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ABSTRACT 
 
In this work, we investigate a new band selection approach by 
Divergence distance based on the Gaussian Mixture Model 
(GMM) for Hyperspectral image classification. The main  
motivation in modeling the Divergence distance with GMM is 
due to the fact that GMM is well known to be less sensitive to 
estimation error problem than non-parametric models and can 
capture non Gaussian statistics of multivariate data. To 
estimate the parameters of GMM, the Expectation 
Maximization (EM) with the Bayesian Information Criterion 
(BIC) and a Robust Expectation Maximization (REM) 
algorithm are used. This investigation is inspired by our 
previous work on the Bhattacharyya distance hence we are 
particularly interested in using the Divergence distance to find 
out which one gives better results. The performances of the 
proposed approach are compared to those of the 
Bhattacharyya distance in terms of global classification 
accuracy and numbers of retained bands through two 
Classifiers; Extreme Learning Machine (ELM) and Support 
Vector Machine (SVM). The experiments are carried out on 
three hyperspectral images, the Indiana Pines (92AV3C), the 
Botswana and the Kennedy Space Center dataset (KSC). 
 
Key words : Band Selection, BIC, Bhattacharyya distance, 
Divergence distance, Hyperspectral Imaging, GMM, REM.  
 
1. INTRODUCTION 
 
The Hughes phenomenon [1] is one of the main challenges in 
remote sensing [2]. With the increase of data dimensionality 
and due to small sample size problem (SSSP) [2], a good 
estimate of the class parameters can’t be found, as result the 
classifier will not be properly trained [3]. Hence, reducing the 
data dimensionality before the classification process is 
essential. 
 
Dimensionality reduction can be accomplished in two 
different approaches, band selection [3] [4] [5] and band 
extraction [6] [7] [8]. Band extraction consists on finding a 
linear/nonlinear transformation to a lower dimensional feature 
space [6]. In remote sensing, band extraction tries to separate 

 
 

classes based on their spectral characteristics [9]. The 
Principal Component Analysis (PCA), Segmented Principal 
Component Analysis (SPCA), Independent Component 
analysis (ICA), Orthogonal Subspace Projection (OSP) and 
others [10] [11] [12] have been used to reduce the data 
volume. Because of the transformation, the original data are 
replaces by new set of variables with no actual physical 
meaning [6], which can be a disadvantage in some cases. In 
the other hand, bands selection attempts to identify a subset 
from the original pool by selecting the bands that contribute to 
the classification task by means of maximizing a class 
separability criterion [6]. Between this two dimensionality 
reduction methods, band selection is the preferred one in this 
study, as the physical meaning of the data remains unchanged 
[13]. Its main goal is to identify and choose only those bands 
that improve the classification task based on the chosen 
criterion [6]. Existing Approaches for band selection can be 
classified in two groups: the wrapper approach [6] which 
consist on using the error of the classifier itself as criterion for 
the band selection, it produce a subset with the high 
classification score, but the drawback of this technique is that 
the results is biased toward the classifier[6]. Unlike the 
wrapper approach, the filter approach [6] deploy metrics and 
distances to evaluate the bands without involving the 
classifier. 
 
In [14] [15], the authors used the Divergence distance 
criterion to evaluate the bands effectiveness. We noticed in 
those studies, the required probability estimation to model this 
distance is often done under the assumption of the Normal 
distribution. However, in remote sensing, many factors [16] 
can affect the spectral response of an hyperspectral image. As 
consequence, using the single normal distribution assumption 
to describe the data is not flexible enough to capture the 
complex data structures of the real world [17]. GMM, in the 
other hand, is known to be less sensitive to estimation error 
problem than non-parametric models [18] and captures non 
Gaussian statistic of multivariate data [16] through modeling 
the data with more than one weighted Gaussian component. 
  
This study investigate a new band selection method using the 
divergence distance based on GMM. The main challenge in 
GMM is the estimation of its parameters. In literature, the 
Expectation-Maximization (EM) algorithm [19] is often used, 
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however the EM algorithm for GMM is quite sensitive to the 
initial values [20] and the number of its components K is user 
defined. A good choice of the parameter K is important as it 
can directly affect the estimation of the covariance matrix. As 
when the ratio of the number of training samples to the 
number of bands is small, we can easily end up with the 
"Hughes phenomenon" and the classification results may not 
be satisfactory [2]. To overcome this shortcoming, two 
approach are proposed; a Robust Expectation Maximization 
(REM) algorithm as defined in [20] since it can automatically 
obtain an optimal number of clusters K and a GMM based on 
the Bayes Information Criterion (BIC). 
 
