
Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1521


ABSTRACT

Software testing is an activity performed for evaluating the
system by various testing techniques. Regression test case
selection selects those test cases which focuses on the
modified part of the software. It generally filters test cases
instead of removing them. Test case minimization eliminates
certain test cases thus, reducing the number of test cases and
lays stress on using a subset of the test suite from an economy
point of view. This sometimes reduces the rate of fault
detection. Elimination of test cases is not performed in test
case prioritization, rather it arranges them according to
priority and they are thus executed with higher priority cases
first followed by the lower priority ones. Test case
prioritization can be search-based or fault-based or coverage
based. They may also be risk-based, fault-based, history-based
or requirement based.
This paper has presented a comparative analysis of various
TCP approaches according to the prioritization objectives
framed for this study. The aim is not to show that a particular
approach has some limitations as the performance of an
approach varies on multiple factors such as testing scenarios,
testing needs, size of the program upon which they were
applied and the testing environment. The factors governing
the need for the development of a certain approach are fast
execution of test cases or early fault detection or making
testing cost-effective, although researchers try to achieve
most of them if not all. The approaches developed by
numerous researchers are comparatively studied and results
are presented systematically.

Key words: Regression testing, Software failure, Software
quality, Software testing, Test case prioritization.

1. INTRODUCTION

In the present scenario, the role of software can be traced
from every device associated with human beings to life-saving
devices in the medical field, in space technology and
aviation-related devices also. It can be said that software is
omnipresent. Therefore, so much of stress is laid out on the

quality and reliability of the software [1]-[3]. Testing plays a
vital role in examining whether the developed software
product meets the desired standards or not [4]-[5]. Many
techniques for testing the software were developed by the
researchers. Exhaustive testing is used to execute every test
case designed for testing. But its drawback is that it is not
practically feasible owing to time, resource and cost
constraint [6]-[8]. A recent software glitch in Boeing 737 max
caused a huge loss of human life and money in which a
software problem has resulted in a faulty sensor reading
which forced the plane nose down leading to two fatal crashes
killing altogether 346 people on board [9]. Another example
is of Microsoft windows operating system in which software
vulnerability popularly known as "EternalBlue" has resulted
in a huge amount of loss and a serious lesson to remain
cautious of releasing security patches and to spread awareness
about cybersecurity [10].

The Organization of this paper is as follows: In Section 2
regression testing and techniques for test case prioritization
are discussed in detail. Section 3 presents the need to conduct
this study and discussed the prioritization objectives framed
for this paper. Section 4 presents an in-depth analysis of
different techniques for test case prioritization, which is
subsequently followed by a table showing comparative
analysis. Section 5 discusses conclusion and future work. The
last section discusses the references included in this study.

2. REGRESSION TESTING
 One of the popular approaches in testing is regression
testing which is performed to check whether no new faults
have crept in the unmodified code after some part of the
source code is modified [11]-[12]. An approach in regression
testing is retest-all the test cases on the modified program, but
it is not practically feasible [13]. So, developers have to
maintain the balance between the quality of the software
product and the cost accomplished in testing as customer
satisfaction is the ultimate goal of a software development
organization [1], [14]-[15].
 Therefore, to make the regression testing effective,
various strategies are developed which are Test Case
Selection (TCS), Test Suite Minimization (TSM), Test Case
Prioritization (TCP) [16]. TCS selects those test cases which
may focus on testing the modified part of the software. TSM
discards redundant test cases to reduce the test suite size. Both

Comparative Analysis of Regression Test Case Prioritization Techniques

Omdev Dahiya1, Kamna Solanki2, Sandeep dalal3
1,2University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak-124001, India

3Department of computer science and applications, Maharshi Dayanand University, Rohtak-124001, India
1Omdahiya21792@gmail.com, 2Kamna.mdurohtak@gmail.com

 ISSN 2278-3091

Volume 8, No.4, July – August 2019
International Journal of Advanced Trends in Computer Science and Engineering

Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse74842019.pdf
https://doi.org/10.30534/ijatcse/2019/74842019

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1522

TCS and TSM approaches may lead to a decrease in fault
detection rate as claimed by different researchers [17]-[18].
This is the driving force which motivates the researchers to
work on TCP approaches which neither selects nor discards
test cases but executes them in a certain priority way to
increase detection of faults. Researchers have proposed
numerous test case prioritization approaches (figure 1). [16],
[19]-[24].

 Figure 1: Categorization of TCP approaches. [19], [24]

The goal of TCP can be manifold such as enhancing the
rate of fault detection or reducing the time and cost incurred
in the mechanism of prioritization or to increase the capture
of high priority requirements.

3. THE MOTIVE OF THIS STUDY
This paper has worked to comparatively analyze various

TCP approaches for regression testing. This study is not
performed to discuss advantages or limitations of various
approaches, rather the motive of this study is to provide a
detailed analysis of the existing approaches by comparing
them with the prioritization objectives framed for this study.

For this paper, the articles were searched from Scopus and
Google Scholar database and due to this all the major venues
were covered such as Elsevier, Springer, IEEE, ACM, etc. For
searching the papers, a search string is devised after various
experiments, adding and removing keywords in it and using
“AND”, “OR” operations. The search string is < “Software
testing” and “Regression testing” and “Test case
prioritization”>. In the next step, collectively from both the
databases, a large number of studies were retrieved and after
following the guidelines by Kitchenham [25] and the defined
procedure along with inclusion and exclusion criteria, finally
we were able to finalize 85 studies for inclusion in this study
which have fulfilled our defined prioritization objectives well.
Accordingly, a table is then made which shows a comparative
analysis of the different approaches (figure 2).

PRIORITIZATION

OBJECTIVES
EXPLANATION

PO1 Whether fault detection capability
is enhanced by the proposed
technique and/or whether historical
information of test cases is used to
generalize the result.

