
    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

786 
 

 

 
ABSTRACT 
 
Today, individual and society relies on innovative software 
systems. This situation needed software engineering to 
produce dependable and trustworthy systems economically 
and rapidly. During analysis and design, requirements 
specification can be documented using two (2) mostly 
methodologies which are SDLC (software development life 
cycle) and OOSAD (object-oriented system analysis and 
design). In SDLC, DFD (data flow diagram) specification is 
used, meanwhile UML (unified modelling language) 
specification is used for the object-oriented approach. 
Nowadays, there is an intensive research for model 
transformation, integrating and merging from structured to 
object-oriented approach. Most researches are concentrated 
on converting the existing DFD to UML diagram. In the end, 
they produced a new UML diagram as a design material and 
the implementation of new systems. It is also serves as a 
documentation for the upcoming development of new 
systems. This paper proposes a framework which is acquired 
from the syntax rules for DFD and UML. Established along 
the similarity methods, this paper will define the syntax rules 
of DFD Level 0, DFD Level 1, UML Use Case Diagram and 
Sequence Diagram. Then, the method is tested with the case 
study of DFD and UML diagrams. Furthermore, the factors 
involved in the similarities are found.  And so, the similarity 
can be utilized to generate requirements specification from 
DFD to UML Diagram.   
 
Key words: DFD, UML, use case diagram, sequence diagram 
 
1. INTRODUCTION 
 
Today, every individual and society depend on an innovative 
software system. This situation requires software engineering 
to produce a system that is reliable and trustworthy in line 
with the economy and rapid technological developments such 
as [1] and [2]. During requirements engineering process, 
requirements elicitation is the second important stages after 
determining the feasibility study for a software system. 
Furthermore, requirements specification phase began when 
the developers start modelling needs of users, who use certain 
methods (either structured approach or object-oriented 
approach). During this phase, descriptive user requirements 
is significant for producing complete and precise 
requirements such as [3] and [4]. 
 
 

 

 
Structured methodology based on the Waterfall model is a 
commonly used approach in the system development life 
cycle (SDLC). The development of information systems using 
SDLC as stated by Dennis et. al [5], must follow four phases 
including planning, analysis, design, and implementation. 
Then, every activity and deliverables should be completed in 
each of the phases before proceeding to the next stage. The 
structured approach is very useful to model and document 
legacy systems [6]. The data flow diagram (DFD) is the most 
well-known diagram in the structured approach requirements 
specification [8]. 

 
In addition, analysts can use object-oriented approach. This 
approach provided to accelerate the response to the dynamic 
business environment in the evolution of the system [7]. 
Object-oriented technique is called unified modelling 
languages (UML). Kendall and Kendall [3] stated that four 
(4) phases in UML which are problem analysis, identification, 
analysis, and design. Meanwhile, UML has a group of 
diagrams that are employed to model the different 
characteristics of object-oriented software. 
 
Various researchers have proposed some preliminary 
methods and a framework to transform DFD with UML 
diagrams [8]–[12]. However, they are converting the existing 
DFD to UML diagram. In the end, they produced a new UML 
diagram as a design material and the implementation of new 
systems. It is also serves as a documentation for the upcoming 
development of new systems. In this paper, we propose a 
framework, which is acquired for the syntax rules for DFD 
and UML. Established along the similarity methods, this 
paper will define the syntax rules of DFD Level 0, DFD Level 
1, UML Use Case Diagram and Sequence Diagram. Then, the 
method is tested along the case study of DFD and UML 
diagrams. Furthermore, the factors involved in the 
similarities are found and the similarity can be utilized to 
generate requirements specification from DFD to UML 
Diagram. Noted that DFD [13] and UML standard [14] are 
referred. 
The rest of this paper is structured as follows. The discussion 
of related work in Section 2. Then, syntax rules for DFD and 
UML are stated in Section 3.  Section 4 presents a case study 
for extracting the similarity syntax rules (SSR).  Section 5 
discusses the framework for SSR. Finally, in Section 6, we 
conclude the paper. 