Our main contributions in this study is a new technique for 
hyperspectral band selection based on the Divergence 
distance using GMM-REM and GMM-BIC. To assess the 
efficiency of the proposed approach, experiments were 
carried out on three hyperspectral Images: The Indiana Pines 
(92AV3C) scene firstly used by David Landgrebe and his 
students [21] [22] [23]. The Initial experiment were done on a 
four class subset [23] [24] of the Indiana Pines scene to lower 
the computation time and to have enough samples for a good 
probability estimation. The other hyperspectral scene are the 
Botswana dataset and the Kennedy space center KSC also 
used in several of studies such as [25] [26]. The selected bands 
with the proposed approach are compared in terms of number 
of retained band and in terms of classification accuracy. 
 
The remaining of this paper is organized as follows: section 2 
and 3 present the proposed band selection algorithm; the 
experimental results and comments are presented in section 4 
and finally the conclusion in section 5. 
 
2. BACKGROUND 
 
2.1 Divergence Distance 
 
Given two classes ߱ଵ, ߱ଶ  and a band vector ݔ, between two 
distributions, (ݔ|߱ଵ) and (ݔ|߱ଶ), the Divergence-distance 
is the sum of the two Kullback Leibler divergences [27] and it 
is interpreted as the amount of information necessary to 
change the prior probability distribution into posterior 
probability distribution [28]. The divergence-distance is a 
similarity measurement used in information theory defined as 
[6]:  

)ௗܬ ଵ߱ ,߱ଶ) = න	[(ݔ|߱ଵ) − ln[(ଶ߱|ݔ)
(ଵ߱|ݔ)
(ଶ߱|ݔ) d(1) ݔ 

The highest the value of  ܬௗ, the most dissimilar the band pair 
are. For a multi-class problem, it can be computed as the 
average divergence between each pairwise classes (߱ , ߱) : 

ܬ = 	


	


ܲ(߱)ܲ( ߱)ܬௗ(߱ , ߱) (2) 

In previous works [14] [15] the authors estimated the equation 
(1) under the assumption of a normal distributions with means 
 ଶ and covariance matrices Σଵ,Σଶ. Hence, the equation (1)ߤ ,ଵߤ

can be simplified to: 

ௗܬ =
1
2 ߤ) − )்൫Σିଵߤ + Σିଵ൯൫ߤ − ൯ߤ

																																							+
1
2 ݎݐ

൫ΣିଵΣ + ΣିଵΣ − ൯ܫ2
 (3) 

In remote sensing, the spectral response of hyperspectral 
image can be affected by many factors [16]. As result, the 
above-simplified equation (3) is not flexible enough to 
capture the complex data structures met in real world settings 
[17]. 
 
2.2 Gaussian Mixture Model  
 
The Gaussian Mixture Model (GMM) captures non-Gaussian 
statistic of multivariate data [16]. GMM models the density as 
the sum of one or more weighted Gaussian components [22], 
and usually less sensitive to estimation error problem than 
purely non-parametric models [18]. For a GMM, a probability 
density function is written as the sum of ܭ  gaussian 
components:  

(߱|ݔ) = 	


ୀଵ

ߤ|ݔ)ߨ ,Σ) (4) 

where ܭ the number of mixture component, ߨ  the mixing 
weight (0 ≤ ߨ ≤ 1  and ∑ 	

ୀଵ ߨ = 1)  and ߤ|ݔ) ,Σ)  a 
d-dimensional gaussian distribution  

ߤ|ݔ) ,Σ) =
1

(ߨ2)
ௗ
ଶ|Σ|

ଵ
ଶ
−]ݔ݁

1
2 ݔ) − ݔ))்Σିଵߤ −  )] (5)ߤ

ߤ   and Σ , are respectively the mean and the covariance 
matrix of the ݇௧  component. While the parameters 
,ܿߨ} ߤ ,Σ} are estimated by the EM algorithm [19]. 
 
3. BAND SELECTION BASED ON DIVERGENCE 
DISTANCE 
 
3.1 Problem formulation 
 
Let ܨ = ୀଵௗ{ܤ}  be a set of d-dimensional band space. The 
goal is to find an optimal subset ܵ = ୀଵௗᇱ{′ܤ} ,ܵ ⊂ ′݀,ܨ ≤ ݀ 
that keeps the maximum amount of discriminant information 
as possible while discarding any redundancy or irrelevant 
bands according to a cost-function (Divergence, 
Bhattacharyya ...). Given a band set ܨ =  ୀଵ...ே and the{ܤ}
output class ߱, find a subset ܵெ, with ܯ < ܰ that optimizes 
the objective function. The Sequential forward selection 
(SFS) is the simplest greedy search algorithm [29]. With an 
empty set of bands ܵ  at the beginning, we start to add 
sequentially the band that maximizes the cost function when 
combined with the bands that have already been selected. The 
main advantage of SFS algorithms is that is relatively low 
computational burden [30]. The ideal greedy selection 
algorithm to solve our problem can be described by the 
following procedures similar to previous work under [29]: 
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(1)  Initialization: Set ܨ ← "initial set of |ܨ| input 
Bands" and set ܵ ← "empty set". 

