
Salah Gazi Shareef et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3124 - 3128

3124

A New Quasi-Newton (SR1) With PCG Method for
 Unconstrained Nonlinear Optimization

Salah Gazi Shareef 1, Alaa Luqman Ibrahim 2

1, 2 Department of Mathematics, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq.
1salah.shareef@uoz.edu.krd, 2 alaa.ibrahim@uoz.edu.krd

ABSTRACT

The quasi-newton equation (QN) plays a key role in
contemporary nonlinear optimization. In this paper,
we present a new symmetric rank-one (SR1) method
by using preconditioning conjugate gradient (PCG)
method for solving unconstrained optimization
problems. The suggested method has an algorithm in
which the usual SR1 Hessian is updated. We show
that the new quasi-newton (SR1) method maintains
the Quasi- Newton condition and the positive definite
property. Numerical experiments are reported which
produces by the new algorithm better numerical
results than those of the normal (SR1) method by
using PCG algorithm based on the number of
iterations (NOI) and the number of functions
evaluation (NOF).

Key words: Unconstrained optimization, Quasi-
Newton equation, Hessian approximation, Symmetric
rank-one update.

1. INTRODUCTION

In this paper, we are concerned to resolving
unconstrained optimization problem by using quasi-
Newton methods, given by

 ݉݅݊ (ݖ)݂ ݖ	∀										 ∈ ܴ௡ (1)

where	݂ ∶ 	ܴ௡ 	→ 	ܴ is twice continuously
differentiable. Starting from a point ݖଵ and a
symmetric positive-definite matrix	ܤଵ , a quasi-Newton
method is an iterative scheme that generates sequences
 by the iteration {௜ܤ} and {௜ݖ}

௜ାଵݖ = ௜ݖ + ௜݀௜ߣ ,			݅ = 0,1,2, … , (2)

where ߣ௜ > 0 is the step length and ݀௜ is a search
direction of ݂ at ݖ௜.The search direction ݀௜ determines
the line search method (see [9, 13]). The quasi-
Newton method is defined by

௜ݏ௜ܤ = −݃௜ (3)
where ݃௜ = ௜ is the quasi-Newton updateܤ , (௜ݖ)	݂ߘ
matrix, and the sequence {ܤ௜} satisfies the so-called
quasi-Newton condition

௜ݏ௜ାଵܤ = ௜ݕ (4)

 (for more details, see [7]).

1.1 The Symmetric Rank-One (SR1)

 The symmetric rank-one (SR1) update comes from
solving σ, ν from the general update form

௜ାଵܤ 	= ௜ܤ 	+ ்ߥߥߪ	 	 (5)

The solution of the problem gives the update the
approximated Hessian matrix,

௜ାଵܤ 	= ௜ܤ 	+ 	 (௬೔ି஻೔௦೔)(௬೔ି஻೔௦೔)೅

(௬೔ି஻೔௦೔)೅௦೔
	 (6)

By using the Sherman-Morrison-Woodbury formula
[4], we obtain the following inversed Hessian update
for SR1 [6]:

௜ାଵܪ 	= ௜ܪ 	+ 	 (௦೔ିு೔௬೔)(௦೔ିு೔௬೔)೅

(௦೔ିு೔௬೔)೅௬೔
	 (7)

Then the Quasi-Newton equation or Quasi-Newton

condition [10] is defined as

௜ݕ௜ାଵܪ = ௜ (8)ݏ

1.2 Preconditioning Conjugate Gradient (PCG)

The PCG method was presented in paper by Axelsson
in 1972 [3]. It was advanced with object of
accelerating the convergence of the conjugate gradient
(CG) method by a transformation of variables while
keeping the basic properties of the method. Many
authors have extended this type of algorithms [1].
The search direction to the preconditioned (PCG)
method is defined by
݀଴ = ଴݃଴ (9)ܪ−

݀௜ାଵ = ௜݃௜ାଵܪ− + ௜݀௜ߚ (10)

௜ߚ = ௬೔
೅ு೔௚೔శభ
ௗ೔
೅௬೔

, (11)

Where ܪ௜ defined in equation (7).