PO2 Whether the overall cost of
regression testing has been reduced
and does the approach resulted in a
cost-effective one.

PO3 Whether execution time was
reduced along with an increased rate
of fault detection and/or whether
maximum user requirements were
captured.

PO4 Whether maximum code coverage
has been achieved in terms of
branch/statement/function so that
fault can be detected early in
modified code.

PO5 Whether risk factor associated
with particular test cases are taken
into account for prioritizing test
cases and/or whether the proposed
technique has also shown
effectiveness in testing real-world
systems/Industrial study/web
applications like GUI/web-based
applications.

 Figure 2: Prioritization objectives for this study.

 The aim of designing the prioritization objectives is to
comparatively analyze different techniques designed by the
researchers based on these objectives. Every technique
executes uniquely according to the provided testing
environment, the size of programs upon which they were

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1523

incorporated and based on testing needs.

4. IN-DEPTH ANALYSIS OF TEST CASE
PRIORITIZATION APPROACHES

 This section will provide a detailed review of the
existing techniques which covers the basic aspects and factors
based on which these approaches were proposed by the
researchers. This will facilitate the readers to have a better
understanding of the different techniques for test case
prioritization.

4.1 Search-based test case prioritization

 These approaches have followed nature inspired
metaheuristic algorithms to solve complex problems in
computer science. These include Genetic algorithm [26]-[34],
Ant colony optimization [35]-[39], and others [40]-[42].
Opinion for the usage of these approaches varies according to
different researchers, such as shown by Li et al., various
factors play a role here such as fitness function, test suite,
input criteria, etc [43]. Still, these approaches were favored by
various researchers due to its advantages.

4.2 Coverage-based test case prioritization

 These approaches aim to provide maximum coverage of
the branch/statement/function to enhance the rate of fault
detection. In this, there is direct inspection of source code
[44]. After the evaluation of the criteria, these approaches are
further categorized as additional and total coverage based
[16]. These techniques were followed by numerous
researchers [23], [45]-[52]. An enormous study is conducted
by various researchers and logical reasoning is provided by
them that greater effectiveness is achieved by greater
coverage. Although, it is one of the criteria of test case
prioritization which may or may not leads to cover all the
faults.

4.3 History-based test case prioritization

 These techniques use a history of test case execution for
prioritizing the test cases. Kim and porter proposed a
history-based approach for TCP [53]. This approach is further
extended in the research conducted by Khalilian et al., in
which it is concluded that the fault detection rate is increased
if test cases are prioritized by using historical test data [54].
The result of this work is shown using APFDc metric. This
approach is favored by several researchers [55]-[59]. Though
this being an effective approach, it has few shortcomings such
as availability of historic information is limited and
information about a defect is also available is a small number.

4.4 Requirement-based test case prioritization

 These techniques state that as requirements are the
building blocks of a system, so important test cases can be
classified utilizing requirement information. A technique
called “PORT- prioritization of requirements for test" is
developed by Srikant et al., in which a criterion is given to
provide the value of software requirement importance [60]. In
a conducted study by Muthusamy, various perspectives of
requirement were given and they have proved their result to
be effective in terms of rate of fault detection [61]. In the
research performed by Srikant et al., it is concluded that if two
or more factors are taken in a combination, then testing is said
to be much more effective [62]. Owing to the trends, many
researchers have worked on these approaches [63]-[74],
[92]-[93], [109]. It shows how this area is gaining popularity
to deliver a quality product to the customer within the
stipulated budget and time.

4.5 Fault-based test case prioritization

The approach of these techniques is to specifically target
certain faults by arranging test cases in a certain sequence. As
stated by Rothermel et al., during the execution of a particular
statement specific faults can be discovered and possibilities of
discovering other errors are also high while executing a
statement [75]. Various approaches for enhancing the
detection of faults is given by many researchers so that testing
can be termed as an effective one [76-79].

4.6 Cost-based test case prioritization

The reason behind working on the cost model is to make
the testing process cost-effective one. A cost-based model is
proposed by Huang et al. in the study conducted by them [80].
Malishevsky et al. presented a cost-based metric i.e APFDc
[81]. Work was also performed by other researchers on a
cost-based model so that the cost of testing can be reduced
[82-85].

4.7 Risk-based test case prioritization

Work on risk-based approaches is started to target
risk-prone elements in the software and if the risk is timely
evaluated it will help in preventing further damage [86].
According to Stallbaum et al., test cases are prioritized based
on the risk associated with them and these test cases are
generated from the activity diagram via a technique proposed
by them [87]. In the study performed by Yoon, risky elements
were assigned a risk exposure value which is originated from
requirements and test cases are prioritized accordingly [88].
Many researchers have worked on these approaches as, if risk
causes damage then a huge amount of loss is incurred by the
software industry [89]-[91].

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1524

4.8 Other approaches for test case prioritization

Apart from the approaches discussed above, researchers have
worked upon many other techniques such as model-based
[94]-[100], web application-based [101]-[105] and even
techniques to be applicable on real-world systems [44],
[106]-[108]. For approaches to testing automation,
model-based testing is gaining popularity among researchers

as it is considered as a profitable option. In this, system
information about architecture and data structure is required
instead of source code and when compared to the actual
system its execution is also fast. TCP techniques for testing
web applications is also gaining popularity due to the increase
in usage of the Internet. For real-world systems regression
faults are only a few and difficult to locate, so researchers
have also explored this sphere.

Table 1: Comparative analysis of the different techniques for test case prioritization

Author, Publication year and Reference TCP technique/ Algorithm/

Metric used to evaluate the
proposed technique.

