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 
ABSTRACT 
 
Software testing is an activity performed for evaluating the 
system by various testing techniques. Regression test case 
selection selects those test cases which focuses on the 
modified part of the software. It generally filters test cases 
instead of removing them. Test case minimization eliminates 
certain test cases thus, reducing the number of test cases and 
lays stress on using a subset of the test suite from an economy 
point of view. This sometimes reduces the rate of fault 
detection. Elimination of test cases is not performed in test 
case prioritization, rather it arranges them according to 
priority and they are thus executed with higher priority cases 
first followed by the lower priority ones. Test case 
prioritization can be search-based or fault-based or coverage 
based. They may also be risk-based, fault-based, history-based 
or requirement based.  
This paper has presented a comparative analysis of various 
TCP approaches according to the prioritization objectives 
framed for this study. The aim is not to show that a particular 
approach has some limitations as the performance of an 
approach varies on multiple factors such as testing scenarios, 
testing needs, size of the program upon which they were 
applied and the testing environment. The factors governing 
the need for the development of a certain approach are fast 
execution of test cases or early fault detection or making 
testing cost-effective, although researchers try to achieve 
most of them if not all. The approaches developed by 
numerous researchers are comparatively studied and results 
are presented systematically.      
 
 
Key words: Regression testing, Software failure, Software 
quality, Software testing, Test case prioritization.  
 
1. INTRODUCTION 
 

In the present scenario, the role of software can be traced 
from every device associated with human beings to life-saving 
devices in the medical field, in space technology and 
aviation-related devices also. It can be said that software is 
omnipresent. Therefore, so much of stress is laid out on the 

 
 

quality and reliability of the software [1]-[3]. Testing plays a 
vital role in examining whether the developed software 
product meets the desired standards or not [4]-[5]. Many 
techniques for testing the software were developed by the 
researchers. Exhaustive testing is used to execute every test 
case designed for testing. But its drawback is that it is not 
practically feasible owing to time, resource and cost 
constraint [6]-[8]. A recent software glitch in Boeing 737 max 
caused a huge loss of human life and money in which a 
software problem has resulted in a faulty sensor reading 
which forced the plane nose down leading to two fatal crashes 
killing altogether 346 people on board [9]. Another example 
is of Microsoft windows operating system in which software 
vulnerability popularly known as "EternalBlue" has resulted 
in a huge amount of loss and a serious lesson to remain 
cautious of releasing security patches and to spread awareness 
about cybersecurity [10]. 

The Organization of this paper is as follows: In Section 2 
regression testing and techniques for test case prioritization 
are discussed in detail. Section 3 presents the need to conduct 
this study and discussed the prioritization objectives framed 
for this paper. Section 4 presents an in-depth analysis of 
different techniques for test case prioritization, which is 
subsequently followed by a table showing comparative 
analysis. Section 5 discusses conclusion and future work. The 
last section discusses the references included in this study. 

2. REGRESSION TESTING  
     One of the popular approaches in testing is regression 
testing which is performed to check whether no new faults 
have crept in the unmodified code after some part of the 
source code is modified [11]-[12]. An approach in regression 
testing is retest-all the test cases on the modified program, but 
it is not practically feasible [13]. So, developers have to 
maintain the balance between the quality of the software 
product and the cost accomplished in testing as customer 
satisfaction is the ultimate goal of a software development 
organization [1], [14]-[15].   
      Therefore, to make the regression testing effective, 
various strategies are developed which are Test Case 
Selection (TCS), Test Suite Minimization (TSM), Test Case 
Prioritization (TCP) [16]. TCS selects those test cases which 
may focus on testing the modified part of the software. TSM 
discards redundant test cases to reduce the test suite size. Both 
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TCS and TSM approaches may lead to a decrease in fault 
detection rate as claimed by different researchers [17]-[18]. 
This is the driving force which motivates the researchers to 
work on TCP approaches which neither selects nor discards 
test cases but executes them in a certain priority way to 
increase detection of faults. Researchers have proposed 
numerous test case prioritization approaches (figure 1). [16], 
[19]-[24].  
 

 
 
 
       Figure 1: Categorization of TCP approaches. [19], [24] 
 
 

The goal of TCP can be manifold such as enhancing the 
rate of fault detection or reducing the time and cost incurred 
in the mechanism of prioritization or to increase the capture 
of high priority requirements. 

