
Nouha ADADI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2339- 2346

2339

Modeling and Formal Verification of Web Services Composition Using CADP
Nouha ADADI1, Mohammed BERRADA2, Mohamed HALIM3, Driss CHENOUNI4

1IPI Laboratory, ENS-Fez, Sidi Mohamed Ben Abdellah University, Morocoo, nouhaadadi@gmail.com
2IPI Laboratory, ENS-Fez, Sidi Mohamed Ben Abdellah University, Morocoo, mohammed.berrada@gmail.com

3CMTSP Laboratory, ENS-Fez, Sidi Mohamed Ben Abdellah University, Morocoo, mohamed.halim@usmba.ac.ma
4IPI Laboratory, ENS-Fez, Sidi Mohamed Ben Abdellah University, Morocoo, d_chenouni@yahoo.fr

ABSTRACT

A growing number of companies are using web services to
make their expertise and data available through the network.
The current problem is the integration of these services with
the aim of implementing business-to-business (B2B)
collaboration. This task of collaboration is called the
composition of web services. The main objective of this
research work is proposing a new approach of modeling and
verifying web services composition. This approach allows a
clear and structured modeling and easy verification
regardless of the number of services to be composed and the
degree of complexity of composition. Concerning the
contribution, we firstly propose a modeling of the composed
system based on the multi agent systems and precisely the
Multi-agent reactive decisional system (MARDS), and using
the BPM (Business Process Management) standards in
particular the BPMN notation. Secondly, we seek to verify
this modeling to prove its correctness before implementing
it. For verification, we propose a transformation of the
BPMN model to a formal LOTOS specification, which has
the advantage of being supported by formal verification
tools such as the CADP toolkit, which allows to apply the
behavioral properties and validate the system of Web
services composition.

Key word: Web services composition; BPM; MARDS;
formal LOTOS specification; CADP toolkit.

1. INTRODUCTION
The composition of web services is a very active area of
research in the field of information technology, seeing the
interest that it presents in terms of reuse of software
components. However, the composition process is a complex
global process. It consists of the processes of discovery,
selection and coordination of services that must cooperate to
meet a complex goal. Several works presented by the
research community have focused on these different aspects
of Web services composition. Among these works, we have
the Models Driven Approach (MDA) define par l’OMG [1],
which concentrates on the modeling phase. We propose an
approach that combines the MDA approach with formal
methods in order to reduce time and development costs,
while making the composition of services more reliable.

The layout of this paper is as follows. In the second section,
we present an overview of web services composition

approaches as well as the cycle of development of our
proposed approach. The third and fourth sections explain and
detail respectively phases of modeling and of verification.
The fifth section is devoted to the case study, we consider the
online item purchase system as an illustrative example to
apply the concepts of our approach. The conclusion and
future work are presented in section VI.

2. PROPOSITION OF WEB SERVICES COMPOSITION
APPROACH

2.1. Overview of web services composition approaches
Web Service composition is seen as a workflow design. The
process of web service composition consists of creation of a
workflow that realizes the functionality of a new service. In
the literature, several approaches are proposed in order to
compose web services; these approaches can be grouped into
four classes: workflow-based approaches [2], approaches
based on artificial intelligence planning techniques [3],
approaches based on dependence graphs [4], and model-
driven approaches [1]. The comparative study of these
approaches leads us to develop the summary table 1.
Table 1: Qualitative comparison between web service composition
approaches

Approaches Techniques
used

Dependence
on the

semantic
model

Level of
compos-
ability

Verificatio
n Position

Workflow-
based

approaches

Software
engineering
techniques

and workflow
management

No High
After

implement
-ation

Approaches
based on
artificial

intelligence
planning

techniques

Artificial
intelligence
techniques

Yes Medium
After

implement
-ation

Approaches
based on

dependence
graphs

Theory of
graphs and
algorithms
for optimal
path search

Yes Medium
After

implement
-ation

Model-
driven

approaches

Specification
techniques

such as
modeling
languages

No Very
high

Before
implement

-ation

 ISSN 2278-3091
Volume 8, No.5, September - October 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse73852019.pdf

https://doi.org/10.30534/ijatcse/2019/73852019

Nouha ADADI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2339- 2346

2340

The first three approaches are designed to meet the
implementation phase of a composite web service; but they
neglect the specification stage. This stage is very important
because it allows to detach from the implementation to
realize clearer abstract models, helping to the overall
understanding of the system, and allowing to ensure that the
system is meeting expectations. In addition, this specification
is sufficiently expressive to allow for automated code
generation.