PO 1 PO 2 PO 3 PO 4 PO 5

Y. Lou et al., 2015 [26] Search-based, GA, APFD     

Maheswari and Mala, 2015 [27] Search-based, GA     

C. Catal, 2012 [28] Search-based, GA - - -  
Yuan et al., 2015 [29] Search-based, GA, APSC     
Deb et al., 2002, [30] Search-based, GA, ,  - - -  -
Kaur and Goyal, 2011 [31] Search-based, GA, APFD     
Jun et al., 2011 [32] Search-based, GA, APBC     
Sabharwal et. al., 2010 [33] Search-based, GA    - -

Huang et al., 2010 [34] Search-based, GA, APFDc     
Singh et al., 2010 [35] Search-based, ACO, APFD     
Gao et al., 2015 [36] Search-based, ACO, APFD     

Suri and Singhal, 2011 [37] Search-based, ACO, TC     
Noguchi et al., 2015 [38] Search-based, ACO     
Solanki et al., 2016 [39] Search-based, ACO, APFD, PTR     
Eghbali and Tahvildari, 2016 [40] Others, APFD     -
Mala et al., 2009 [41] Others, ABC     
Jeffrey and Gupta, 2006 [42] Others, APFD     
Li et al., 2016 [43] Search-based, APRCI     
Nardo et al., 2015 [44] Search-based, Real-world systems,

APFD
    

Do and Rothermel, 2015 [45] Coverage-based, APFD     

Do et al., 2006 [46] Coverage-based, APFD     
Rothermel et al., 2001 [47] Coverage-based, APFD     
Kapfhammer and sffa, 2007 [48] Coverage-based, CE     

Hao et al., 2015 [49] Coverage-based, APFD, APxC     
Fang et al., 2012 [50] Coverage-based, CI     -
Elbaum et al., 2002 [51] Coverage-based, APFD     

Nardo et al., 2013 [52] Coverage-based, APFD     
Kim et al., 2002 [53] History-based     
Khalilian, 2012 [54] History-based, APFD     -
Park et al., 2008 [55] History-based, APFDc     
Kim and Baik, 2010 [56] History-based, FATCP, APT     
Fazlalizadeh et al., 2009 [57] History-based     -

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1525

Aman et al., 2012 [58] History-based   -  
Megala, 2017 [59] History-based, GA, APFD     
Srikanth et al., 2005 [60] Requirement-based, PORT, WPFD     

Muthusamy, 2014, [61] Requirement-based, APFD     
Srikanth et al., 2016 [62] Requirement-based, ReBaTe,

TSFD, APFD
    

Srikanth and Williams, 2005 [63] Requirement-based, PORT, ASFD     
Srikanth et al., 2013 [64] Requirement-based, PORT, APFD     
Ma et al., 2016 [65] Requirement-based, APFD     
Arafeen and Do, 2013 [66] Requirement-based, APFD     

Krishnamoorthi and Mary, 2009 [67] Requirement-based, RFV     

Zhang et al., 2007 [68] Requirement-based, MRP_TC     

Ramasamy and Mary, 2008 [69] Requirement-based, TPFD     

Salem and Hassan, 2011 [70] Requirement-based     

Kavitha et al., 2010 [71] Requirement-based     
Berander and Andrews, 2005 [72] Requirement-based -   - -
Salehie et al., 2011 [73] Requirement-based, APFD     
Dongoor, 2019 [74] Requirement-based - -  - 
Rothermel et al., 1999 [75] Fault-based, APFD     
Yu and Lau, 2012 [76] Fault-based, APFD, FATE     
Solanki et al., 2016 [77] Fault-based, m-ACO, APFD, PTR     

Jiang et al., 2012 [78] Fault-based     
Solanki et al., 2013 [79] Fault-based, m-ACO, APFD     

Huang et al., 2012 [80] Cost-based, GA, APFDc    - -
Malishevsky et al., 2006 [81] Cost-based, APFDc     
Malishevsky et al., 2002 [82] Cost-based     

Elbaum et al., 2004 [83] Cost-based, APFD     
Smith and Kapfhammer, 2009 [84] Cost-based, RFFS     

Srikanth et al., 2009 [85] Cost-based, NAPFD     -
Srivastava, 2008 [86] Risk-based     
Stallbaum et al., 2008 [87] Risk-based, RiteDAP, APDP     
Yoon, 2012 [88] Risk-based, APFD     
Hettiarachchi, 2014 [89] Risk-based    - 

Yoon and Choi, 2011 [90] Risk-based     
Hettiarachchi et al., 2016 [91] Risk-based, APFD, PTRSW     
Uusitalo et al., 2008 [92] Requirement-based - -  - -

Mogyorodi, 2001 [93] Requirement-based     
Thomas et al., 2014 [94] Model-based, APFD     
Korel et al., 2005 [95] Model-based, MLP     
Korel et al., 2007 [96] Model-based, MLP     -
Korel et al., 2008 [97] Model-based, MLP     
Hemmati et al., 2013 [98] Model-based    - 
Panigrahi and Mall, 2014 [99] Model-based, APFD     
Panigrahi and Mall, 2010 [100] Model-based     
Sampath et al., 2008 [101] Web application-based, APFD     
Memon and Xie, 2005 [102] Web application-based     

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1526

Sprenkle, 2005 [103] Web application-based    - 

Bryce and Memon, 2007 [104] Web application-based     
Bryce et al., 2011 [105] Web application-based, APFD     

Haymar and Hla, [2008 [106] Real-world systems, PSO     

Srivastava and Thiagarajan, 2002 [107] Real-world systems, Echelon     

Lu et al., 2016 [108] Real-world systems  - - - 
Vescan et al., 2017 [109] Requirement-based     

