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ABSTRACT 

The quasi-newton equation (QN) plays a key role in 
contemporary nonlinear optimization. In this paper, 
we present a new symmetric rank-one (SR1) method 
by using preconditioning conjugate gradient (PCG) 
method for solving unconstrained optimization 
problems. The suggested method has an algorithm in 
which the usual SR1 Hessian is updated. We show 
that the new quasi-newton (SR1) method maintains 
the Quasi- Newton condition and the positive definite 
property. Numerical experiments are reported which 
produces by the new algorithm better numerical 
results than those of the normal (SR1) method by 
using PCG algorithm based on the number of 
iterations (NOI) and the number of functions 
evaluation (NOF). 

Key words: Unconstrained optimization, Quasi-
Newton equation, Hessian approximation, Symmetric 
rank-one update. 

1. INTRODUCTION  

In this paper, we are concerned to resolving 
unconstrained optimization problem by using quasi-
Newton methods, given by 

 ݉݅݊ (ݖ)݂ ݖ	∀										 ∈ ܴ௡                                          (1) 

where	݂ ∶ 	ܴ௡ 	→ 	ܴ is twice continuously 
differentiable. Starting from a point ݖଵ and a 
symmetric positive-definite matrix	ܤଵ , a quasi-Newton 
method is an iterative scheme that generates sequences 
 by the iteration {௜ܤ} and {௜ݖ}

௜ାଵݖ = ௜ݖ + ௜݀௜ߣ ,			݅ = 0,1,2, … ,                               (2)  

where ߣ௜ > 0 is the step length and ݀௜ is a search 
direction of ݂ at ݖ௜.The search direction ݀௜ determines 
the line search method (see [9, 13]). The quasi-
Newton method is defined by 

௜ݏ௜ܤ = −݃௜                                                                (3) 
where ݃௜ =  ௜ is the quasi-Newton updateܤ , (௜ݖ)	݂ߘ
matrix, and the sequence {ܤ௜} satisfies the so-called 
quasi-Newton condition 

௜ݏ௜ାଵܤ = ௜ݕ                                                                 (4) 

 (for more details, see [7]). 

1.1 The Symmetric Rank-One (SR1) 

 The symmetric rank-one (SR1) update comes from 
solving σ, ν from the general update form  

௜ାଵܤ 	= ௜ܤ 	+ ்ߥߥߪ	 	                                                 (5) 

The solution of the problem gives the update the 
approximated Hessian matrix, 

௜ାଵܤ 	= ௜ܤ 	+ 	 (௬೔ି஻೔௦೔)(௬೔ି஻೔௦೔)೅

(௬೔ି஻೔௦೔)೅௦೔
	                                (6) 

By using the Sherman-Morrison-Woodbury formula 
[4], we obtain the following inversed Hessian update 
for SR1 [6]: 

௜ାଵܪ 	= ௜ܪ 	+ 	 (௦೔ିு೔௬೔)(௦೔ିு೔௬೔)೅

(௦೔ିு೔௬೔)೅௬೔
	                               (7) 

Then the Quasi-Newton equation or Quasi-Newton 

condition [10] is defined as 

௜ݕ௜ାଵܪ =            ௜                                                                (8)ݏ

1.2 Preconditioning Conjugate Gradient (PCG) 

The PCG method was presented in paper by Axelsson 
in 1972 [3]. It was advanced with object of 
accelerating the convergence of the conjugate gradient 
(CG) method by a transformation of variables while 
keeping the basic properties of the method. Many 
authors have extended this type of algorithms [1]. 
The search direction to the preconditioned (PCG) 
method is defined by 
݀଴ =  ଴݃଴                                                                     (9)ܪ−

݀௜ାଵ = ௜݃௜ାଵܪ− + ௜݀௜ߚ                                                (10) 

௜ߚ = ௬೔
೅ு೔௚೔శభ
ௗ೔
೅௬೔

,                                                                  (11) 

Where ܪ௜  defined in equation (7). 
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1.3 Self-Scaling Quasi-Newton Methods 

Several self-scaling have been propounded by some 
scholars like Yang, Xu and Gao [11] made a little 
modification for self-scaling symmetric rank one 
update with Davidon's optimal condition [5] (SHSR1) 
as follow 

௜ାଵܪ = ௜ܪ௜ߤ + (௦೔ିఓ೔ு೔௬ො೔)(௦೔ିఓ೔ு೔௬ො೔)೅

௬ො೔೅(௦೔ିఓ೔ு೔௬ො೔)
                       (12) 

where ߤ௜  is the scaling factor, ݕො௜ = ൬ଵାఏ೔
௦೔
೅௬೔
൰ ௜ݕ  

௜ߠ	 = (௜ݖ)݂)6 − ((௜ାଵݖ)݂ + 3(݃௜ −݃௜ାଵ)்ݏ௜  

To improve the performance of QN update, S. 