3. THE MOTIVE OF THIS STUDY  
This paper has worked to comparatively analyze various 

TCP approaches for regression testing. This study is not 
performed to discuss advantages or limitations of various 
approaches, rather the motive of this study is to provide a 
detailed analysis of the existing approaches by comparing 
them with the prioritization objectives framed for this study. 

For this paper, the articles were searched from Scopus and 
Google Scholar database and due to this all the major venues 
were covered such as Elsevier, Springer, IEEE, ACM, etc. For 
searching the papers, a search string is devised after various 
experiments, adding and removing keywords in it and using 
“AND”, “OR” operations. The search string is < “Software 
testing” and “Regression testing” and “Test case 
prioritization”>. In the next step, collectively from both the 
databases, a large number of studies were retrieved and after 
following the guidelines by Kitchenham [25] and the defined 
procedure along with inclusion and exclusion criteria, finally 
we were able to finalize 85 studies for inclusion in this study 
which have fulfilled our defined prioritization objectives well. 
Accordingly, a table is then made which shows a comparative 
analysis of the different approaches (figure 2).  
 
PRIORITIZATION 

OBJECTIVES 
EXPLANATION 

PO1 Whether fault detection capability 
is enhanced by the proposed 
technique and/or whether historical 
information of test cases is used to 
generalize the result. 

PO2 Whether the overall cost of 
regression testing has been reduced 
and does the approach resulted in a 
cost-effective one. 

PO3 Whether execution time was 
reduced along with an increased rate 
of fault detection and/or whether 
maximum user requirements were 
captured. 

PO4 Whether maximum code coverage 
has been achieved in terms of 
branch/statement/function so that 
fault can be detected early in 
modified code. 

PO5 Whether risk factor associated 
with particular test cases are taken 
into account for prioritizing test 
cases and/or whether the proposed 
technique has also shown 
effectiveness in testing real-world 
systems/Industrial study/web 
applications like GUI/web-based 
applications.  

 
          Figure 2: Prioritization objectives for this study. 
 
  The aim of designing the prioritization objectives is to 
comparatively analyze different techniques designed by the 
researchers based on these objectives. Every technique 
executes uniquely according to the provided testing 
environment, the size of programs upon which they were 
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incorporated and based on testing needs.  

4. IN-DEPTH ANALYSIS OF TEST CASE 
PRIORITIZATION APPROACHES 

    This section will provide a detailed review of the 
existing techniques which covers the basic aspects and factors 
based on which these approaches were proposed by the 
researchers. This will facilitate the readers to have a better 
understanding of the different techniques for test case 
prioritization.  

 
 

 
4.1 Search-based test case prioritization 
 

  These approaches have followed nature inspired 
metaheuristic algorithms to solve complex problems in 
computer science. These include Genetic algorithm [26]-[34], 
Ant colony optimization [35]-[39], and others [40]-[42]. 
Opinion for the usage of these approaches varies according to 
different researchers, such as shown by Li et al., various 
factors play a role here such as fitness function, test suite, 
input criteria, etc [43]. Still, these approaches were favored by 
various researchers due to its advantages. 
 
4.2 Coverage-based test case prioritization 
 
      These approaches aim to provide maximum coverage of 
the branch/statement/function to enhance the rate of fault 
detection. In this, there is direct inspection of source code 
[44]. After the evaluation of the criteria, these approaches are 
further categorized as additional and total coverage based 
[16]. These techniques were followed by numerous 
researchers [23], [45]-[52]. An enormous study is conducted 
by various researchers and logical reasoning is provided by 
them that greater effectiveness is achieved by greater 
coverage. Although, it is one of the criteria of test case 
prioritization which may or may not leads to cover all the 
faults. 
 
4.3 History-based test case prioritization 
 
      These techniques use a history of test case execution for 
prioritizing the test cases. Kim and porter proposed a 
history-based approach for TCP [53]. This approach is further 
extended in the research conducted by Khalilian et al., in 
which it is concluded that the fault detection rate is increased 
if test cases are prioritized by using historical test data [54]. 
The result of this work is shown using APFDc metric. This 
approach is favored by several researchers [55]-[59]. Though 
this being an effective approach, it has few shortcomings such 
as availability of historic information is limited and 
information about a defect is also available is a small number. 
 