Schwartz and Do, 2016 [110] Cost-Based     

Sujata and Purohit, 2015 [111] Factors for selecting TCP technique     -

Following is a list of abbreviations used in this table-

GA- Genetic algorithm, ACO- Ant colony optimization,
mACO- Modified ant colony optimization, APFD- Average
percentage of faults detected, APSC- Average percentage of
statement coverage, APBC- Average percentage of blocks
covered, - Convergence metric, - Metric to measure
spread achieved in obtained solutions, TC- Time constraint,
ABC- Artificial bee colony optimization, PTR- Percentage of
test suite required for complete fault coverage, APRCI-
Average percentage of requirement coverage improved, CE-
Coverage effectiveness, FATCP- Fault aware test case
prioritization, APT- Average percentage of fault detected
parsing tool, APxC- Average percentage of x coverage;
x-branch/decision/statement, CI- Convergence index,
WPFD- Weighted percentage of fault detected, ReBaTe-
Requirement based testing, TSFD- Total severity of fault
detected, RBT- Requirement behavior tree, ASFD- Average
severity of fault detected, RFV- Requirement behavior tree,
TPFD- Total percentage of fault detected, MRP_TC- Rate of
units of testing requirement priority satisfied per unit test
case cost, FATE- Fault adequate test set sizE, RFFS-
Reduction factor for size, NAPFD- Normalized average
percentage of fault detected, PTRSW- Percentage of Total
Risk Severity Weight, MLP- Most likely relative position,
APDP- Average Percentage of Damage Prevented, RiteDAP-
Risk based test case derivation and prioritization.

From the above table, it is quite clear that most of the studies
have not fulfilled all the PO for this study. This does not show
that they lag in their effectiveness. It is evident that if a
particular approach has focused on maximum fault detection
then it may or may not have shown promising results in terms
of least execution time or with minimum cost. In the same
way, if a particular approach is proposed by the researchers
then they must not have tested it using industrial data set as
well or is developed by capturing maximum user
requirements. So, this study is of the view that every proposed
technique has fulfilled its goals which are framed by the
respective researchers for it. The aim of this study is fulfilled
in terms of selecting and then comparatively analyzing the

studies which have focused on diverse TCP techniques using
the criteria of PO’s framed for this study and results are thus
documented in above table.

5. CONCLUSION AND FUTURE SCOPE

Test Case Prioritization (TCP) is one of the approaches of
regression testing which aims to make testing effective and
efficient. This paper attempts to cover almost all TCP
techniques proposed by numerous researchers. The
prioritization objectives (PO) are framed for this study which
many researchers have kept in mind while developing these
techniques. Based on these PO, selected studies have been
compared to find which particular approach fits in our
desired criteria. It can be concluded that every prioritization
technique has its advantages and limitations which are
according to the testing needs, size of program, requirements
and testing environment. So, it is not appropriate to say that
this particular technique has this much of flaws or these
advantages as it is based on the number of factors discussed
above. Every researcher wants to develop a cost-effective
technique, which may find faults early and is fast in execution
also. Every aspect cannot be assured in a particular
technique, though researchers will try to do so. For it, careful
selection is required to be done keeping in mind various
factors. It is not feasible to apply every existing TCP
technique on different test suites/testing phases/software
product to find the best TCP technique. If one technique is
selected from them, then it may or may not be suitable for a
different software product/test-suite/testing phase. Further
study in this direction will try to perform an experimental
analysis to compare the results obtained from the software
product/ test suite when different TCP techniques are applied
to it.

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1527

REFERENCES

1. A. Mathur, “Foundation of software testing”, second

edition, Pearson publications, 2013.
2. J. Bentley, “Software testing fundamentals–concepts,

roles, and terminology”, In SUGI, volume 30, 2005.
3. E. Dijkstra, “On the reliability of mechanisms”, Notes

on Structured Programming, 1970.
4. S. Desikan and G. Ramesh, “Software testing principles

& practices”, Pearson Education, 2007.
5. R. S. Pressman, “Software engineering: a

practitioner's approach”, Palgrave Macmillan, 2005.
6. K. Solanki, and Y. Singh, “Importance of Selecting

Test Cases for Regression Testing”, IOSR Journal of
Computer Engineering (IOSRJCE) e-ISSN, pp.
2278-0661, 2014.
https://doi.org/10.9790/0661-16444351

7. K. Solanki, and Y. Singh, “Novel Classification of Test
Case Prioritization Techniques”, International
Journal of Computer Applications, Vol. 975, pp. 8887,
2014.

8. R. Ramler and K. Wolfmaier, “Economic perspectives
in test automation: balancing automated and manual
testing with opportunity cost”, In Proceedings of the
2006 international workshop on Automation of software
test ACM, pp. 85-91, May 2006.
https://doi.org/10.1145/1138929.1138946

9. https://time.com/5615292/boeing-737-max-software-
problem/.

10. https://www.wired.co.uk/article/what-is-eternal-blue
-exploit-vulnerability-patch.

11. G. Rothermel and M.J. Harrold, “Empirical studies of a
safe regression test selection technique”, IEEE
Transactions on Software Engineering, vol. 24 No. 6,
pp. 401-419, 1998.
https://doi.org/10.1109/32.689399

12. G. Rothermel, and J. Harrold, “Analyzing regression
test selection techniques”. IEEE Transactions on
Software Engineering, Vol. 22, No. 8 pp. 529-551, Aug.
1996.
https://doi.org/10.1109/32.536955

13. A. Orso, T. Apiwattanapong and M. J. Harrold,
“Leveraging Field Data for Impact Analysis and
Regression Testing,” In ACM SIGSOFT Software
Engineering Notes, vol. 28, no. 5, pp. 128-137. ACM,
2003.
https://doi.org/10.1145/949952.940089

14. B. Beizer, “Software testing techniques”, 2nd Edition,
Van Nostrand Reinhold, New York, 1990.

15. O. Dahiya and K. Solanki, “A systematic literature
study of regression test case prioritization
approaches”. International Journal of Engineering &
Technology, Vol. 7, No. 4, pp.2184-2191, 2018.
https://doi.org/10.14419/ijet.v7i4.15805

16. S. Yoo and M. Harman, “Regression Testing
Minimisation, Selection, and Prioritization: A
survey,” Journal of software testing, Verification, and
Reliability, vol. 22, no. 2, pp. 67-120, 2012.
https://doi.org/10.1002/stv.430

17. S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel,
and S. Kanduri, “Understanding the effects of changes
on the cost�effectiveness of regression testing
techniques”. Software testing, verification, and
reliability, Vol. 13 No. 2, pp.65-83, April 2003.
https://doi.org/10.1002/stvr.263

18. G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong,
1998, November. “An empirical study of the effects of
minimization on the fault detection capabilities of test
suites”. In Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272), IEEE, pp.
34-43, Nov. 1998.