(2)  Computation of the cost-function ܬ of the 
divergence distance on equation (2). 

(3)  
Choice of the first Band: find the Band that 
maximizes ܬ on step (2), set ܨ ←  and set {ܤ}\ܨ
ܵ ←  .{ܤ}

(4)  Greedy selection: repeat until |ܵ| = ݀′.   

 (a) Computation of the cost function Divergence 
distance: ∀ܤ ∈   .ܬ compute ,ܨ

 (b) 
Selection of the next Band: chose the Band ܤ ∈  ܨ
that maximizes ܬ, set ܨ ←  and set {ܤ}\ܨ
ܵ ← ܵ ∪  .{ܤ}

(5)  Output the set ܵ containing the selected Bands. 
 
This algorithm is the same as [29] [31] [32] except for the 
fourth step. Instead of calculating Mutual Information as a 
cost function between multiple variables, we propose in this 
work the use of the Divergence Distance criterion between 
multiple bands in order to select the salient ones for 
hyperspectral image classification. In the following section, 
we show how to estimate Divergence distance using GMM. 
 
3.2 Divergence Distances based on GMM 
 
Since we are using data from a real world setup, the 
cost-function ܬௗ  will be calculated using GMM. For each 
class pair ߱ and ߱ , the equation (1) can be expressed as:  

ௗ(߱ܬ , ߱) = 	[(ݔ|߱)− |ݔ) ߱)]ln
(߱|ݔ)
|ݔ) ߱) (6) 

Now if we replace (ݔ|߱) and ݔ)| ߱)  by its expression 
from equation (4) and (5), the Divergence distance based on 
GMM can be expressed as follow: 

ௗ(߱ܬ , ߱) = 	[	


ୀଵ

,ߤ|ݔ),ߨ ,Σ,)

								− 	

ೕ

ୀଵ

,ߤ|ݔ),ߨ ,Σ,)]ln
∑ 	
ୀଵ ,ߤ|ݔ),ߨ ,Σ,)

∑ 	ೕ
ୀଵ ,ߤ|ݔ),ߨ ,Σ,)

 (7) 

In order to compute the cost-function based Divergence 
distance by GMM equation (7), a number of parameters must 
be estimated: ߨ  the mixing coefficient, ߤ  the mean, ߑ  the 
covariance matrix and ܭ the number of clusters. The main the 
challenge when using the GMM is to estimate its parameters, 
with the Expectation-Maximization (EM) algorithm [33], 
three of those parameters ߑ,ߤ,ߨ can be estimated however 
the number of component ܭ is user defined, hence it needs to 
be given a priori, usually after observing the nature of the 
data. The choice of parameter ܭ is quite important in this 
study as it can directly affect the estimation of the covariance 
matrix, since we can easily end up with the "Hughes 
phenomenon". Next, we present approaches to optimally 
choose the number of component ܭ: 
 

GMM with Bayesian Information Criterion: To choose the 
right number of components ܭ for GMM to represent the true 
distribution of data, a model selection technique will be used. 
This will provide a method to maximize the likelihood of the 
training data while attempting to avoid over fitting [34]. One 
model selection is the Bayes Information Criterion (BIC) 
[16], introduced by [35], and is defined as:  

ܥܫܤ = −2 × ln(݈݈݅݇݁݅ℎ݀) + ln(ܰ) × ݇ (8) 
where ݇  and ܰ  respectively are the number of parameters 
estimated and the number of observations. The model that 
minimize the BIC criterion is considered better [36] [37]. 
 
GMM with Robust Expectation-Maximization: The 
second approach we propose to estimate/compute the 
Divergence distance based on GMM is the Robust 
Expectation Maximization (REM) algorithm [20]. With the 
EM algorithm, the number of clusters ܭ is user defined and it 
has to be defined before hand. REM was developed to 
automatically obtain an optimal number of clusters ܭ, thus the 
number of component will no longer have to be defined a 
priori. The REM algorithm uses all data points as seeds to 
solve the problem of choosing cluster centers and when a 
cluster doesn’t met the required criteria, it is discarded and the 
number of component ܭ  is decreased until achieving 
automatically an optimal number of clusters (as seeing in 
figure 1). For more detail about the algorithm, see [20].  
 