Model-driven approach (MDA) concentrate on the
realization of abstract models rather than on computer or
algorithmic concepts. The specification phase is therefore
particularly important in an MDA approach and represents a
significant part of the development cycle. This allows
developers to focus on the desired behaviour of the system,
regardless of how to implement it. The partial generation of
low level code from the specification, also reduces the time
and therefore the development costs. For these reasons, we
present a solution of web services composition faithful to the
principles of MDA.

2.2. Development cycle
The main objective of MDA is the development of Platform
Independent Model (PIM) from the Computation
Independent Model (CIM), to allow the automatic generation
of Platform Specific Model (PSM) and to obtain a significant
gain in productivity. The transition from PIM to PSM
involves model transformation mechanisms and a Platform
Description Model (PDM). This approach is organized
according to a development cycle "in Y". Our proposed
approach of web service composition, consistent with MDA
principles, follows the stages of this development cycle “in
Y”. Figure 1 presents this cycle.

Figure 1: Proposed MDA approach to web services composition
The first step in the cycle is the discovery of services, using
search mechanisms such as the UDDI directory. Once the
existing services are selected, the second step is to achieve
the composition model. In our approach, we adopt BPMN
(Business Process Model and Notation) [5] as a modeling

language. To prove that the composed service is performing
the requested functionality, it is necessary to check its
temporal properties. The third step is therefore based on the
transformation of the BPMN models into a formal LOTOS
description [6] in order to validate this later using the CADP
tool [7]. The next step is the implementation of the system by
generating BPEL [8] executable code from the BPMN
specification. Finally, once the composed service is
implemented, the last step is usually to publish it in the
directory to facilitate its future use. The two stages of
modelling and verification are presented in the following
sections.

3. PHASE OF MODELING
The specification part consists in modeling the business
processes of the composition of the web services. These
processes can be described using modeling languages
associated with the BPM [9] concept. This description
becomes more difficult, complex and unstructured when the
number of services is increasing, making the verification and
implementation part difficult to afford. This problem requires
providing a well-structured architecture that allows services
to be composed in a simple but powerful way, and also
allows you to add and remove services transparently without
affecting other services. Multi-agent systems (MAS) are
composed of autonomous agents that interact and coordinate
to achieve their intentions. This makes them particularly
suitable for composite and complex modeling of information
systems. Some multi-agent models, such as the Multi-Agent
Decision-Reactive System (MARDS) [10], have a well-
structured hierarchical architecture and can be used to model
business processes in a simple, powerful and transparent way
to facilitate constraint checking and generation of executable
code. This specification phase is therefore based on the
MARDS model while using the BPM standards and
especially the Business Process Management Notation
(BPMN). It is called BPMN-MARDS profile. This profile is
designed to improve the level of expressiveness of models in
complex systems such as automated production systems,
mobile systems [11] and the organization system [12]. This
profile is customized for the domain of web services
composition by adding to the models properties specific to
the area of web services composition in order to facilitate
their understanding as well as their transformation into code
such as BPEL.

3.1. The Structure of the Services Composition Model
To present the specification phase we propose an abstract
example of web service composition. In this example, we use
7 services (service1, service2, service3, service4, service5,
service6, service7). Each of these services provides one or
more methods and interacts with each other to respond to the
customer’s request.

For modeling the example of Web Service composition we
are going to follow these steps for composing MARDS
agents:

 To organize agents in layers depending on the tasks and
activities that they execute.

Nouha ADADI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2339- 2346

2341

 To specify atomic agents which execute simple services,
this agents present the basic components (DRA agents)
of each layer.

 To identify the first and the intermediate composite
agents (MARDS agent) of each layer, if they exist.