19. R. Mukherjee and K. S. Patnaik, “A survey on
different approaches for software test case
prioritization”, Journal of King Saud
University-Computer and Information Sciences, 2018.
https://doi.org/10.1016/j.jksuci.2018.09.005

20. A. Kumar, & K. Singh, “A Literature Survey on test
case prioritization”. Compusoft, Vol. 3, No. 5, p. 793,
May 2014.

21. R. S. Kiran, “A literature survey on TCP-test case
prioritization using the RT-regression
techniques”. Global Journal of Research in
Engineering, April 2015.

22. C. Catal, & D. Mishra, “Test case prioritization: a
systematic mapping study”. Software Quality
Journal, Vol. 21, No. 3, pp. 445-478, Sept. 2013.
https://doi.org/10.1007/s11219-012-9181-z

23. Y. Singh, A. Kaur, B. Suri, & S. Singhal, “Systematic
literature review on regression test prioritization
techniques”. Informatica, Vol. 36, No. 4, 2012.

24. M. Khatibsyarbini, M. A. Isa, D. N. Jawawi and R.
Tumeng, “Test case prioritization approaches in
regression testing: A systematic literature
review”. Information and Software Technology, 93,
pp.74-93, 2018.
https://doi.org/10.1016/j.infsof.2017.08.014

25. B. Kitchenham, “Procedures for performing
systematic reviews”. Keele, UK, Keele University,
Vol. 33, No. 2004, pp. 1-26, 2004.

26. Y. Lou, D. Hao, and L. Zhang, “Mutation-based
test-case prioritization in software evolution”, IEEE
26th International Symposium on Software Reliability
Engineering, ISSRE, pp. 46–57, 2015.
https://doi.org/10.1109/ISSRE.2015.7381798

27. R. Maheswari and D. Mala, “Combined Genetic and
Simulated Annealing Approach for Test
CasePrioritization,” Indian Journal of Science and
Technology, Vol. 8, No. 35, p. 1, 2015.
https://doi.org/10.17485/ijst/2015/v8i35/81102

28. C. Catal, “On the application of genetic algorithms
for test case prioritization: a systematic literature

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1528

review”. In Proceedings of the 2nd international
workshop on evidential assessment of software
technologies, ACM, pp. 9-14, Sept. 2012.
https://doi.org/10.1145/2372233.2372238

29. F. Yuan, Y. Bian, Z. Li, and R. Zhao, “Epistatic
Genetic Algorithm for Test Case Prioritization,”
International Symposium on Search Based, pp. 109-124,
Sept. 2015.
https://doi.org/10.1007/978-3-319-22183-0_8

30. K. Deb, S. Pratab, S. Agarwal, and T. Meyarivan, “A
Fast and Elitist Multiobjective Genetic Algorithm:
NGSA-II,” IEEE Transactions on Evolutionary
Computing, vol. 6, no. 2, pp. 182–197, Aug. 2002.
https://doi.org/10.1109/4235.996017

31. A. Kaur and S. Goyal, “A genetic algorithm for
fault-based regression test case prioritization,”
International Journal of Computer Applications, vol. 32,
no. 8, pp. 975–8887, Oct. 2011.

32. W. Jun, Z. Yan, and J. Chen, “Test case prioritization
technique based on genetic algorithm,” Internet
Computing & Information, pp. 173-175, Sept. 2011.

33. S. Sabharwal, R. Sibal, and C. Sharma, “Prioritization
of test case scenarios derived from activity diagram
using genetic algorithm”, 2010 International
Conference on Computer and Communication
Technology, ICCCT-2010, IEEE, pp. 481–485, 2010.

34. Y. C. Huang, C. Y. Huang, J. R. Chang, and T. Y. Chen,
“Design and analysis of cost cognizant test case
prioritization using genetic algorithm with test
history,” In 2010 IEEE 34th Annual Computer Software
and Applications Conference, pp. 413–418, July 2010.

35. Y. Singh, A. Kaur, and B. Suri, “Test case
prioritization using ant colony optimization,” ACM
SIGSOFT Softw. Eng. Notes, vol. 35, no. 4, pp. 1-7, 2010

36. D. Gao, X. Guo, and L. Zhao, “Test case prioritization
for regression testing based on ant colony
optimization”, In 2015 6th IEEE International
Conference on Software Engineering and Service
Science (ICSESS), IEEE, pp. 275-279. 2015.

37. B. Suri, & S. Singhal, “Analyzing test case selection &
prioritization using ACO”. ACM SIGSOFT Software
Engineering Notes, Vol. 36, No. 6, pp. 1-5, 2011.

38. T. Noguchi, H. Washizaki, and Y. Fukazawa,
“History-Based Test Case Prioritization for Black
Box Testing Using Ant Colony Optimization,”
In 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), IEEE, pp.
1-2, 2015.

39. K. Solanki, Y. Singh, S. Dalal, and P.R. Srivastava,
“Test case prioritization: an approach based on
modified ant colony optimization”. In Emerging
Research in Computing, Information, Communication
and Applications, Springer, Singapore, pp. 213-223,
2016.

