is 
pooling, ‘f ‘is kernel size and ‘s’ is stride value. 
Following each convolution layer is a non-saturated activation 
function called ReLU, which is primarily used to significantly 
reduce the training period compared to other activation 
functions [23]. 
The following equation describes the model, ReLU as a 
function of x where the output is equal to the output if x is 
positive and 0 for other values [24]. The graphical 
representation of ReLU function is shown in Figure.7. 

 
Figure 7: ReLu Activation function 

The max pooling is used to down sample the feature map with 
a small sliding rectangle of size 3 X 3 and 2 X 2 is used in this 
architecture. This sliding rectangle will move throughout the 
previous layer and takes the max value in covering rectangle 
space as shown in figure 8. The pooling layer used to reduce 
the samples and computations [25]. 
 

 
Figure 8: Max Pooling 

 
 
To avoid the over fitting, dropout regularization is used with 
15% dropout probability for proposed T-Net Architecture. 
The dropout layer drops the randomly selected activation 
nodes of the layers [26], which will improve the speed of the 
training phase. Figure 9 shows the Dropout layer. 
 

Layer 
No. 

Layer 
Name 

Layer Type Specifications 

1 imageinput Image Input 129x129x1 
2 conv_1 Convolution 32 3x3x1 
3 relu_1 ReLU ReLU 
4 maxpool_1 Max Pooling 3x3 max pooling 
5 conv_2 Convolution 32 3x3x1 
6 relu_2 ReLU ReLU 
7 maxpool_2 Max Pooling 3x3 max pooling 
8 conv_3 Convolution 64 3x3x32 
9 relu_3 ReLU ReLU 

10 maxpool_3 Max Pooling 2x2 max pooling 
11 dropout Dropout 15% dropout 

12 fc_1 
Fully 

Connected 
588 fully 

connected layer 

13 fc_2 
Fully 

Connected 
588 fully 

connected layer 

14 fc_3 
Fully 

Connected 
2/3 fully 

connected layer 
15 softmax Softmax softmax 

16 classoutput 
Classification 

Output 
crossentropyex 
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Figure 9: Dropout Layer 

 
After the dropout layer, the fully connected layer, softmax and 
classification layers are connected for classification. Three 
fully connected layers are utilized in this deep structure. The 
starting two layers of size 588 each and the last one is 2 or 3 
depends on the dataset classes. Every node of layer is 
connected to all nodes of the next layer inside the fully 
connected layers. 
The Softmax activation layer will split the probability of 
predicted classes in 0 to 1. The sum of all predicted values is 1. 
The output of the softmax layer is calculated as follows. 
 

1

( )
j

k

z

j k z

k

e
y z

e





 (3) 

 
The chance of any class (j) can be estimated as a function y (z) 
over (k) different classes and their complete summation is 
equal to one [27] as shown in Figure 10. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 10: Softmax layer 

Based on the loss of cross-entropy to estimate the loss of 
classification and provides the final categorical label for each 
image input by the classification layer. Loss can be calculated 
from the following equation, where p is the vector of the target 
labels, and q (x) is the softmax layer output vector. 
 

( , ) (( ( ) log(( ( )))
x

H p q p x q x    (4) 

 
3. VALIDATION METRICS 

The following are the  Validation metrics considered to 
evaluate the proposed T-Net model. The following are the 
performance metrics based on TP, FP, TN and FN. 

   

Accuracy = P N

P N P N

T T

T T F F


  

 (5) 

 

Sensitivity = P

P N

T

T F
 (6) 

 

Specificity = N

N P

T

T F
 (7) 

 

Precision = P

P P

T

T F
 (8) 

 

F1-Score =2
PPV TPR

PPV TPR




 (9) 

 
4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1 Results of Study-I 

Figure 11 shows, training accuracy, validation and training 
loss graph for Study-I.    The training accuracy almost 99% 
after 10000 iterations and loss is less than 0.3. At the end of the 
training, the overall accuracy reached 97%. The accuracy 
curve in increases exponentially and there is several variations 
because of the use of a limited 32-batch sample images. Figure 
12 shows the confusion matrix and table 4 shows the 
validation metrics of study-I. 
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Figure 11: Training accuracy and loss graph for Study-I 

 
 
The T-Net model achieved 97.96% of for BTDS-3 dataset.  
The Accuracy comparison plot of previous State of the art 
methods with proposed T-Net model is shown in figure 13. 

 
Figure 12: Confusion Matrix for BTDS-3 Data (Study-I) 

 

Table 4: Validation metrics of T-Net for BTDS-3 Data (Study-I) 
T-Net Model 

(Study-I) 
Parameter Value 

TP 484 
TN 94 
FP 8 
FN 4 

Accuracy 97.96% 
Sensitivity 99.18% 
Specificity 92.15% 
Precision 98.37% 
F1-Score 98.77% 

 

4.2 Results of Study-II 

Figure 14 shows, training accuracy, validation and training 
loss graph for Study-II.    The training accuracy almost 100% 
after 10000 iterations and the loss is less than 0.2. At the end of 
the training, the overall accuracy reached 99.3%. The 
accuracy curve in increases exponentially and there is Several 
variations because of the use of a limited 32-batch sample. 
Figure 15 shows the confusion matrix and table 5 shows the 
validation metrics of study-II. 
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Figure 13: Accuracy comparison with state of art methods plot on BTDS-3 Data (Study-I) 

 

 
 

Figure 14: Training accuracy and loss graph for Study-II 
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Figure 15: Confusion Matrix for CE-MRI Data (Study-II) 

 
The T-Net model achieved 99.34% of for CE-MRI dataset.  
The Accuracy comparison plot of previous State of the art 
methods with proposed T-Net model is shown in figure 16. 

 
Table 5: Validation metrics of T-Net for CE-MRI Data (Study-II) 

 
T-Net Model 

(Study-II) 
Parameter Value 
Accuracy 99.34% 
Sensitivity 99.17% 
Specificity 99.29% 
Precision 98.71% 
F1-Score 98.94% 

 

 
Table 6: Validation metrics of T-Net for individual classes of CE-MRI Data (Study-II) 

 

S.NO Deep learning 
Model 

Type of 
Tumor 

Sensitivity Specificity Precision F1- 
Score 

1. T-Net 
Glioma 100 98.78 98.62 99.30 

Meningioma 98.59 99.57 98.59 98.59 
Pituitary 98.92 99.53 98.92 98.92 

 
 
 

 
 

Figure 16: Accuracy comparison with previous methods plot on CE-MRI Data (Study-II) 
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Figure 17: Accuracy comparison with state of art methods plot on CE-MRI Data (Study-II) 
 
 
 

 
5. CONCLUSION 
A CAD method for classifying brain tumor MR images into 
two types (Benign and Malignant) in one study and further 
classifying multi-tumor into various types (Gliomas, 
Meningioma, pituitary) using a deep neural network is 
proposed in this research. The proposed deep neural network 
(T-Net) is built using 16 layers consists different layers like  
image input layer to process the images feeding through the 
convolution layers and their activation functions. Moreover, 
one dropout layer is adopted to avoid over fitting and  
followed by a three fully connected layer. For probability 
distribution and classification, a softmax layer and 
classification layer utilized to produce the predicted class 
label. The 2D dataset is taken from BRATS volumetric data.  
The proposed deep learning architecture has outperformed 
compared to state of the art models with highest accuracy of 
98% and 99.3% concerning the BTDS-3 and CE-MRI datasets 
respectively. 
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