3.3 Regularization problem 
 
For the estimation of the covariance matrix, it is well known 
that small sample size datasets usually cause "Hughes 
phenomenon" and singularity problems [22] and by 
partitioning the already small set of data into multiple clusters 
and then estimating their statistics, we can end up with an 
ill-conditioned mixture model [38]. Since the covariance 
matrix of each component should be invertible in order to 
compute equation (5), the sample size of each component 
should not be less than the dimensionality of the data [22]. For 
GMM, the "Hughes phenomenon" is mostly related to the 
estimation of the covariance matrix [39]. One way around this 
problem is the regularization techniques of sample covariance 
matrix: 
 
Leave One Out Covariance (LOOC): To reduce the 
estimation error and to avoid the singularity of covariance 
matrix in equation (5), we use the regularization process [3] 

(a) Iteration 1 (b) Iteration 10 (c) Iteration 30 

Figure 1: Example of the REM implementation (a)-(b), all data 
points are used for Initialization, then discarding clusters that do not 

met required criteria; (c) the processes convergent to an optimum 
number of clusters ݇ = 6 after 30 iterations. 
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[22] [39] [40]. Let ܵ the covariance matrix and ݀݅ܽ݃(ܵ) its 
diagonal version, the following covariance estimators are 
commonly used for the regularization process:  

ܵ
(ߙ) = ቌ

(1− )݃ܽ݅݀(ߙ ܵ) + ߙ ܵ if		0 ≤ ߙ ≤ 1
(2− (ߙ ܵ + ߙ) − 1)ܵ if		1 ≤ ߙ ≤ 2

(3− +ܵ(ߙ ߙ) − 2)݀݅ܽ݃(ܵ) if		2 ≤ ߙ ≤ 3
 (9) 

The optimization strategy consists of evaluating several 
values of ߙ through maximizing the average log likelihood of 
the Gaussian density [40]. Since in our case we are using an 
iterative approach to select bands, using the regularization 
techniques as described by equation (9), can add to the 
complexity of the algorithm and to the computation time. 
 
Maximum Entropy Covariance Selection (MECS): The 
MECS method deals directly with singular and unstable 
covariance matrices; it uses the principle of maximizing the 
information under an incomplete and consequently 
uncertainty context rather than optimizing classification 
accuracy or group likelihood [41]. It is on combining the 
sample group covariance matrices and the pooled covariance 
matrix [41]. We are particularly interested in this method 
because according to [41], MECS: - does not require an 
optimization procedure, - can be used whenever the sample 
group covariance matrices are poorly estimated or ill posed, - 
perform at least as well as any other method and at a much 
lower computational cost. 
 
4. EXPERIMENTAL STUDY 
 
4.1 Dataset 
 
4.1.1 Indian Pines dataset  
 
This hyperspectral image was gathered by AVIRIS sensor site 
in North-western Indiana on June 12, 1992 over the Indian 
Pines test. First used by David Landgrebe and his students 
[21] [22] [23] [40] and it has become a benchmark for testing 
hyperspectral supervised classification algorithms. The data is 
an image of 145 × 145 pixels with a spatial resolution of 
18m by 224  bands in the wavelength range of 
0.4	– 2.510(ି)	݉. 
 
4.1.2 Botswana dataset 
 
This scene was acquired on May 31, 2001 by Hyperion sensor 
over a strip of 7.7݇݉ on the Okavango Delta, Botswana. 242 
bands are collected in the wavelength range of 400 −
2500݊݉. The UT Center preprocessed the data for Space 
Research, removed noisy bands, and identified 14 classes / 
land cover types. 
 
4.1.3 Kennedy Space Center 
 
The data was gathered by AVIRIS sensor on March 23, 1996 
over the Kennedy Space Center (KSC), Florida. The data 
consist of 176  bands - water absorption band removed - 
collected in the wavelength range of 400 − 2500݊݉  of 
10݊݉ width and a spatial resolution of 18m. Due to certain 

vegetation types with similar spectral signatures, the land 
cover for this scene is difficult to define. KSC personnel 
developed the classification scheme for the data and 13 
classes for the site were identified. 
 
4.2 Experimental setup 
 
The proposed band selection approach with the divergence 
distance presented in this work was tested in Matlab 
(R2014a), on a 64-bit PC with an i7 microprocessor 
(2.20GHz) and 6 GB of RAM. We first run the experiment 
using the proposed approach on the benchmark dataset Indian 
Pine (92AV3C), and then we conducted the same experiment 
on Botswana and Kennedy Space Center datasets. 
 
For classification purposes, the dataset is divided into two 
halves. We choose a chessboard selection of pixels with 
ground truth to yield a training/testing split of 50%. The 
selected bands then are fed to SVM and ELM classifiers in 
order de show their classification performances. The first used 
classifier is SVM through the LIBSVM library with RBF as 
kernel function and the grid search technique to find the ܥ and 
 parameters [42]. The second used classifier is the ELM [43] ߛ
[44], which is extremely fast with good generalization [45]. In 
this classifier, we used RBF as activation function for ELM 
and the grid search technique to choose the number of hidden 
neurons. 
 