 To specify the principal composite agent that represents
the agent which receives the main composite request
from client.

Applying these steps to the example, we obtain the MARDS
structure of this example shown in figure 2.

In this services composition model, the basic components
are: "service2"; "service4"; "service5"; "service6";
"service7". The intermediate components are: “Amazon Ag”;
“Pay Ag” and “service3”. The principal composite
component is “service1”.

Figure 2: Model of Web services composition with DRA Agent

3.2. The Business Model of the Services Composition
Figure 3 shows the business model presented in the BPMN
diagram of the web services composition. The action
"A_service1" received by the component "service1"
generates three decisions {D1_service1; D2_Service1;
D3_Service1}. Each decision corresponds either to a sub-
action received by a component such as the case of the
components: "service2" {D1_service1, A_service2} and
"service 3" {D2_service1; A_service3}, or to several parallel
sub-actions received by different components as the case of
the components: "service6" and "service7" {D3_service1,
A_service6, A_service7}. Each sub-action received by any
composite component will be realized and modeled as a sub-
process.

The sub-action "A_Service3" received by the intermediate
composite component "Service3" generates a sub-decision
"D_service3". From its role this sub-decision generates two
parallel sub-actions {A_Service4, A_Service5} for the
components "service4" and "service5". The two sub-actions
correspond to the sub-process of the sub-action
"A_Service3".

Sub-actions {A_service2; A_Service4; A_Service5;
A_Service6; A_Service7} received respectively by the basic
components "Service2", "Service4", "Service5", "Service6",
"Service7" generate the external states {Eext_service2;
Eext_Service4; Eext_Service5; Eext_Service6;
Eext_Service7}.

Figure 3: BPMN web service composition diagram

4. PHASE OF VERIFICATION
Formal verification is the systematic process of verifying,
through exhaustive algorithmic techniques, that an
implementation is in accordance with its specification. Using
formal verification, all possible execution paths are analyzed
mathematically without requiring the preparation of test
cases. The developer describes simply the properties
according to the system functionalities, which he wants to
prove; and leaves the formal verification tools explore
exhaustively all possible execution paths on the
mathematical representation.

In this section, we describe the third phase of the
development cycle of our approach, which is formal
verification. This phase consists of two essential steps, the
translation of the non-formal BPMN model into a formal
LOTOS model, and the validation of this model using the
CADP automatic verification tool. Figure 4 presents the
different steps of the verification phase.

Nouha ADADI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2339- 2346

2342

Figure 4: Verification process

4.1. Translation of the BPMN model into a formal
LOTOS model

To provide the formal specification in LOTOS corresponding
to the BPMN diagram presented in Figure 3, we follow the
following steps:
 To define a process for each step of the activity, which

means for each node of the diagram that can generate an
activity. In the BPMN diagram shown in Figure 3, the
processes are: "Initial", "process1", "process2",
"process3", "process4", "process5", "process6",
"process7", "Final". Each process is defined by a set of
behaviors.

 To assign an identifier (integer) to each process. When
sending a message through the INTERFi process, the
issuer process provides the identifier of the destination
process, its own identifier, a type of action and a
possible parameter.

 To define the gates which are the communication
channels between the processes. The gates in our
approach are (SENDi, RECi) when i between 0 and n.

 To define operations between processes, in our example,
all processes are executed at the same time using the |||
operator, which means that they are independent and do
not communicate directly with each other, but they use
INTERFi processes. The operator [| SENDi, RECi] | is
used to synchronize the service processes with the
INTERFi process via the ENVi and RECi gates, when i
between 0 and n.

 To identify control flow patterns in the workflow to
provide a definition (implementation) for each process.