40. S. Eghbali and L. Tahvildari, “Test Case Prioritization
Using Lexicographical Ordering,” IEEE Transactions

on Software Engineering, Vol. 42, No.12, pp.1178-1195,
April 2016.

41. D. J. Mala, M. Kamalapriya, R. Shobana, and V. Mohan,
“A non-pheromone based intelligent swarm
optimization technique in software test suite
optimization”, In 2009 International Conference on
Intelligent Agent & Multi-Agent Systems, IEEE, pp. 1-5.
July 2009.

42. D. Jeffrey and N. Gupta, “Test case prioritization using
relevant slices”, In 30th Annual International
Computer Software and Applications Conference
(COMPSAC'06), IEEE, Vol. 1, pp. 411-420, Sept. 2006.

43. S. Li, N. Bian, Z. Chen, and D. You, “A simulation
study on some search algorithms for regression test
case prioritization” In 2010 10th International
Conference on Quality Software, IEEE, pp. 72-81, 2010.

44. D. Nardo, N. Alshahwan, and L. Briand, “Coverage�
based regression test case selection, minimization,
and prioritization: a case study on an industrial
system”, Software Testing, Verification and Reliability,
Vol. 25, No. 4, pp.371-396, 2015.

45. H. Do and G. Rothermel, “On the use of mutation
faults in empirical assessments of test case
prioritization techniques”, IEEE Transactions on
Software Engineering, Vol. 32, No. 9, pp. 733-752,
2006.

46. H. Do, G. Rothermel, and A. Kinneer, “Prioritizing
JUnit test cases: An empirical assessment and
cost-benefits analysis”, Empirical Software
Engineering, Vol. 11, No. 1, pp. 33-70, 2006.

47. G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold,
“Prioritizing test cases for regression testing”. IEEE
Transactions on software engineering, Vol. 27, No. 10,
pp.929-948, 2001.

48. G. M. Kapfhammer and M. L. Soffa, “Using coverage
effectiveness to evaluate test suite prioritizations”,
In Proceedings of the 1st ACM international workshop
on Empirical assessment of software engineering
languages and technologies: held in conjunction with
the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), ACM, pp.
19-20, Nov. 2007.

49. D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, T. Xie,
“To Be Optimal or Not in Test-Case Prioritization”.
IEEE Transactions on Software Engineering, Vol. 42,
No. 5, pp. 490-504, 2015.

50. C. Fang, Z. Chen, and B. Xu, “Comparing logic
coverage criteria on test case prioritization”, Science
China Information Sciences, Vol. 55, No. 12,
pp.2826-2840, 2012.

51. S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test
case prioritization: A family of empirical
studies”. IEEE transactions on software
engineering, Vol. 28, No. 2, pp.159-182, 2002.

52. D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche,
“Coverage-based test case prioritisation: An
industrial case study”, In 2013 IEEE Sixth

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1529

International Conference on Software Testing,
Verification and Validation, IEEE, pp. 302-311, 2013.
https://doi.org/10.1109/ICST.2013.27

53. J. M. Kim, and A. Porter, “A history-based test
prioritization technique for regression testing in
resource constrained environments”, In Proceedings
of the 24th international conference on software
engineering ACM, pp. 119-129, May 2002.

54. A. Khalilian, M. A. Azgomi, and Y. Fazlalizadeh, “An
improved method for test case prioritization by
incorporating historical test case data”, Science of
Computer Programming, Vol. 78. No. 1, pp.93-116,
Nov. 2012.

55. H. Park, H. Ryu and J. Baik, “Historical value-based
approach for cost-cognizant test case prioritization to
improve the effectiveness of regression testing”,
In 2008 Second International Conference on Secure
System Integration and Reliability Improvement, IEEE,
pp. 39-46, July 2008.

56. S. Kim and J. Baik, “An effective fault aware test case
prioritization by incorporating a fault localization
technique”, In Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement, ACM, p. 5, Sept. 2010.

57. Y. Fazlalizadeh, A. Khalilian, M. A. Azgomi and S.
Parsa, “Prioritizing test cases for resource constraint
environments using historical test case performance
data”, In 2009 2nd IEEE International Conference on
Computer Science and Information Technology, IEEE,
pp. 190-195, Aug. 2009.

58. H. Aman, T. Nakano, H. Ogasawara and M. Kawahara,
“A topic model and test history-based test case
recommendation method for regression testing”,
In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops
(ICSTW), IEEE, pp. 392-397, April 2018.

59. T. Megala and K. Vivekanadan, “History Based Multi
Objective Test Suite Prioritization in Regression
Testing Using Genetic Algorithm”, pp. 129–135,
2017.

60. H. Srikanth, L. Williams and J. Osborne, “System test
case prioritization of new and regression test cases”.
In 2005 International Symposium on Empirical Software
Engineering, IEEE, pp. 10-pp, Nov. 2005.

61. T. Muthusamy, “A New Effective Test Case
Prioritization for Regression Testing based on
Prioritization Algorithm”, International Journal of
Applied Information Systems (IJAIS), vol. 6, no. 7, pp.
21–26, 2014.

62. H. Srikanth, C. Hettiarachchi, and H. Do,
“Requirements Based Test Prioritization Using Risk
Factors”, Information and Software Technology, vol.
69, no. C, pp. 71–83, 2016.

63. H. Srikanth and L. Williams, “On the economics of
requirements-based test case prioritization”, In ACM
SIGSOFT Software Engineering Notes, ACM, Vol. 30,
No. 4, pp. 1-3, May 2005.

64. H. Srikanth, S. Banerjee, L. Williams and J. Osborne,
“Towards the prioritization of system test
cases”, Software Testing, Verification and Reliability,
Vol. 24, No. 4, pp.320-337, June 2014.
https://doi.org/10.1002/stvr.1500

65. T. Ma, H. Zeng, and X. Wang, “Test case prioritization
based on requirement correlations”, IEEE/ACIS 17th
International Conference on Software Engineering,
Artificial Intelligence, Networking, and
Parallel/Distributed Computing, SNPD, pp. 419–424,
May 2016.