4.3 Results and discussions 
The first experiment to take place is the assessment of the 
divergence distances. To measure its effectiveness, we run the 
test on the Indian Pine benchmark dataset. We point out that 
this scene has been often used in various studies such as [21] 
[22] [23] [40]. 
 
The purpose of this experiment is to evaluate each band 
independently from the rest and see how it ranks in terms of 
class separability according to the cost-function of the 
probabilistic distances Bhattacharyya and Divergence. The 
higher the value we get the more the classes are separable on 
that band. In figure 2 we can notice that band region 
170 ∼ 190  have the highest value and indeed the first 
selected band is 168 using divergence. 
 

 
Figure 2:  Divergence VS Bhattacharyya score for each 

band for 92AV3C dataset. 
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It has been reported in previous studies [23] [24] that the 
bands 104-108, 150-163 and 220 in Indian Pine are the region 
of water absorption therefore they contain only noise and no 
useful information which can be seen clearly in figure 2 as 
they got the lowest value and present on  figure 3b a noisy 
image. Hence, the bands selection approach with the 
divergence distance did not choose any of those noise bands in 
the selection process, as they need to be discarded 
automatically. Hence, the Divergence distance based on 
GMM is capable on measuring the pertinence of a band. 
 
The second experiment is to evaluate the performances of the 
first two selected bands by drawing a decision boundary 
between the spectral classes using the 92AV3C subset scene. 
In order to get an easier visual inspection the test is done on a 
portion of the Indian Pine dataset containing only the four 
class with the highest number of samples instead of using all 
the 16 classes similar to [23] [24]. The first two selected bands 
with the divergence distance are 168 and 142. In figure 4, we 
can see that data is highly correlated yet with just these two 
bands we were able to draw a decision boundary between the 
four classes of the data set and separate one class from the 
rest.  
 
The overall classification score with SVM for the first two 
selected bands is 81.74%. The other classes in the other hand 
are still mixed up and will need to go on a higher dimension 
with more bands before achieving the desired separability 
between the classes. For the Indian Pine sub scene, a 
classification score accuracy of 93.44%  with SVM is 
achieved with only five bands, and a classification score of 
97.31% at the dimension thirty. 
  
The final experiment in this study is to evaluate the 
Divergence distance in contrast of our previous work on the 
Bhattacharyya distance in order to find out which criterion 
gives better results for band selection using the three datasets: 
92AV3C, KSC and Botswana. 
 
For the Indian Pine dataset, we do notice from figure 5a and 
5b that the Divergence distance with GMM-REM estimation 
gives a slightly better classification score than its competitors. 
According to figure 5a, the Bhattacharyya approach with the 
GMM-BIC estimation has head start with the first five 
selected bands. The Divergence distance with GMM-REM 

then catch up to the Bhattacharyya, from then on it stays on 
top. Meanwhile, in figure 5b with the ELM classifier, the 
divergence with GMM-REM almost stays on top through the 
entire selected band but with a very small difference from the 
Bhattacharyya with GMM-BIC. 
 
In the KSC dataset, with the first two selected bands, we can 
see from figure 6a and 6b that there is a big gap between the 
Bhattacharyya and the Divergence distance in terms of 
classification score with SVM and ELM in favor of the 
divergence distance. Between the two distances with the same 
GMM estimation a gap around 7% is found and a gap around 
14% between the divergence with BIC and Bhattacharyya 
with REM. After the first seven selected band, there is almost 
no difference between the two distances in terms of an overall 
classification score with SVM and ELM. 
 
According to figure 7a of the Botswana dataset, with the first 
two selected bands, a margin of 10% is found in favor for the 
Bhattacharyya with the GMM-REM estimation in the SVM 
classifier. From figure 7a and 7b, the Bhattacharyya distance 
performs better with first five selected bands, and almost stays 
on top of the other distance through the whole selected band 
pool but with a very small margin. 
 
By looking at the curves in figure 5, 6 and 7, with GMM-REM 
estimation not only we can get a pretty good classification 
accuracy and but also it can resist and delay the Hugh 
phenomenon, which means that we can get a robust 
probability estimation for our probabilistic distance and the 
results will be more reliable. Unlike the estimation with 
GMM-BIC, the Hughes Phenomenon started to manifest itself 
clearly around the band fifteen in figure 7 and twenty-five in 
figure 5b. In fact, we did notice in our experiment that the 
more bands we add to the pool the more GMM-BIC is forced 
to lower its number of component ܭ  since the number of 
observation is already small until it starts to model the data 
using the normal distribution, the thing that can explain the 
early manifestation on curse of dimensionality. 
 