4.2. Formal verification with CADP
CADP (Construction and Analysis of Distributed Processes)
[7] is a toolkit for the specification, rapid prototyping,
verification, testing and performance evaluation of
asynchronous systems. The tool incorporates a set of
compilers and verifiers such as CEASAR and
EVALUATOR.
We use the verifier EVALUATOR which support in the
inputs a formal model and a set of behavioral properties. In
the output it return the result (true or false) is that the
property is checked or not in the model and a set of proposed
correction. The behavioral property, defined by the
developer, must be described as a formula of the temporal
logic encoded in regular μ-calculus. As for the model, it must
be provided in the form of a labeled transitions system
(LTS). In our case, our model is expressed in LOTOS and
CADP will have to compile it in order to obtain a
mathematical representation in the form of an LTS. CADP
will therefore use the CAESAR compiler to obtain the
corresponding LTS, and then minimize it (if necessary) to
improve its readability.
To perform these tasks we execute the following commands:
 Using CEASAR Compiler

 Using EVALUATOR verifier

5. CASE STUDY: E-COMMERCE
As case study, we will consider in this paper an online item
purchase problem. This is a simple illustrative example that
present a typical scenario for web services composition
problem. As far as creating the e-commerce composite
service, we can use seven basic services ("Item",
"Provider","Promotion","Cart", "Payment_Detail", "Bank"
and "Transport") that will internally execute the e-commerce
service, each one executes a set of tasks.

5.1. Modelling phase

A. Structure of Web services composition

The application of the concepts of MARDS model on our
example allows to have the following structure (Figure 5) of
the composition system by creating communication
interfaces, new intermediate and main services.

$ /cadp/com/bcg_open /cadp/fileName.bcg
/cadp/bin.win32/evaluator /cadp/PropertyName.mcl

$ /cadp/bin.win32/caesar.adt /cadp/fileName.lotos
$ /cadp/bin.win32/caesar /cadp/fileName.lotos
$ /cadp/bin.win32/bcg_min /cadp/fileName.bcg
$ /cadp/com/bcg_draw /cadp/fileName.bcg

||| Process7 [SEND0, REC0] (7)
||| Final [SEND0, REC0] (8)) |[SEND0, REC0]|INTERF0
[SEND0,REC0]
(Process3 [SEND0, REC0, SEND1, REC1] (3)
||| Process4 [SEND1, REC1] (4)
||| Process5 [SEND1, REC1] (5)) |[SEND1,REC1]|INTERF1
[SEND1, REC1])
Where (∗ Implementation of processes ∗)
endproc

Specification Specification_ Name [SEND, SEND0, SEND1, REC,
REC0, REC1]:noexit Behaviour
(Init [SEND, REC] (0) |[SEND,REC]|Process1 [SEND, REC ,
SEND0,REC0] (1)
(Process1 [SEND, REC , SEND0, REC0] (1)
||| Process2 [SEND0, REC0] (2)
||| Process3 [SEND0, REC0, SEND1, REC1] (3)

CADP
Verifer

Nouha ADADI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2339- 2346

2343

Figure 5: Web service composition model based on MARDS

In this model of service composition, the basic components
are: ("Item", "Provider", "Promotion", "Cart",
"Payment_Detail", "Bank" and "Transport". The intermediate
components are: "Amazon"; "Pay"; "Research". The main
composite component is "E-commerce".

B. Business Model of the Composite Service “E-commerce”

The Figure 6 shows the Business model of the composition
services model based on MARDS. The action “A_Online
Bay” received by “E-commerce” component generates three
decisions {D1_Choose Items; D2_Pay; D3_ Deliver}. Each
decision corresponds to a several sub-actions received by
“Amazon” component {D1_Choose Items; A_Select Items},
by “Pay” component {D2_Pay, A_ Pay} and by “Transport”
component {D3_ Deliver, A_ Deliver}. Every sub-action
received by any composite component will be realized and
modeled as a sub-process.

The sub-action “A_Select Items” received by the “Amazon”
component generates two decisions {D1_Select Items; D2_
Add to Cart }. The first sub-decision “D1_ Select Items”

generates the {A_ Search} action for “Research” composite
component.

Figure 6: BPMN Diagram of "E-Commerce" Composition Scenario

Nouha ADADI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2339- 2346

2344

The second sub-decision “D2_ Add to Cart” generates the
“A_Add to Cart” action for “Cart” basic component. The
sequencing of the two sub-decisions corresponds to the sub-
process of the “A_Select Items” sub-action.