 ISSN 2278-3091
Volume 8, No.6, November – December 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse74862019.pdf

https://doi.org/10.30534/ijatcse/2019/74862019

Salah Gazi Shareef et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3124 - 3128

3125

1.3 Self-Scaling Quasi-Newton Methods

Several self-scaling have been propounded by some
scholars like Yang, Xu and Gao [11] made a little
modification for self-scaling symmetric rank one
update with Davidon's optimal condition [5] (SHSR1)
as follow

௜ାଵܪ = ௜ܪ௜ߤ + (௦೔ିఓ೔ு೔௬ො೔)(௦೔ିఓ೔ு೔௬ො೔)೅

௬ො೔೅(௦೔ିఓ೔ு೔௬ො೔)
 (12)

where ߤ௜ is the scaling factor, ݕො௜ = ൬ଵାఏ೔
௦೔
೅௬೔
൰ ௜ݕ

௜ߠ	 = (௜ݖ)݂)6 − ((௜ାଵݖ)݂ + 3(݃௜ −݃௜ାଵ)்ݏ௜

To improve the performance of QN update, S.

Shareef, and H. Jameel [8] proposed to choose ܪ௞ାଵ

to satisfy the following modified equation ܪ௜ାଵݕത௜ =

௜ݏ߱ , where ω > 0, this class of updates can be written

as

௜ାଵܪ = ௜ܪ + (௦೔ିఠு೔௬ො೔)(௦೔ିఠு೔௬ො೔)೅

ఠ௬ො೔
೅(௦೔ିఠு೔௬ො೔)

 (13)

Where ߱ = 1)ݐ + (1 − ଵ)(ߠ
ఙ
− 1)), 0 < ߠ < 1

And ߪ = ଶඥఢ೔(ଵା‖௭೔శభ‖)
‖௦೔‖

, ϵ୧ is error machine.

2. DERIVATION OF A QUASI-NEWTON
METHOD SR1

In this section, we will drive the SR1 methods named
as ܪ௜ାଵே௘௪ . The major idea of our method is to improve
the performance of QN update, by choosing ܪ௜ାଵ to
satisfy the following modified QN condition:

ത௜ݕ	௜ାଵܪ = ௜ݏ߬ (14)

Where 	ݕത௜ = (1 + (1 ௜ݕ(௜ߩ(ߴ− ߴ , ∈ (0,1) and

௜ߩ = ௦೔
೅௬೔

‖௦೔‖మ

݀௜ାଵ = ௜ାଵ݃௜ାଵ (15)ܪ−

Now by multiplying both side of above equation by ݕത௜

݀௜ାଵ் ത௜ݕ = −݃௜ାଵ் ത௜ (16)ݕ௜ାଵܪ

By using equation (14) we obtained

(1 + (1 − ௜)݀௜ାଵ்ߩ(ߴ ௜ݕ = −߬݃௜ାଵ் ௜ݏ (17)

By using the conjugacy condition [12],

݀௜ାଵ் ௜ݕ = ௜ାଵ்݃ݐ− ݐ , ௜ݏ ≥ 0 (18)

So,

߬ = 1)ݐ + (1− ݐ ௜) whereߩ(ߴ ≥ 0. (19)

Then, the new SR1 becomes as follows:

௜ାଵே௘௪ܪ 	= ௜ܪ 	+ 	 (ఛ௦೔ିு೔௬ത೔)(ఛ௦೔ିு೔௬ത೔)೅

(ఛ௦೔ିு೔௬ത೔)೅௬ത೔
 (20)

2.1 The Algorithm of the PCG-Method with New
SR1

Step (1): Set	݅	 = 	0, select ݖ଴ and a real symmetric
positive definite	ܪ଴ = ߝ ,ܫ = 1 × 10ିହ and
Compute 	݃଴.

Step (2): Compute	 ௜݃ = .(௜ݖ)݂∇
Step (3): Compute	݀௜ = .௜݃௜ܪ−
Step (4): Find	ߙ௜ > 0, satisfying the strong Wolfe

condition.
Step (5): Set	ݏ௜ = ௜ାଵݖ ,௜݀௜ߙ = ௜ݖ + ௜ݏ and

௜ݕ	 = ݃௜ାଵ − ݃௜.
Step (6): Compute	 ௜݃ାଵ if ‖݃௜ାଵ‖ < .then stop ,ߝ
Step (7): Calculate ܪ௜ାଵே௘௪ using equation (20), and

݀௜ାଵ = ௜ାଵ݃௜ାଵܪ− +
௜ାଵ݃௜ାଵܪത௜்ݕ

݀௜்ݕത௜
݀௜

Step (8): If |݃௜் ௜݃ାଵ| ≥ 0.2‖݃௜ାଵ‖ଶ go to step (3)
 else continue.
 Set ݅	 = 	݅	 + 	1 and repeat from Step (4).