4.4 Requirement-based test case prioritization 
 

  These techniques state that as requirements are the 
building blocks of a system, so important test cases can be 
classified utilizing requirement information. A technique 
called “PORT- prioritization of requirements for test" is 
developed by Srikant et al., in which a criterion is given to 
provide the value of software requirement importance [60]. In 
a conducted study by Muthusamy, various perspectives of 
requirement were given and they have proved their result to 
be effective in terms of rate of fault detection [61]. In the 
research performed by Srikant et al., it is concluded that if two 
or more factors are taken in a combination, then testing is said 
to be much more effective [62]. Owing to the trends, many 
researchers have worked on these approaches [63]-[74], 
[92]-[93], [109]. It shows how this area is gaining popularity 
to deliver a quality product to the customer within the 
stipulated budget and time.  
 
4.5 Fault-based test case prioritization 
 

The approach of these techniques is to specifically target 
certain faults by arranging test cases in a certain sequence. As 
stated by Rothermel et al., during the execution of a particular 
statement specific faults can be discovered and possibilities of 
discovering other errors are also high while executing a 
statement [75]. Various approaches for enhancing the 
detection of faults is given by many researchers so that testing 
can be termed as an effective one [76-79]. 
 
4.6 Cost-based test case prioritization 
 

The reason behind working on the cost model is to make 
the testing process cost-effective one. A cost-based model is 
proposed by Huang et al. in the study conducted by them [80]. 
Malishevsky et al. presented a cost-based metric i.e APFDc 
[81]. Work was also performed by other researchers on a 
cost-based model so that the cost of testing can be reduced 
[82-85]. 
 
4.7 Risk-based test case prioritization 
 

Work on risk-based approaches is started to target 
risk-prone elements in the software and if the risk is timely 
evaluated it will help in preventing further damage [86]. 
According to Stallbaum et al., test cases are prioritized based 
on the risk associated with them and these test cases are 
generated from the activity diagram via a technique proposed 
by them [87]. In the study performed by Yoon, risky elements 
were assigned a risk exposure value which is originated from 
requirements and test cases are prioritized accordingly [88]. 
Many researchers have worked on these approaches as, if risk 
causes damage then a huge amount of loss is incurred by the 
software industry [89]-[91]. 
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4.8 Other approaches for test case prioritization 
 
Apart from the approaches discussed above, researchers have 
worked upon many other techniques such as model-based 
[94]-[100], web application-based [101]-[105] and even 
techniques to be applicable on real-world systems [44], 
[106]-[108]. For approaches to testing automation, 
model-based testing is gaining popularity among researchers 

as it is considered as a profitable option. In this, system 
information about architecture and data structure is required 
instead of source code and when compared to the actual 
system its execution is also fast. TCP techniques for testing 
web applications is also gaining popularity due to the increase 
in usage of the Internet. For real-world systems regression 
faults are only a few and difficult to locate, so researchers 
have also explored this sphere.

 
Table 1: Comparative analysis of the different techniques for test case prioritization 

 
Author, Publication year and Reference TCP technique/ Algorithm/ 

Metric used to evaluate the 
proposed technique. 

PO 1 PO 2 PO 3 PO 4 PO 5 

       
Y. Lou et al., 2015 [26] Search-based, GA, APFD      

Maheswari and Mala, 2015 [27] Search-based, GA      

C. Catal, 2012 [28] Search-based, GA - - -   
Yuan et al., 2015 [29] Search-based, GA, APSC      
Deb et al., 2002, [30] Search-based, GA, ,  - - -  - 
Kaur and Goyal, 2011 [31] Search-based, GA, APFD      
Jun et al., 2011 [32] Search-based, GA, APBC      
Sabharwal et. al., 2010 [33] Search-based, GA    - - 

Huang et al., 2010 [34] Search-based, GA, APFDc      
Singh et al., 2010 [35] Search-based, ACO, APFD      
Gao et al., 2015 [36] Search-based, ACO, APFD      