The sub-action “A_ Search” received by the “Research”
composite component generate the sub-decision “D_Search”.
On his part, this sub-decision generates three parallel sub-
actions {A_Search Item; A_Search Provider; A_Search
Promotion} for the components "Item"; "Provider" and
"Promotion". The three sub-actions correspond to the
subprocess of the sub-action "A_Search".The sub-action “A_
Pay” received by the “Pay” component generates two
decisions {D1_Call for payment detail; D2_ Invoice}. The
first sub-decision “D1_ Call for payment detail” generates
the {A_ Call for payment detail} action for
“Payment_Detail” basic component. The second sub-
decision “D2_ Invoice” generates the “A_ Invoice” action for
“Bank” basic component. The sequencing of the two sub-
decisions corresponds to the sub-process of the “A_ Pay”
sub-action.

5.2. Phase of verification
A. Translation of the BPMN model into LOTOS specification

Applying the rules and methods described in Section 4 to the
BPMN models presented in Figure 6, we obtain the
following LOTOS specification.

|||Provider [SEND3, REC3](11 of Int)
|||Promotion [SEND3, REC3](12 of Int))
|[SEND3, REC3]| INTERF3 [SEND3, REC3] (<>)
where
(*Definition of process*)
process Init [SEND, REC] (Id:Int) : exit :=
Sequence [SEND, REC] (Id, 1 of Int)
>> exit
where
process Sequence [SEND, REC] (Emt_Id:Int, dst_Id:Int): exit :=
ENV !dst_Id !Emt_Id !RUN !void; exit
endproc
endproc
process Ecommerce [SEND,REC,SEND0,REC0] (Id:Int) : exit:=
REC ! Id ! 0 of Int ! RUN ! Void;
Sequence [ENV0,REC0] (Id,2 of Int)
>> Sequence [ENV0,REC0] (Id,3 of Int)
>>exit
where (*Definition of Sequence process*)
endproc
process (*Definition of Amazon process*)
endproc
process (*Definition of Pay process*)
endproc
process(*Definition of Transport process*)
endproc
process Research [SEND1,REC1, SEND3,REC3] (Id:Int) : exit:=
REC1 ! Id ! 2 of Int ! RUN ! Void;
ParallelSplit[SEND3,REC3](Id,insert(10 of Int,insert(11 of Int,
insert(12 of Int, emptyset))))
>>exit
where
process ParallelSplit [SEND3, REC3] (Emt_Id:Int,
dsts_id:IntSet) : exit :=
[empty(dsts_id)] -> exit
[]
[not(empty(dsts_id))] ->
(let dst:Int=pick(dsts_id) in
SEND3 !dst ! Emt_Id !RUN !void;
ParallelSplit [SEND3, REC3](Emt_Id, remove(dst, dsts_id))
)
endproc
endproc
process INTERF1 [SEND1, REC1] (B:Buffer) : noexit :=
SEND1 ?R:Int ?S:Int ?D:Cmd ?P:Int;
INTERF1 [SEND1, REC1] (B + Message (R, S, D, P))
[]
[not (empty (B))] ->
(let M:Msg = head (B) in
REC1 !getrcv (M) !getsnd (M) !getcmd (M) !getprm (M);
INTERF1 [SEND1, REC1] (tail (B))
)
endproc
process
(Definition of INTERF2 process)
endproc

Specification Online_Purchase [SEND, SEND1, SEND2, SEND3,
REC, REC1, REC2, REC3]:noexit
library
BOOLEAN, NATURAL, INTEGERNUMBER
endlib
type (*Definition of types*)
endtype
behaviour
(Init [SEND, REC](0 of Int)|[SEND, REC]| Ecommerce[SEND,
REC, SEND0, REC0] (1of Int))
|||(Ecommerce [SEND, REC, SEND0, REC0](1 of Int)
|||Amazon[SEND0,REC0,SEND1, REC1](2 of Int)
|||Pay[SEND0,REC0,SEND2, REC2](3 of Int)
|||Transport[SEND0,REC0](4 of Int))
|||final[SEND0,REC0](5 of Int)))|[SEND0,REC0]|
INTERF0 [SEND0,REC0]
|||(Amazon [SEND0,REC0,SEND1, REC1](2 of Int)
|||Research [SEND1,REC1,SEND3, REC3](6 of Int)
|||Cart [SEND1,REC1](7 of Int))
|[SEND1,REC1]| INTERF1 [SEND1,REC1] (<>)
|||(Pay [SEND0,REC0,SEND2, REC2](3 of Int)
|||Payment_Detail [SEND2,REC2](8 of Int)
|||Bank [SEND2,REC2](9 of Int))
|[SEND2,REC2]|INTERF2 [SEND2,REC2] (<>)
|||(Research [SEND1,REC1,SEND3, REC3](6 of Int)
|||Item [SEND3, REC3] (10 of Int)