Theorem 1: If the new SR1 method which is defined
by (20) is applied to the quadratic with Hessian	ܩ =
௜ାଵே௘௪ܪ then ,்ܩ ത௜ݕ	 = , ௜ݏ߬ ݅ ≥ 0.

Proof: Multiplying both sides of equation (20) by ݕത௜
from the right, we have:

௜ାଵே௘௪ܪ ത௜ݕ	 = ത௜ݕ	௜ܪ + 	 (ఛ௦೔ିு೔௬ത೔)(ఛ௦೔ିு೔௬ത೔)೅௬ത೔
(ఛ௦೔ିு೔௬ത೔)೅௬ത೔

 (21)

Since (߬ݏ௜ ത௜ is scalar. So, we haveݕ்(ത௜ݕ௜ܪ−

௜ାଵே௘௪ܪ ത௜ݕ	 = ത௜ݕ	௜ܪ + ௜ݏ߬)+	 ௜ܪ− .(ത௜ݕ	

Then, ܪ௜ାଵே௘௪ ത௜ݕ	 = ௜ݏ߬ . (22)

The proof is then complete. ∎

Theorem 2: If ܪ௜ே௘௪ is positive definite, then the
matrix ܪ௜ାଵே௘௪ which is generated by (20) is also
positive definite.

Proof: Multiplying both sides of equation (20) by ݕത௜
from the right and by ݕത௜் from the left, we get

௜ାଵே௘௪ܪത௜்ݕ ത௜ݕ	 = ത௜ݕ	௜ܪത௜்ݕ + 	௬ത೔
೅(ఛ௦೔ିு೔௬ത೔)(ఛ௦೔ିு೔௬ത೔)೅௬ത೔

(ఛ௦೔ିு೔௬ത೔)೅௬ത೔
	(23)

After some algebraic operation, we get

௜ାଵே௘௪ܪത௜்ݕ ത௜ݕ	 = ௜ (24)ݏത௜்ݕ߬

Salah Gazi Shareef et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3124 - 3128

3126

Then

௜ାଵே௘௪ܪത௜்ݕ ത௜ݕ	 = 1)ݐ + (1 − ௜ݏ௜்ݕ	௜)ଶߩ(ߴ

Obviously, ݐ, (1 + (1 − .௜ are positiveݏ௜்ݕ ௜)ଶ andߩ(ߴ
Hence, we obtain

௜ାଵே௘௪ܪത௜்ݕ ത௜ݕ	 = 1)ݐ + (1 − ௜ݏ௜்ݕ	௜)ଶߩ(ߴ > 0 .

The proof is then complete.

3. NUMERICAL RESULTS

This section is devoted to test the implementation of
the new methods. We compare New SR1 method with
standard SR1 method. The comparative tests involve
well-known nonlinear problems (standard test
function) [2] with different dimensions 10 ≤ ݊ ≤ 5000
see the appendix, all programs are written in
FORTRAN95 language. Experimental results in
Table (1) specifically quote the number of iteration
NOI and the number of function NOF. Table (2)
shows the rate of improvement the new algorithm and
confirms that the new method is superior to standard
method with respect to the NOI and NOF and we
notate:
n: The variables number.
NOI: Number of iterations
NOF: Number of functions evaluation.

Table 1: Comparison between the performance of the

new SR1 update and standard SR1 update.