The experimental results of the Divergence distance based on 
GMM BIC and REM, compared to the Bhattacharyya distance 
in the same setup, shows that the classification curves  

 
(a) 

 
(b) 

Figure 3: (a) is the first selected band 168 for 92AV3C dataset 
using divergence, (b) is the band 153 one of the noisy band that 

been discarded by the selection algorithm. 

 
(a) 

 
(b) 

Figure 4: (a) The decision boundary with the first two selected 
bands with divergence distance based GMM-REM for the 

4-class 92AV3C subset scene, (b) the probability estimation of 
each class. 
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Between the two distance overlaps with each other’s. 
Depending on the number of the selected bands, on how well 
the GMM was estimated, on how well the classifier parameter 
were chosen and on the data set itself how correlated it is and 
how its post treatment was to deal with the outliers. We do 
notice that Divergence distance performs the best at times and 
others times the Bhattacharyya distance performs better. 

According to figure 5, 6 and 7, the results are close to each 
other and the margin between the classification curves of the 
selected bands with both distances is not wide enough to 
concur on the superiority of one on the others. Therefore, it is 
hard to decide which one of the distances is the best. Thus, we 
can conclude that in our setup, the Divergence distance 
performs as well as the Bhattacharyya distance. 

 
(a) 

 
(b) 

Figure 5: Overall classification Accuracy of the selected bands for dataset 92AV3C using (a) SVM Classifier, (b) ELM Classifier. 

 
(a) 

 
(b) 

Figure 6: Overall classification Accuracy of the selected bands for dataset KSC using (a) SVM Classifier, (b) ELM Classifier. 

 
(a) 

 
(b) 

Figure 7: Overall classification Accuracy of the selected bands for dataset Botswana using (a) SVM Classifier, (b) ELM Classifier. 
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5. CONCLUSION 
 
This paper presented a new band selection algorithm with a 
GMM based Divergence distances for hyperspectral image 
classification, using the sequential forward selection 
technique to reduce the data dimension. Since the EM 
algorithm is sensitive to the initial values and its number of 
components needs to be user defined, a GMM BIC and GMM 
REM were introduced in this study to model the Divergence 
distance. Our main contribution in this work is a new 
approach to give a robust estimation of Divergence distance 
using GMM-BIC and GMM-REM algorithm for 
hyperspectral band selection. 
The initial performed experiment with divergence distance on 
the Indian Pine dataset has shown the reliability of the 
criterion as a similarity measure. It has the ability to evaluate 
the pertinence of a band and thus choose the best bands from a 
given hyperspectral image dataset and discard the ones with 
no relevant information. 
The experimental results, have demonstrated the effectiveness 
of our proposed method in terms of classification accuracy 
with fewer bands. In fact, with the GMM-REM estimation, 
not only we can get a good classification accuracy but also it 
can resist and delay the Hugh phenomenon, which means that 
we can get a robust probability estimation for our probabilistic 
distance and the results will be more reliable. 
This investigation was inspired by our previous work on the 
Bhattacharyya distance, thus we were particularly interested 
in using the Divergence distance to find out which one gives 
better results. On the three used datasets 92AV3C, KSC and 
Botswana, The experimental study showed that between the 
two distances, the results are close to each other; therefore, it 
is hard to decide which one is the best in our current setup. 
Thus, we can conclude that the Divergence distance performs 
as well as the Bhattacharyya distance. 
 

REFERENCES 
1. G. Hughes, On the mean accuracy of statistical 

pattern recognizers,IEEE transactions on information 
theory, vol. 14, no. 1, pp. 55–63, 1968. 

           https://doi.org/10.1109/TIT.1968.1054102 
2. B. M. Shahshahani and D. A. Landgrebe, The effect of 

unlabeled samples in reducing the small sample 
size problem and mitigating the hughes 
phenomenon, IEEE Transactions on Geoscience and 
Remote Sensing, vol. 32, no. 5, pp. 1087–1095, Sep 
1994. 
https://doi.org/10.1109/36.312897 

3. J. Richards, Remote Sensing Digital Image Analysis: 
An Introduction. Springer Berlin Heidelberg, 2012.  

4. M. Lahlimi, M. Ait Kerroum, and Y. Fakhri, Band 
selection with bhattacharyya distance based on the 
gaussian mixture model for hyperspectral image 
classification, in Recent Advances in Electrical and 
Information Technologies for Sustainable 

Development, S. El Hani and M. Essaaidi, Eds. Cham: 
Springer International Publishing, 2019, pp.87–94. 
https://doi.org/10.1007/978-3-030-05276-8_10 

5. J. Wang, X. Wang, K. Zhang, K. Madani, and C. 
Sabourin, Morphological band selection for 
hyperspectral imagery, IEEE Geoscience and 
Remote Sensing Letters, vol. 15, no. 8, pp. 1259–1263, 
Aug 2018. 
https://doi.org/10.1109/LGRS.2018.2830795 

6. A. Webb and K. Copsey, Statistical Pattern 
Recognition. Wiley, 2011.  
https://doi.org/10.1002/9781119952954 

7. A. Datta, S. Ghosh, and A. Ghosh, Unsupervised 
band extraction for hyperspectral images using 
clustering and kernel principal component 
analysis, International Journal of Remote Sensing, vol. 
38, no. 3, pp. 850–873, 2017.  