Nouha ADADI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2339- 2346

2345

B. Verification using CADP

After elaborating the LOTOS specification in the file
“Ecommerce.lotos” we follow the following steps:

 To compile the Lotos specification “Ecommerce.lotos”
by the Caesar.adt compiler to create the header file
“Ecommerce.h” which is used to define the standard part
of the specification. This part contains the abstract data,
types, and algebraic operations of the specification.

 To compile the two files “Ecommerce.lotos” and
“Ecommerce.h” with the Caesar compiler in order to
create the file “Ecommerce.bcg”, containing the tagged
transitions system. To improve its readability, we can
reduce this system without distorting the results using
CADP's bcg_min application by minimizing many of
their states and transitions.

 To visualize the labeled transitions system (LTS) using
CADP's bcg_draw application.

The result of the execution of these steps is visualized in
figure 7.

Figure 7: Labeled Transitions System (LTS) generated by CADP

After the creation of the labeled transitions system (LTS), the
tool is ready to provide the verification results. The task of
the developer here is to define, in a Property.mc file,
behavioral properties using μ- calculus. This type of
behavioral verification consists of the description of the
expected behavior of the program, observed at a certain level
of abstraction. In this type of verification, we can check the
following two properties:

 Safety: This property wants to show that "a bad thing"
will never happen. This property ensures the absence of
states where the program has produced a wrong result
(deadlock, errors, unsolicited response, and duplication of
outputs). As part of our case study, for example, we want to
prove that a client cannot view and download the payment
details form (total, VAT, discount…) without selecting items
and adding them to the cart.

macro Lead (A, B) =[true_.(A)]mu X.(<true> true and [not
(B)] X)
end_macro
macro SelectItems() = ’SEND1!POS(6)!POS(2)!RUN.*’
end_macro
macro Add to Cart() = ’SEND1!POS(7)!POS(2)!RUN.*’
end_macro
macro Payment_Detail () = ’SEND2!POS(8)!POS(3)!RUN.*’
end_macro
Mener (not[Payment_Detail], [SelectItems]false And [Add to
Cart]false)

process
(*Definition of INTERF3 process*)
endproc
Process Item [SEND2,REC2] (Id:Int) : noexit:=
REC2 ! Id ! 2 of Int! RUN ! Void;
stop
endproc
Process
(*Definition of basic process*)
endproc
process
final[SEND0,REC0](Id:Int) : exit :=
Synchronisation [SEND0, REC0] (insert(2 of Int, insert(3 of Int,
insert(4 of Int, emptyset))), Id)
>>exit
Where
process Synchronisation [SEND0, REC0] (Emts_Id:IntSet,
Id_dst:Int) : exit:=
[empty(Emts_Id)] -> exit
 []
[not(empty(Emts_Id))] ->
REC0 !Id_dst ?Emt_Id:Int !RUN !void [Emt_Id isin Emts_Id];
Synchronisation [SEND0, REC0] (remove(Emt_Id, Emts_Id), Id_
dst) endproc
endproc
endspec

Nouha ADADI et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2339- 2346

2346

 Vivacity: This property wants to show that "a good
thing" must happen. This property includes the termination
of treatments, assured response to requests, guaranteed
occurrence of events and equity in access to a resource. As
part of our case study, for example, we want to prove that a
client can always perform the action pay by PayPal when the
item or order is added to the cart and the payment details
form (total, VAT, discount…) is posted.