Number
of

Problem
݊

SR1 −HS New − HS

NOI NOF NOI NOF

1

10
100
500

1000
5000

22
23
23
23
23

54
57
57
57
57

22
23
23
23
23

53
56
56
56
56

2

10
100
500

1000
5000

36
43
60
66
72

253
331
496
554
616

32
32
32
32
32

185
185
185
185
185

3

10
100
500

1000
5000

14
15
16
16
16

42
48
49
50
180

13
13
13
13
13

37
37
37
37
37

4

10
100
500

1000
5000

35
55
66
70
47

90
133
158
162
114

27
31
31
32
50

74
84
83
84

131

5

10
100
500

1000
5000

31
32
32
34
37

91
93
93
98
101

30
30
30
30
30

83
83
83
83
83

6

10
100
500

1000
5000

34
47
53
53
65

329
182999
183098
183099
189124

38
42
43
50
50

146
175
178
225
228

7

10
100
500

1000
5000

30
32
33
33
33

80
95
97
97
97

32
32
32
32
32

88
88
88
88
88

8

10
100
500

1000
5000

6
14
21
23
38

34
83
119
123
176

6
14
20
22
38

34
83

103
107
180

9

10
100
500

1000
5000

25
44
47
50

106

51
89
95
101
294

25
44
47
49

105

51
89
95
99

212
Total 1694 744314 1413 4703

Table 2: The percentages of improving the New SR1
method

Tools SR1 −HS NSR1− HS

NOI 100% 83.4104%

NOF 100% 0.6319%

Clearly there is an improvement of 16.5896% in NOI
and 99.3681% in NOF for our new proposed
algorithms. In general, the New SR1 method has been
improved by 57.97885% as compared to standard SR1
method.

Figure 1: The comparison between SR1 method and
the New SR1method according to the total number of
iterations (NOI).

1200

1300

1400

1500

1600

1700

1800

NOI

NEW-HS
SR1-HS

Salah Gazi Shareef et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3124 - 3128

3127

Figure 2: The comparison between SR1 method and
the New SR1method according to the total number of
functions (NOF).

4. CONCLUSION

In this paper, a modified of quasi-Newton matrices
based on SR1 for solving nonlinear unconstrained
optimization is presented. The quasi-newton condition
and positive definite property of the new method have
been proved. Our numerical results indicate that there
are improvements of proposed new method techniques
over standard SR1 method.

REFERENCES

1. Al-Bayati, A New PCG Method for
Unconstrained Non- Linear Optimization,
Journal of Abhath Al-yarmouk, Pure sci. and eng.
Vol. (5), No. (1) Pp. 71-92 (1996).

2. Andrei, N., An Unconstrained Optimization
Test Functions Collection. Advanced Modeling
and Optimization, 10, 147- 161, (2008).

3. Axelsson, O., On Preconditioning and
Convergence acceleration in sparse matrix
problems, CERN Data Handling Division
Report, 74-1 (1974).

4. Jorge Nocedal. Stephen J. Wright, Numerical
optimization. New York : Springer, (1999).
https://doi.org/10.1007/b98874

5. L. P. Sun, Updating of the self-scaling
symmetric rank one algorithm with limited
memory for large-scale unconstrained
optimization, Computational Optimization and
Applications, 27, (2004).
https://doi.org/10.1023/B:COAP.0000004977.04103.fb

6. Nielsen, H. Frandsen; P. E. Jonasson; K. and
Tingleff, O., Unconstrained Optimization,
Informatics and Mathematical Modeling ,
Technical University of Denmark, 3rd Edition,
March, (2004).

7. R. Fletcher, Practical Methods of
Optimization, John Wiley & Sons, New York,
(1987).

8. S. Shareef, and H. Jameel, On Modification of
Preconditioning Conjugate Gradient Method

with Self-Scaling Quasi-Newton. International
Journal of Advanced Trends in Computer Science
and Engineering, 8(5), 2395-2398, (2019).
https://doi.org/10.30534/ijatcse/2019/80852019

9. Schropp, J, A note on minimization problems
and multistep methods. Numer. Math. 78(1), 87-
101 (1997).
https://doi.org/10.1007/s002110050305

10. Sun W. and Yuan Y., Optimization Theory
Methods Nonlinear Programming, Springer
Science Business Media, LLC. New York, USA,
(2006).

11. Y. T. Yang, C. X. Xu and Y. L. Gao, 34, An
optimal self-scaling strategy to the modified
symmetric rank one updating, Journal of Xian
Jiaotong University, 100-103, (2005).