8. M. P. Uddin, M. A. Mamun, and M. A. Hossain, 
Feature extraction for hyperspectral image 
classification, in 2017 IEEE Region 10 Humanitarian 
Technology Conference (R10-HTC), Dec 2017, pp. 
379–382. 

9. J. A. Richards and J. Richards, digital image analysis. 
Springer, 1999, vol. 3. 

10. P. K. Varshney and M. K. Arora, Advanced image 
processing techniques for remotely sensed 
hyperspectral data. Springer Science & Business 
Media, 2004. 
https://doi.org/10.1007/978-3-662-05605-9 

11. K. Burgers, Y. Fessehatsion, S. Rahmani, J. Seo, and 
T. Wittman, A comparative analysis of dimension 
reduction algorithms on hyperspectral data, 
LAMDA Research Group, pp. 1–23, 2009. 

12. M. Mazumder, Feature extraction techniques for 
speech processing: A review, International Journal of 
Advanced Trends in Computer Science and 
Engineering, vol. 8, pp. 285–292, 08 2019. 
https://doi.org/10.30534/ijatcse/2019/5481.32019 

13. C. Lee, D. Landgrebe et al., Feature extraction based 
on decision boundaries, Pattern Analysis and 
Machine Intelligence, IEEE Transactions on, vol. 15, 
no. 4, pp. 388–400, 1993. 

14. R. Huang and M. He, Band selection based on 
feature weighting for classification of hyperspectral 
data, IEEE Geoscience and Remote Sensing Letters, 
vol. 2, no. 2, pp. 156–159, 2005. 
https://doi.org/10.1109/LGRS.2005.844658 

15. Z. Du, M. K. Jeong, and S. G. Kong, Band selection of 
hyperspectral images for automatic detection of 
poultry skin tumors, IEEE Transactions on 
Automation Science and Engineering, vol. 4, no. 3, pp. 
332– 339, 2007. 

16. W. Li, S. Prasad, and J. E. Fowler, Hyperspectral 
image classification using gaussian mixture models 
and markov random fields, Geoscience and Remote 
Sensing Letters, IEEE, vol. 11, no. 1, pp. 153–157, 
2014. 



      Mohammed LAHLIMI et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2330- 2338 

2337 
 

 

17. M. M. Dundar and D. A. Landgrebe, A cost-effective 
semisupervised classifier approach with kernels, 
IEEE Transactions on Geoscience and Remote 
Sensing, vol. 42, no. 1, pp. 264–270, Jan 2004. 
https://doi.org/10.1109/TGRS.2003.817815 

18. M. M. Dundar and D. A. Landgrebe, Toward an 
optimal supervised classifier for the analysis of 
hyperspectral data, Geoscience and Remote Sensing, 
IEEE Transactions on, vol. 42, no. 1, pp. 271–277, 
2004. 

19. W. L. Martinez and A. R. Martinez, Computational 
statistics handbook with MATLAB. CRC press, 
2007, vol. 22. 

20. M.-S. Yang, C.-Y. Lai, and C.-Y. Lin, A robust em 
clustering algorithm for gaussian mixture models, 
Pattern Recognition, vol. 45, no. 11, pp. 3950–3961, 
2012. 
https://doi.org/10.1016/j.patcog.2012.04.031 

21. L. O. Jimenez and D. A. Landgrebe, Supervised 
classification in highdimensional space: 
geometrical, statistical, and asymptotical 
properties of multivariate data, IEEE Transactions 
on Systems, Man, and Cybernetics, Part C 
(Applications and Reviews), vol. 28, no. 1, pp. 39–54, 
Feb 1998. 

22. B.-C. Kuo and D. A. Landgrebe, A robust 
classification procedure based on mixture 
classifiers and nonparametric weighted feature 
extraction, Geoscience and Remote Sensing, IEEE 
Transactions on, vol. 40, no. 11, pp. 2486–2494, 2002. 

23. S. Tadjudin and D. A. Landgrebe, Robust parameter 
estimation for mixture model, IEEE Transactions on 
Geoscience and Remote Sensing, vol. 38, no. 1, pp. 
439–445, 2000. 