Finally we have to check these properties using the tool
EVALUATOR. This later will mathematically explore all
possible execution branches on the generated LTS to prove
that the property is verified (or not).

The formal verification step can be repeated iteratively until
a correct and refined composition model is obtained. The
model can then directly and automatically transform into
executable code without having to check the system after
implementation.

6. CONCLUSION
In this work, an approach for specification and formal
verification of composite web services is proposed.

The specification part insists on modeling the business
processes of web services composition. These processes have
been described using BPM standards and the MARDS
model.

Our approach considers not only the specification but also
the verification. Since it is preferable to detect errors as early
as possible in the development cycle, from the specification
stage we chose the formal verification of the models
developed, because we consider that it is more reliable and
easy. The developer does not need to achieve test sets and
perform the simulation of system execution.

When the composition model is validated, the last step is the
implementation, which consists in generating the BPEL
executable code from the specification. This step will be the
objective of a future work in which we will develop a
framework that allows the automatic generation of BPEL
code from the BPMN model.

REFERENCES

1. Richard Soley, Model Driven Architecture (MDA),
Draft 3.2. Object Management Group, Inc., November
2000.

2. Ardagna D, Comuzzi M, Mussi E, Pernici B, Plebani P
2007 Paws: A framework for executing adaptive web-
service processes, IEEE Software 24 39–46.
https://doi.org/10.1109/MS.2007.174

3. Lécué F, Léger A, Delteil A 2008 DL, Reasoning and
AI Planning for Web Service Composition, Web
Intelligence 445–53.
https://doi.org/10.1109/WIIAT.2008.344

4. L. Ying, 2010, A Method of Automatic Web Services
Composition Based on Directed Graph, cmc
International Conference on Communications and
Mobile Computing 1 527-31.
https://doi.org/10.1109/CMC.2010.91

5. Chand, Donald & Chircu, A.M.. (2012). Business
process modeling. 10.4018/978-1-4666-0249-6.ch003.

6. Lai R., Jirachiefpattana A. Lotos In: Communication
Protocol Specification and Verification. The Springer
International Series in Engineering and Computer
Science, vol 464. Springer, Boston, MA. (1998).
https://doi.org/10.1007/978-1-4615-5549-0_4

7. Garavel H, Lang F, Mateescu R, Serwe W, CADP 2011:
a toolbox for the construction and analysis of
distributed processes, International Journal on
Software Tools for Technology Transfer, April 2013,
volume 15, pp 89–107.
https://doi.org/10.1007/s10009-012-0244-z

8. OASIS Standard. Web services business process
execution language, version 2.0, April 2007.

9. BPM, Object Management Group, Business Process
Management Initiative, 2007. http://www.bpmn.org/

10. B. Bounabat, Méthode d’analyse et de conception
orientée objet décisionnel. Application aux langages
synchrones et aux systèmes répartis, doctoraldiss,
Cadi Ayyad University, Faculty of sciences, Marrakech,
Morocco, 2000.

11. A Aaroud, S. E. Labhalla, and B. Bounabat, Modelling
the handover function of global system for mobile
communication, The International Journal of Modelling
and Simulation, ACTA Press, vol 25, n. 2, 2005.
https://doi.org/10.2316/Journal.205.2005.2.205-4136

12. M. Berrada, B. Bounabat, and M. Harti, Modeling and
simulation of Multi-Agent reactif decisionnal systems
using business process management concepts,
International Review on Computers and Software
(IRECOS), vol. 2, n. 2, pp. 159-169, March 2007.

macro Lead (A, B) =[true_.(A)]mu X.(<true> true and [not
(B)] X)
end_macro
macro Add to Cart() = ’SEVD1!POS(7)!POS(2)!RUN.*’
end_macro
macro Payment_Detail () = ’SEND2!POS(8)!POS(3)!RUN.*’
end_macro
macro Pay by PayPal() = ’SEND2!POS(9)!POS(3)!RUN.*’
end_macro
Mener (Add to Cart and Payment_Detail, Pay by PayPal)