12. Y.H. Dai, L.Z. Liao, New conjugacy conditions
and related nonlinear conjugate gradient
methods, Appl. Math. Optim. (43), 87_101
(2001).
https://doi.org/10.1007/s002450010019

13. Yuan, G, Wei, Z, Zhao, Q, A modified Polak-
Ribière-Polyak conjugate gradient algorithm
for large-scale optimization problems. IIE
Trans. 46(4), 397-413 (2014).
https://doi.org/10.1080/0740817X.2012.726757

APPENDIX

Test Functions for Unconstrained Optimization

1. Extended Wood Function:

(ݖ)݂				 = ∑ ቀ100(ݖସ௜ିଷଶ − ସ௜ିଶ)ଶݖ + ସ௜ିଷݖ) − 1)ଶ +
௡ ସൗ
௜ୀଵ

 12−4݅ݖ+12−2−4݅ݖ10.1+12−4݅ݖ−1+4݅2ݖ−12−4݅ݖ90
 1−4݅ݖ1−2−4݅ݖ19.8+
଴ݖ = (−3,−1, … ,−3,−1)்.	

2. Generalized Central Function:

(ݔ)݂ = ∑ ସ௜ିଷݖ)݌ݔ݁) + ସ௜ିଶ)ସݖ + ସ௜ିଶݖ))100 − ସ௜ିଵ)଺ݖ +
௡
ସൗ

௜ୀଵ

 .ܶ(1,2,2,2,…,2 ,1,2,2)=0ݖ ,3−4݅ݖ+4݅4ݖ−1−4݅ݖ)݊ܽݐܿݎܽ

3. Generalized Cubic Function:

(ݖ)݂ = ∑ ଶ௜ݖ)100) − ଶ௜ିଵଷݖ)ଶ + (1− (ଶ௜)ଶݖ
௡
ଶൗ

௜ୀଵ 	,	

଴ݖ	 = (−1.2,1, … ,−1.2,1)் .	

4. Generalized Non-Diagonal Function:

(ݖ)݂ =

∑ ଵݖ)100) − ௜ଶ)ଶݖ + (1 − ௜)ଶ)௡ݖ
௜ୀଶ ,଴(−1ݖ			, … ,−1)் .		

0
100000
200000
300000
400000
500000
600000
700000
800000

NEW-HS
SR1-HS

NOF

Salah Gazi Shareef et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(6), November - December 2019, 3124 - 3128

3128

5. Generalized Rosen Brock Banana Function:

(ݖ)݂ = ∑ ଶ௜ݖ)100) − ଶ௜ିଵଶݖ)ଶ + (1 − (ଶ௜ିଵ)ଶݖ
௡ ଶൗ
௜ୀଵ ,			

଴ݖ	 = (−1.2,1, … ,−1.2,1)் .		

6. Mile Function:

(ݖ)݂ = ∑ ((݁௭ర೔షయ + ସ௜ିଶ)ଶݖ10 + ସ௜ିଶݖ)100 + ସ௜ିଵ)଺ݖ +
௡ ସൗ
௜ୀଵ

tan(1,2,2,… ,1,2,2)=0ݖ ,12−4݅ݖ+38−4݅ݖ+4݅4ݖ−1−4݅ݖ .ܶ

7. Powell Function:

(ݖ)݂	 = ∑ ସ௜ିଷݖ)) − ସ௜ିଶ)ଶݖ10 + ସ௜ିଵݖ)5 − ସ௜)ଶݔ +
௡ ସൗ
௜ୀଵ

 ,4݅4ݖ−3−4݅ݖ10+14−4݅ݖ2−2−4݅ݖ

଴ݖ		 = (3,−1,0,1, … ,3,−1,0,1)் .

8. Sum of Quadrics (SUM) Function:

(ݖ)݂		 = ∑ ௜ݖ) − ݅)ସ௡
௜ୀଵ ଴ݖ			, = (1,1, … ,1)் .						

9. Wolfe Function:

(ݖ)݂ = ቀ−ݖଵ ቀ3 − ௭భ
ଶ
ቁ+ ଶݖ2 − 1ቁ

ଶ
+ ∑ ൬ݖ௜ିଵ −௡ିଵ

௜ୀଵ

௜ݖ ቀ3 − ௭೔
ଶ

+ ௜ାଵݖ2 − 1ቁ൰
ଶ

+ ቀݖ௡ିଵ − ௡ݖ ቀ3 − ௭೙
ଶ
ቁ − 1ቁ

ଶ
,		

଴ݖ = (−1, … ,−1)்.