Suri and Singhal, 2011 [37] Search-based, ACO, TC      
Noguchi et al., 2015 [38] Search-based, ACO      
Solanki et al., 2016 [39] Search-based, ACO, APFD, PTR      
Eghbali and Tahvildari, 2016 [40] Others, APFD     - 
Mala et al., 2009 [41] Others, ABC      
Jeffrey and Gupta, 2006 [42] Others, APFD      
Li et al., 2016 [43] Search-based, APRCI      
Nardo et al., 2015 [44] Search-based, Real-world systems, 

APFD 
     

Do and Rothermel, 2015 [45] Coverage-based, APFD      

Do et al., 2006 [46] Coverage-based, APFD      
Rothermel et al., 2001 [47] Coverage-based, APFD      
Kapfhammer and sffa, 2007 [48] Coverage-based, CE      

Hao et al., 2015 [49] Coverage-based, APFD, APxC      
Fang et al., 2012 [50] Coverage-based, CI     - 
Elbaum et al., 2002 [51] Coverage-based, APFD      

Nardo et al., 2013 [52] Coverage-based, APFD      
Kim et al., 2002 [53] History-based       
Khalilian, 2012 [54] History-based, APFD     - 
Park et al., 2008 [55] History-based, APFDc      
Kim and Baik, 2010 [56] History-based, FATCP, APT      
Fazlalizadeh et al., 2009 [57] History-based      - 
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Aman et al., 2012 [58] History-based   -   
Megala, 2017 [59] History-based, GA, APFD      
Srikanth et al., 2005 [60] Requirement-based, PORT, WPFD      

Muthusamy, 2014, [61] Requirement-based, APFD      
Srikanth et al., 2016 [62] Requirement-based, ReBaTe, 

TSFD, APFD 
     

Srikanth and Williams, 2005 [63] Requirement-based, PORT, ASFD      
Srikanth et al., 2013 [64] Requirement-based, PORT, APFD      
Ma et al., 2016 [65] Requirement-based, APFD      
Arafeen and Do, 2013 [66] Requirement-based, APFD      

Krishnamoorthi and Mary, 2009 [67]  Requirement-based, RFV      

Zhang et al., 2007 [68] Requirement-based, MRP_TC      

Ramasamy and Mary, 2008 [69] Requirement-based, TPFD      

Salem and Hassan, 2011 [70] Requirement-based      

Kavitha et al., 2010 [71] Requirement-based      
Berander and Andrews, 2005 [72] Requirement-based -   - - 
Salehie et al., 2011 [73] Requirement-based, APFD      
Dongoor, 2019 [74] Requirement-based - -  -  
Rothermel et al., 1999 [75] Fault-based, APFD      
Yu and Lau, 2012 [76] Fault-based, APFD, FATE      
Solanki et al., 2016 [77] Fault-based, m-ACO, APFD, PTR      

Jiang et al., 2012 [78] Fault-based      
Solanki et al., 2013 [79] Fault-based, m-ACO, APFD      

Huang et al., 2012 [80]  Cost-based, GA, APFDc    - - 
Malishevsky et al., 2006 [81] Cost-based, APFDc      
Malishevsky et al., 2002 [82] Cost-based      

Elbaum et al., 2004 [83] Cost-based, APFD      
Smith and Kapfhammer, 2009 [84] Cost-based, RFFS      

Srikanth et al., 2009 [85] Cost-based, NAPFD     - 
Srivastava, 2008 [86] Risk-based      
Stallbaum et al., 2008 [87]  Risk-based, RiteDAP, APDP      
Yoon, 2012 [88] Risk-based, APFD      
Hettiarachchi, 2014 [89] Risk-based    -  

Yoon and Choi, 2011 [90] Risk-based      
Hettiarachchi et al., 2016 [91] Risk-based, APFD, PTRSW      
Uusitalo et al., 2008 [92] Requirement-based - -  - - 

Mogyorodi, 2001 [93] Requirement-based      
Thomas et al., 2014 [94] Model-based, APFD      
Korel et al., 2005 [95] Model-based, MLP      
Korel et al., 2007 [96] Model-based, MLP     - 
Korel et al., 2008 [97] Model-based, MLP      
Hemmati et al., 2013 [98] Model-based    -  
Panigrahi and Mall, 2014 [99] Model-based, APFD      
Panigrahi and Mall, 2010 [100] Model-based      
Sampath et al., 2008 [101] Web application-based, APFD      
Memon and Xie, 2005 [102] Web application-based      
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Sprenkle, 2005 [103] Web application-based    -  