66. M. J. Arafeen and H. Do, “Test case prioritization
using requirements-based clustering” In 2013 IEEE
Sixth International Conference on Software Testing,
Verification and Validation, IEEE, pp. 312-321, 2013.

67. R. Krishnamoorthi and S.S.A Mary, “Factor oriented
requirement coverage-based system test case
prioritization of new and regression test
cases”, Information and Software Technology, Vol. 51,
No. 4, pp.799-808, April 2009.

68. X. Zhang, C. Nie, B. Xu and B. Qu, 2007, “Test case
prioritization based on varying testing requirement
priorities and test case costs”, In Seventh International
Conference on Quality Software (QSIC 2007), IEEE, pp.
15-24, Oct. 2007.

69. K. Ramasamy and S. A. Mary, 2008, “Incorporating
varying requirement priorities and costs in test case
prioritization for new and regression testing”,
In 2008 International Conference on Computing,
Communication and Networking, IEEE, pp. 1-9, 2008.

70. Y. I. Salem and R. Hassan, “Requirement-based test
case generation and prioritization”, In 2010
International Computer Engineering Conference
(ICENCO), IEEE, pp. 152-157, Dec. 2010.

71. R. Kavitha, V. R. Kavitha and N. S. Kumar,
“Requirement based test case prioritization”, In 2010
International Conference on Communication Control
and Computing Technologies, IEEE, pp. 826-829, 2010.

72. P. Berander and A. Andrews, “Requirements
Prioritization”, in Engineering and Managing Software
Requirements, A. Aurum and C. Wohlin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 69–94,
2005.

73. M. Salehie, S. Li, L. Tahvildari, R. Dara, S. Li and M.
Moore, “Prioritizing requirements-based regression
test cases: A goal-driven practice”, In 2011 15th
European Conference on Software Maintenance and
Reengineering, IEEE, pp. 329-332, March 2011.
https://doi.org/10.1109/CSMR.2011.46

74. S. P. Dongoor, “Selecting an appropriate
Requirements Based Test Case Prioritization
Technique”, M.S. dissertation, 2019.

75. G. Rothermel, R. H. Untch, C. C. Chu, and M. J.
Harrold, “Test case prioritization: an empirical
study”, in Software Maintenance, 1999. (ICSM ’99)
Proceedings. IEEE International Conference on
Software Maintenance-1999 (ICSM'99).'Software

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1530

Maintenance for Business Change'(Cat. No.
99CB36360), IEEE, pp. 179–188, Aug. 1999.

76. Y. T. Yu and M. F. Lau, “Fault-based test suite
prioritization for specification-based testing”
Information and Software Technology, vol. 54, no. 2, pp.
179–202, 2012.

77. K. Solanki, Y. Singh and S. Dalal, “A Comparative
Evaluation of “m-ACO” Technique for Test Suite
Prioritization”, Indian Journal of science and
technology, Vol. 9, No. 30, pp.1-10, Aug. 2016.

78. B. Jiang, Z. Zhang, W. K. Chan, T. H. Tse, and T. Y.
Chen, “How well does test case prioritization
integrate with statistical fault localization?”,
Information and Software Technology, vol. 54, no. 7, pp.
739–758, July 2012.

79. K. Solanki, Y. Singh, and S. Dalal, “Test case
prioritization: an approach based on modified ant
colony optimization (m-ACO)”, In 2015 International
Conference on Computer, Communication and Control
(IC4), IEEE, pp. 1-6, Sept. 2015.

80. Y. C. Huang, K. L. Peng, and C. Y. Huang, “A
history-based cost-cognizant test case prioritization
technique in regression testing”, Journal of Systems
and Software, vol. 85, no. 3, pp. 626–637, March 2012.

81. A. G. Malishevsky, J. R. Ruthruff, G. Rothermel and S.
Elbaum, “Cost-cognizant test case prioritization”,
Technical Report TR-UNL-CSE-2006-0004, University
of Nebraska-Lincoln, (pp. 97-106), March 2006.

82. A. G. Malishevsky, G. Rothermel, and S. Elbaum,
“Modeling the cost-benefits tradeoffs for regression
testing techniques” In International Conference on
Software Maintenance, 2002. Proceedings, IEEE, pp.
204-213, Oct. 2002.

83. S. Elbaum, G. Rothermel, S. Kanduri, S. and A. G.
Malishevsky, “Selecting a cost-effective test case
prioritization technique”, Software Quality
Journal, Vol. 12, No. 3, pp.185-210, Sept. 2004.

84. A.M. Smith and G.M Kapfhammer, “An empirical
study of incorporating cost into test suite reduction
and prioritization”, In Proceedings of the 2009 ACM
symposium on Applied Computing, ACM, pp. 461-467,
March 2009.

85. H. Srikanth, M. B. Cohen and X. Qu, 2009, “Reducing
field failures in system configurable software:
Cost-based prioritization”, In 2009 20th International
Symposium on Software Reliability Engineering, IEEE,
pp. 61-70, Nov. 2009.

86. P.R Srivastava, “Model for optimizing software
testing period using non homogenous poisson process
based on cumulative test case prioritization”,
In TENCON 2008-2008 IEEE Region 10
Conference, IEEE, pp. 1-6, Nov. 2008.

87. H. Stallbaum, A. Metzger and K. Pohl, “An automated
technique for risk-based test case generation and
prioritization”, In Proceedings of the 3rd international
workshop on Automation of software test, ACM, pp.
67-70, May 2008.