Shareef, and H. Jameel [8] proposed to choose ܪ௞ାଵ 

to satisfy the following modified equation ܪ௜ାଵݕത௜ =

௜ݏ߱ , where ω > 0, this class of updates can be written 

as 

௜ାଵܪ = ௜ܪ + (௦೔ିఠு೔௬ො೔)(௦೔ିఠு೔௬ො೔)೅

ఠ௬ො೔
೅(௦೔ିఠு೔௬ො೔)

                            (13) 

Where ߱ = 1)ݐ + (1 − ଵ)(ߠ
ఙ
− 1)),   0 < ߠ < 1 

And ߪ = ଶඥఢ೔(ଵା‖௭೔శభ‖)
‖௦೔‖

, ϵ୧ is error machine.       

 
2. DERIVATION OF A QUASI-NEWTON 
METHOD SR1  

In this section, we will drive the SR1 methods named 
as ܪ௜ାଵே௘௪ . The major idea of our method is to improve 
the performance of QN update, by choosing  ܪ௜ାଵ to 
satisfy the following modified QN condition: 

ത௜ݕ	௜ାଵܪ = ௜ݏ߬                                                                   (14)                

Where 	ݕത௜ = (1 + (1 ௜ݕ(௜ߩ(ߴ− ߴ , ∈ (0,1) and 

௜ߩ = ௦೔
೅௬೔

‖௦೔‖మ
  

݀௜ାଵ =  ௜ାଵ݃௜ାଵ                                                        (15)ܪ−

Now by multiplying both side of above equation by ݕത௜ 

݀௜ାଵ் ത௜ݕ = −݃௜ାଵ்  ത௜                                                 (16)ݕ௜ାଵܪ

By using equation (14) we obtained  

(1 + (1 − ௜)݀௜ାଵ்ߩ(ߴ ௜ݕ = −߬݃௜ାଵ் ௜ݏ                          (17) 

By using the conjugacy condition [12], 

݀௜ାଵ் ௜ݕ = ௜ାଵ்݃ݐ− ݐ , ௜ݏ ≥ 0                                          (18) 

So,  

߬ = 1)ݐ + (1− ݐ ௜)  whereߩ(ߴ ≥ 0.                        (19) 

Then, the new SR1 becomes as follows: 

௜ାଵே௘௪ܪ 	= ௜ܪ 	+ 	 (ఛ௦೔ିு೔௬ത೔)(ఛ௦೔ିு೔௬ത೔)೅

(ఛ௦೔ିு೔௬ത೔)೅௬ത೔
                           (20) 

2.1 The Algorithm of the PCG-Method with New 
SR1 

Step (1): Set	݅	 = 	0, select ݖ଴ and a real symmetric 
positive definite	ܪ଴ = ߝ ,ܫ = 1 × 10ିହ and 
Compute 	݃଴. 

Step (2): Compute	 ௜݃ =  .(௜ݖ)݂∇
Step (3): Compute	݀௜ =  .௜݃௜ܪ−
Step (4): Find	ߙ௜ > 0, satisfying the strong Wolfe 

condition.  
Step (5): Set	ݏ௜ = ௜ାଵݖ ,௜݀௜ߙ = ௜ݖ + ௜ݏ  and              

௜ݕ	          = ݃௜ାଵ − ݃௜. 
Step (6): Compute	 ௜݃ାଵ if ‖݃௜ାଵ‖ <  .then stop ,ߝ
Step (7): Calculate  ܪ௜ାଵே௘௪ using equation (20), and 

݀௜ାଵ = ௜ାଵ݃௜ାଵܪ− +
௜ାଵ݃௜ାଵܪത௜்ݕ

݀௜்ݕത௜
݀௜ 

Step (8): If |݃௜் ௜݃ାଵ| ≥ 0.2‖݃௜ାଵ‖ଶ go to step (3)  
        else continue. 
        Set ݅	 = 	݅	 + 	1 and repeat from Step (4). 

Theorem 1: If the new SR1 method which is defined 
by (20) is applied to the quadratic with Hessian	ܩ =
௜ାଵே௘௪ܪ then ,்ܩ ത௜ݕ	 = , ௜ݏ߬ ݅ ≥ 0.  