Bryce and Memon, 2007 [104] Web application-based      
Bryce et al., 2011 [105] Web application-based, APFD      

Haymar and Hla, [2008 [106]  Real-world systems, PSO      

Srivastava and Thiagarajan, 2002 [107] Real-world systems, Echelon      

Lu et al., 2016 [108] Real-world systems  - - -  
Vescan et al., 2017 [109] Requirement-based      

Schwartz and Do, 2016 [110] Cost-Based      

Sujata and Purohit, 2015 [111] Factors for selecting TCP technique     -

Following is a list of abbreviations used in this table-  
 
 
GA- Genetic algorithm, ACO- Ant colony optimization, 
mACO- Modified ant colony optimization, APFD- Average 
percentage of faults detected, APSC- Average percentage of 
statement coverage, APBC- Average percentage of blocks 
covered, - Convergence metric, - Metric to measure 
spread achieved in obtained solutions, TC- Time constraint, 
ABC- Artificial bee colony optimization, PTR- Percentage of 
test suite required for complete fault coverage, APRCI- 
Average percentage of requirement coverage improved, CE- 
Coverage effectiveness, FATCP- Fault aware test case 
prioritization, APT- Average percentage of fault detected 
parsing tool, APxC- Average percentage of x coverage; 
x-branch/decision/statement, CI- Convergence index, 
WPFD- Weighted percentage of fault detected, ReBaTe- 
Requirement based testing, TSFD- Total severity of fault 
detected, RBT- Requirement behavior tree, ASFD- Average 
severity of fault detected, RFV- Requirement behavior tree, 
TPFD- Total percentage of fault detected, MRP_TC- Rate of 
units of testing requirement priority satisfied per unit test 
case cost, FATE- Fault adequate test set sizE, RFFS- 
Reduction factor for size, NAPFD- Normalized average 
percentage of fault detected, PTRSW- Percentage of Total 
Risk Severity Weight, MLP- Most likely relative position, 
APDP- Average Percentage of Damage Prevented, RiteDAP- 
Risk based test case derivation and prioritization. 
 
From the above table, it is quite clear that most of the studies 
have not fulfilled all the PO for this study. This does not show 
that they lag in their effectiveness. It is evident that if a 
particular approach has focused on maximum fault detection 
then it may or may not have shown promising results in terms 
of least execution time or with minimum cost. In the same 
way, if a particular approach is proposed by the researchers 
then they must not have tested it using industrial data set as 
well or is developed by capturing maximum user 
requirements. So, this study is of the view that every proposed 
technique has fulfilled its goals which are framed by the 
respective researchers for it. The aim of this study is fulfilled 
in terms of selecting and then comparatively analyzing the 

studies which have focused on diverse TCP techniques using 
the criteria of PO’s framed for this study and results are thus 
documented in above table.    

5. CONCLUSION AND FUTURE SCOPE 
 
Test Case Prioritization (TCP) is one of the approaches of 
regression testing which aims to make testing effective and 
efficient. This paper attempts to cover almost all TCP 
techniques proposed by numerous researchers. The 
prioritization objectives (PO) are framed for this study which 
many researchers have kept in mind while developing these 
techniques. Based on these PO, selected studies have been 
compared to find which particular approach fits in our 
desired criteria. It can be concluded that every prioritization 
technique has its advantages and limitations which are 
according to the testing needs, size of program, requirements 
and testing environment. So, it is not appropriate to say that 
this particular technique has this much of flaws or these 
advantages as it is based on the number of factors discussed 
above. Every researcher wants to develop a cost-effective 
technique, which may find faults early and is fast in execution 
also. Every aspect cannot be assured in a particular 
technique, though researchers will try to do so. For it, careful 
selection is required to be done keeping in mind various 
factors. It is not feasible to apply every existing TCP 
technique on different test suites/testing phases/software 
product to find the best TCP technique. If one technique is 
selected from them, then it may or may not be suitable for a 
different software product/test-suite/testing phase. Further 
study in this direction will try to perform an experimental 
analysis to compare the results obtained from the software 
product/ test suite when different TCP techniques are applied 
to it.   
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