88. M. Yoon, E. Lee, M. Song and B. Choi, “A test case
prioritization through correlation of requirement
and risk”, Journal of Software Engineering and
Applications, Vol. 5, No. 10, p.823, Oct. 2012.
https://doi.org/10.4236/jsea.2012.510095

89. C. Hettiarachchi, H. Do, and B. Choi, “Effective
regression testing using requirements and risks”,
Proceedings - 8th International Conference on Software
Security and Reliability (SERE), IEEE, pp. 157–166,
June 2014.

90. H. Yoon and B. Choi, “A Test Case Prioritization
Based on Degree of Risk Exposure and Its Empirical
Study”, International Journal of Software Engineering
and Knowledge Engineering, vol. 21, no. 2, pp.
191–209, 2011.

91. C. Hettiarachchi, H. Do, and B. Choi, “Risk-based test
case prioritization using a fuzzy expert system”,
Information and Software Technology, 69, pp. 1-15, Jan.
2016.

92. E. J. Uusitalo, M. Komssi, M. Kauppinen and A. M.
Davis, “Linking requirements and testing in
practice”, In 2008 16th IEEE International
Requirements Engineering Conference, IEEE, pp.
265-270, Sept. 2008.

93. G. Mogyorodi, “Requirements-based testing: an
overview”, In Proceedings 39th International
Conference and Exhibition on Technology of
Object-Oriented Languages and Systems. TOOLS 39,
IEEE, pp. 286-295, July 2001.

94. S, W. Thomas, H. Hemmati, A. E. Hassan and D.
Blostein, “Static test case prioritization using topic
models”, Empirical Software Engineering, Vol. 19, No.
1, pp. 182-212, Feb. 2014.

95. B. Korel, L. H. Tahat and M. Harman, “Test
prioritization using system models”, In 21st IEEE
International Conference on Software Maintenance
(ICSM'05), IEEE, pp. 559-568, Sept. 2005.

96. B. Korel, G. Koutsogiannakis and L. H. Tahat,
“Model-based test prioritization heuristic methods
and their evaluation”, In Proceedings of the 3rd
international workshop on Advances in model-based
testing, ACM, pp. 34-43, July 2007.

97. B. Korel, G. Koutsogiannakis and L. H. Tahat,
“Application of system models in regression test suite
prioritization”, In 2008 IEEE International Conference
on Software Maintenance, IEEE, pp. 247-256, 2008.

98. H. Hemmati, A. Arcuri and L. Briand, “Achieving
scalable model-based testing through test case
diversity”, ACM Transactions on Software Engineering
and Methodology (TOSEM), Vol. 22, No. 1, p.6, 2013.

99. C. R. Panigrahi and R. Mall, “A heuristic-based
regression test case prioritization approach for
object-oriented programs”, Innovations in Systems
and Software Engineering, Vol. 10, No. 3, pp.155-163,
2014.

Omdev Dahiya et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1521 - 1531

1531

100. C. R. Panigrahi and R. Mall, “Model-based regression
test case prioritization”, ACM SIGSOFT Software
Engineering Notes, Vol. 35, No. 6, pp.1-7, 2010.
https://doi.org/10.1145/1874391.1874405

101. S. Sampath, R.C. Bryce, G. Viswanath, V. Kandimalla,
V. and A.G. Koru, “Prioritizing user-session-based
test cases for web applications testing”, In 2008 1st
International Conference on Software Testing,
Verification, and Validation, IEEE, pp. 141-150, 2008.

102. A. M. Memon and Q. Xie, “Studying the
fault-detection effectiveness of GUI test cases for
rapidly evolving software”, IEEE transactions on
software engineering, Vol. 31, No. 10, pp.884-896, Nov.
2005.

103. S. Sprenkle, S. Sampath, E. Gibson, L. Pollock and A.
Souter, “An empirical comparison of test suite
reduction techniques for user-session-based testing of
web applications”, In 21st IEEE International
Conference on Software Maintenance (ICSM'05), IEEE,
pp. 587-596, Sept. 2005.

104. R. C. Bryce and A. M. Memon, “Test suite
prioritization by interaction coverage”, In Workshop
on Domain specific approaches to software test
automation: in conjunction with the 6th ESEC/FSE joint
meeting, ACM, pp. 1-7, Sept. 2007.

105. R. C. Bryce, S. Sampath and A. M. Memon,
“Developing a single model and test prioritization
strategies for event-driven software”, IEEE
Transactions on Software Engineering, Vol. 37, No. 1,
pp.48-64, 2010.

106. K.H.S. Hla, Y. Choi, and J.S Park, “Applying particle
swarm optimization to prioritizing test cases for
embedded real time software retesting”, In 2008
IEEE 8th International Conference on Computer and
Information Technology Workshops, IEEE, pp. 527-532,
July 2008.

107. A. Srivastava and J. Thiagarajan, “Effectively
prioritizing tests in development environment”,
In ACM SIGSOFT Software Engineering Notes, ACM,
Vol. 27, No. 4, pp. 97-106, July 2002.

108. Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou
and L. Zhang, “How does regression test
prioritization perform in real-world software
evolution?”, In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), IEEE, pp.
535-546, May 2016.

109. A. Vescan, C. Şerban, C. Chisăliţă-Cretu, and L. Dioşan,
“Requirement dependencies-based formal approach
for test case prioritization in regression testing”,
In 2017 13th IEEE International Conference on
Intelligent Computer Communication and Processing
(ICCP), IEEE, pp. 181-188, Sept. 2017.

110. A. Schwartz and H. Do, “Cost-effective regression
testing through Adaptive Test Prioritization
strategies”, Journal of Systems and Software, 115,
pp.61-81, May 2016.
https://doi.org/10.1016/j.jss.2016.01.018

111. Sujata and G. N. Purohit, 2015, “A Schema Support for
Selection of Test Case Prioritization Techniques”,
In 2015 Fifth International Conference on Advanced
Computing & Communication Technologies, IEEE, pp.
547-551, Feb. 2015.
https://doi.org/10.1109/ACCT.2015.91