Proof: Multiplying both sides of equation (20) by ݕത௜ 
from the right, we have: 

௜ାଵே௘௪ܪ ത௜ݕ	 = ത௜ݕ	௜ܪ + 	 (ఛ௦೔ିு೔௬ത೔)(ఛ௦೔ିு೔௬ത೔)೅௬ത೔
(ఛ௦೔ିு೔௬ത೔)೅௬ത೔

               (21) 

Since (߬ݏ௜   ത௜ is scalar. So, we haveݕ்(ത௜ݕ௜ܪ−

௜ାଵே௘௪ܪ ത௜ݕ	 = ത௜ݕ	௜ܪ + ௜ݏ߬)+	 ௜ܪ−    .(ത௜ݕ	

Then,  ܪ௜ାଵே௘௪ ത௜ݕ	 = ௜ݏ߬ .                                             (22) 

The proof is then complete.                                        ∎ 

Theorem 2: If ܪ௜ே௘௪  is positive definite, then the 
matrix ܪ௜ାଵே௘௪   which is generated by (20) is also 
positive definite. 

Proof: Multiplying both sides of equation (20) by ݕത௜ 
from the right and by ݕത௜்  from the left, we get 

௜ାଵே௘௪ܪത௜்ݕ ത௜ݕ	 = ത௜ݕ	௜ܪത௜்ݕ + 	௬ത೔
೅(ఛ௦೔ିு೔௬ത೔)(ఛ௦೔ିு೔௬ത೔)೅௬ത೔

(ఛ௦೔ିு೔௬ത೔)೅௬ത೔
	(23) 

After some algebraic operation, we get  

௜ାଵே௘௪ܪത௜்ݕ ത௜ݕ	 =  ௜                                              (24)ݏത௜்ݕ߬
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Then 

௜ାଵே௘௪ܪത௜்ݕ ത௜ݕ	 = 1)ݐ + (1 −   ௜ݏ௜்ݕ	௜)ଶߩ(ߴ

Obviously, ݐ, (1 + (1 −  .௜ are positiveݏ௜்ݕ ௜)ଶ andߩ(ߴ
Hence, we obtain 

௜ାଵே௘௪ܪത௜்ݕ ത௜ݕ	 = 1)ݐ + (1 − ௜ݏ௜்ݕ	௜)ଶߩ(ߴ > 0 .  

The proof is then complete.                                         

3.  NUMERICAL RESULTS 

This section is devoted to test the implementation of 
the new methods. We compare New SR1 method with 
standard SR1 method. The comparative tests involve 
well-known nonlinear problems (standard test 
function) [2] with different dimensions 10 ≤ ݊ ≤ 5000 
see the appendix, all programs are written in 
FORTRAN95 language.  Experimental results in 
Table (1) specifically quote the number of iteration 
NOI and the number of function NOF. Table (2) 
shows the rate of improvement the new algorithm and 
confirms that the new method is superior to standard 
method with respect to the NOI and NOF and we 
notate: 
n: The variables number. 
NOI: Number of iterations  
NOF: Number of functions evaluation. 
 
Table 1: Comparison between the performance of the 

new SR1 update and standard SR1 update. 

Number 
of 

Problem 
݊ 

SR1 −HS New − HS 

NOI NOF NOI NOF 

1 

10 
100 
500 

1000 
5000 

22 
23 
23 
23 
23 

54 
57 
57 
57 
57 

22 
23 
23 
23 
23 

53 
56 
56 
56 
56 

2 

10 
100 
500 

1000 
5000 

36 
43 
60 
66 
72 

253 
331 
496 
554 
616 

32 
32 
32 
32 
32 

185 
185 
185 
185 
185 

3 

10 
100 
500 

1000 
5000 

14 
15 
16 
16 
16 

42 
48 
49 
50 
180 

13 
13 
13 
13 
13 

37 
37 
37 
37 
37 

4 

10 
100 
500 

1000 
5000 

35 
55 
66 
70 
47 

90 
133 
158 
162 
114 

27 
31 
31 
32 
50 

74 
84 
83 
84 

131 

5 

10 
100 
500 

1000 
5000 

31 
32 
32 
34 
37 

91 
93 
93 
98 
101 

30 
30 
30 
30 
30 

83 
83 
83 
83 
83 

6 

10 
100 
500 

1000 
5000 

34 
47 
53 
53 
65 

329 
182999 
183098 
183099 
189124 

38 
42 
43 
50 
50 

146 
175 
178 
225 
228 

7 

10 
100 
500 

1000 
5000 

30 
32 
33 
33 
33 

80 
95 
97 
97 
97 

32 
32 
32 
32 
32 

88 
88 
88 
88 
88 

8 

10 
100 
500 

1000 
5000 

6 
14 
21 
23 
38 

34 
83 
119 
123 
176 

6 
14 
20 
22 
38 

34 
83 

103 
107 
180 

9 

10 
100 
500 

1000 
5000 

25 
44 
47 
50 

106 

51 
89 
95 
101 
294 

25 
44 
47 
49 

105 

51 
89 
95 
99 

212 
Total 1694 744314 1413 4703 

Table 2: The percentages of improving the New SR1 
method 

Tools SR1 −HS NSR1− HS 

NOI 100% 83.4104% 

NOF 100% 0.6319% 

Clearly there is an improvement of 16.5896% in NOI 
and 99.3681% in NOF for our new proposed 
algorithms. In general, the New SR1 method has been 
improved by 57.97885% as compared to standard SR1 
method.  