24. G. Camps-Valls and L. Bruzzone, Kernel methods 
for remote sensing data analysis. John Wiley & 
Sons, 2009. 
https://doi.org/10.1002/9780470748992 

25. S. Wang and C. Wang, Research on dimension 
reduction method for hyperspectral remote sensing 
image based on global mixture coordination factor 
analysis, The International Archives of 
Photogrammetry, Remote Sensing and Spatial 
Information Sciences, vol. 40, no. 7, p. 159, 2015. 

26. A. Datta, S. Ghosh, and A. Ghosh, Band elimination 
of hyperspectral imagery using partitioned band 
image correlation and capacitory discrimination, 
International Journal of Remote Sensing, vol. 35, no. 2, 
pp. 554–577, 2014. 

27. S. Theodoridis and K. Koutroumbas, Pattern 
Recognition, Fourth Edition. Academic Press, 2008. 

28. L. I. Kuncheva, Combining Pattern Classifiers: 
Methods and Algorithms. Wiley-Inderscience, 2004. 
https://doi.org/10.1002/0471660264 

29. M. Ait Kerroum, A. Hammouch, and D. Aboutajdine, 
Textural feature selection by joint mutual 
information based on gaussian mixture model for 

multispectral image classification, Pattern Recogn. 
Lett., vol. 31, no. 10, pp. 1168–1174, Jul. 2010.  

30. L. Burrell, O. Smart, G. K. Georgoulas, E. Marsh, and 
G. J. Vachtsevanos, Evaluation of feature selection 
techniques for analysis of functional mri and eeg,” 
in DMIN, 2007, pp. 256–262. 

31. R. Battiti, Using mutual information for selecting 
features in supervised neural net learning, IEEE 
Transactions on Neural Networks, vol. 5, no. 4, pp. 
537–550, July 1994. 
https://doi.org/10.1109/72.298224 

32. N. Kwak and Chong-Ho Choi, Input feature selection 
for classification problems, IEEE Transactions on 
Neural Networks, vol. 13, no. 1, pp. 143–159, Jan 
2002. 
https://doi.org/10.1109/72.977291 

33. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern 
Classification (2nd Edition). Wiley-Interscience, 
2000. 

34. K. Z. Yu, Generating gaussian mixture models by 
model selection for speech recognition, 2006. 

35. G. Schwarz et al., Estimating the dimension of a 
model, The annals of statistics, vol. 6, no. 2, pp. 
461–464, 1978. 

36. J. Chen and Z. Chen, Extended bayesian information 
criteria for model selection with large model 
spaces, Biometrika, vol. 95, no. 3, pp. 759–771, 2008. 
https://doi.org/10.1093/biomet/asn034 

37. H. D.-G. Acquah, Comparison of akaike 
information criterion (aic) and bayesian 
information criterion (bic) in selection of an 
asymmetric price relationship, Journal of 
Development and Agricultural Economics, vol. 2, no. 
1, pp. 001–006, 2010. 

38. M. M. Dundar and D. Landgrebe, A model-based 
mixture-supervised classification approach in 
hyperspectral data analysis, Geoscience and Remote 
Sensing, IEEE Transactions on, vol. 40, no. 12, pp. 
2692–2699,2002. 
https://doi.org/10.1109/TGRS.2002.807010 

39. M. Fauvel, C. Dechesne, A. Zullo, and F. Ferraty, Fast 
forward feature selection for the nonlinear 
classification of hyperspectral images, arXiv 
preprint arXiv:1501.00857, 2015. 

40. S. Tadjudin and D. A. Landgrebe, Covariance 
estimation with limited training samples, IEEE 
Transactions on Geoscience and Remote Sensing, vol. 
37, no. 4, pp. 2113–2118, July 1999. 

41. C. E. Thomaz, D. F. Gillies, and R. Q. Feitosa, A new 
covariance estimate for bayesian classifiers in 
biometric recognition, IEEE Transactions on circuits 
and systems for video technology, vol. 14, no. 2, 
pp.214–223, 2004. 

42. S. Dhariwal, An efficient approach for semantic 
image classification using normalization method, 
International Journal of Advanced Trends in Computer 
Science and Engineering, pp. 1268–1274, 08 2019. 



      Mohammed LAHLIMI et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2330- 2338 

2338 
 

 

https://doi.org/10.30534/ijatcse/2019/37842019 
43. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, Extreme 

learning machine:a new learning scheme of 
feedforward neural networks, in Neural Networks, 
2004. Proceedings. 2004 IEEE International Joint 
Conference on, vol. 2. IEEE, 2004, pp. 985–990. 

44. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, Extreme 
learning machine: theory and applications, 
Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006. 
https://doi.org/10.1016/j.neucom.2005.12.126 

45. A. S. Kumar, Ensemble online sequential extreme 
learning machine and swarm intelligent based 
feature selection for cleveland heart disease 
prediction system, International Journal of Advanced 
Trends in Computer Science and Engineering, vol. 6, 
no. 5, 2017. 

 
 