 
Figure 1: The comparison between SR1 method and 
the New SR1method according to the total number of 
iterations (NOI). 
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Figure 2: The comparison between SR1 method and 
the New SR1method according to the total number of 
functions (NOF). 

4.  CONCLUSION 

In this paper, a modified of quasi-Newton matrices 
based on SR1 for solving nonlinear unconstrained 
optimization is presented. The quasi-newton condition 
and positive definite property of the new method have 
been proved. Our numerical results indicate that there 
are improvements of proposed new method techniques 
over standard SR1 method. 
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APPENDIX 

Test Functions for Unconstrained Optimization 

1. Extended Wood Function: 

(ݖ)݂				 = ∑ ቀ100(ݖସ௜ିଷଶ − ସ௜ିଶ)ଶݖ + ସ௜ିଷݖ) − 1)ଶ +
௡ ସൗ
௜ୀଵ

 12−4݅ݖ+12−2−4݅ݖ10.1+12−4݅ݖ−1+4݅2ݖ−12−4݅ݖ90
  1−4݅ݖ1−2−4݅ݖ19.8+
଴ݖ         = (−3,−1, … ,−3,−1)்.	   

2. Generalized Central Function: 

(ݔ)݂ = ∑ ସ௜ିଷݖ)݌ݔ݁) + ସ௜ିଶ)ସݖ + ସ௜ିଶݖ))100 − ସ௜ିଵ)଺ݖ +
௡
ସൗ

௜ୀଵ

   .ܶ(1,2,2,2,…,2 ,1,2,2)=0ݖ  ,3−4݅ݖ+4݅4ݖ−1−4݅ݖ)݊ܽݐܿݎܽ

3. Generalized Cubic Function: 

(ݖ)݂ = ∑ ଶ௜ݖ)100) − ଶ௜ିଵଷݖ )ଶ + (1− (ଶ௜)ଶݖ
௡
ଶൗ

௜ୀଵ 	,	  

଴ݖ	 = (−1.2,1, … ,−1.2,1)் .	 

4. Generalized Non-Diagonal Function: 

(ݖ)݂ =

∑ ଵݖ)100) − ௜ଶ)ଶݖ + (1 − ௜)ଶ)௡ݖ
௜ୀଶ ,଴(−1ݖ			, … ,−1)் .		  

0
100000
200000
300000
400000
500000
600000
700000
800000

NEW-HS
SR1-HS

NOF
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5. Generalized Rosen Brock Banana Function: 

(ݖ)݂ = ∑ ଶ௜ݖ)100) − ଶ௜ିଵଶݖ )ଶ + (1 − (ଶ௜ିଵ)ଶݖ
௡ ଶൗ
௜ୀଵ ,			   

଴ݖ	 = (−1.2,1, … ,−1.2,1)் .		  

6. Mile Function: 

(ݖ)݂ = ∑ ((݁௭ర೔షయ + ସ௜ିଶ)ଶݖ10 + ସ௜ିଶݖ)100 + ସ௜ିଵ)଺ݖ +
௡ ସൗ
௜ୀଵ

tan(1,2,2,… ,1,2,2)=0ݖ  ,12−4݅ݖ+38−4݅ݖ+4݅4ݖ−1−4݅ݖ .ܶ      

7. Powell Function: 

(ݖ)݂	 = ∑ ସ௜ିଷݖ)) − ସ௜ିଶ)ଶݖ10 + ସ௜ିଵݖ)5 − ସ௜)ଶݔ +
௡ ସൗ
௜ୀଵ

    ,4݅4ݖ−3−4݅ݖ10+14−4݅ݖ2−2−4݅ݖ

଴ݖ		 = (3,−1,0,1, … ,3,−1,0,1)் .  

 

8. Sum of Quadrics (SUM) Function:  

(ݖ)݂		 = ∑ ௜ݖ) − ݅)ସ௡
௜ୀଵ ଴ݖ			, = (1,1, … ,1)் .						  

9. Wolfe Function: 

(ݖ)݂     = ቀ−ݖଵ ቀ3 − ௭భ
ଶ
ቁ+ ଶݖ2 − 1ቁ

ଶ
+ ∑ ൬ݖ௜ିଵ −௡ିଵ

௜ୀଵ

௜ݖ ቀ3 − ௭೔
ଶ

+ ௜ାଵݖ2 − 1ቁ൰
ଶ

+ ቀݖ௡ିଵ − ௡ݖ ቀ3 − ௭೙
ଶ
ቁ − 1ቁ

ଶ
,		 

଴ݖ     = (−1, … ,−1)். 

 

 

 

  