 
Similarity Syntax Rules between DFD and UML Diagrams 

Norhanim Selamat1, Rosziati Ibrahim2 
1Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia, norhanim@uthm.edu.my 

2Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia, rosziati@uthm.edu.my 

                                               ISSN 2278-3091 
Volume 8, No.3, May - June 2019 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse70832019.pdf 

https://doi.org/10.30534/ijatcse/2019/70832019 
  

 



    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

787 
 

 

2. RELATED WORKS 
 
During the phase of the requirements specification, two (2) 
approaches can be used for system's requirements which are 
DFD for structured approach and UML for object-oriented 
approach. DFD technique is also known as process 
modelling. It has been widely used in requirements 
specification such as in [15] and [16]. According to Dennis et 
al. [5] and Kendall and Kendall [17], the data store usually 
appears in the next level diagram that is DFD level 0. This 
diagram decomposes a single process from context diagram 
that includes entities and processes. Then, each process at 
DFD level 0 can be described more clearly in the next level of 
DFD, called as DFD level 1. When the diagram is needed to 
determine the user's requirements, then, decomposed can be 
expanded to the nearest bottom diagram. 
 
Generally, syntax and semantic errors can occur in DFD 
which are considered as two fundamental problems that differ 
in the requirements specification. Syntax errors can be 
identified using clear rules compared with semantic errors. 
So, these errors are uncomplicated to find and fix in a set of 
DFD. According to Ibrahim and Yen [18] analysts should 
follow a set of rules to evaluate DFD in terms of accuracy and 
consistency of the diagrams. 
 
Meanwhile, UML is usually used to state common idea for 
requirements specification. UML use case and sequence 
diagrams are mostly used to illustrate the functional 
requirements of a system in the object-oriented approach. 
Many researchers such as [19] and [20] said that UML 
basically provides a lot of syntaxes, but not enough semantics 
and it lacks the rigor of formal modelling languages. 
Nowadays, a formal definition of a common Meta Object 
Facility (MOF) based metamodel stated in [14] can be 
specified for the abstract syntax rules and semantics of the 
UML. This requirement needed to fulfill the primary goal of 
UML for advancement in the industry by supporting object 
visual modelling tool interoperability. While the semantics 
are to be recognised by computers in a technology 
independent way. 
 
Various researchers have proposed some preliminary 
methods and a framework to transform DFD with UML 
diagrams. Madanayaneke et al. [12] proposed software 
prototype of transformation between roles and goals from 
requirements into  UML Use Case. They are using Ontology 
Based Framework as a basis for their work. This prototype 
also could execute other transformation such as DFD Level 1 
to state diagram and sequence diagram. Jacob et al. [8] 
presented the transformation technique between DFD and 
three UML diagram namely; use case diagram, class diagram 
and activity diagram using ten academic projects. They 
conclude that the mapping techniques helps the designer 
assist between function-oriented design and object oriented 

design methodologies. However, some weakness appears 
during mapping which is mismatches among elements used 
in notation transformation.  
 
Handigund and Nagalakshmi [10] proposed a methodology of 
Use Case Flow Diagram, which can act as an association for 
use case, sequence and composite diagrams. They are using 
elements of a DFD because the diagrams are equivalent to the 
gap of object methods that is a use case to be conceptualized 
from class diagrams. They also present sufficient syntax to 
derive the semantic of Use Case Flow Diagram for the 
connection. Fries [7] proposed a framework for the 
transformation of DFD and ERD to UML diagram including 
use case, sequence, and class diagram. Fries [7] proposal 
converted the existing DFD to UML diagram. However, a 
manual decision used to encounter the transformation. Tiwari 
et al. [11] presented an approach that merges the DFD with 
the UML diagrams. Amalgamation of the diagrams can help 
the developer to analyse the system. They are using 
transformation technique to produce a combination model, 
including Use case to DFD and DFD into Class Diagram. 
Table 1 presents the analysis of the existing DFD and UML 
framework. 
 
Table 1: Analysis of the Existing DFD and UML Framework 

 
Author Diagrams Frame- 

work 
Technique 

Madanayanake 
et. al (2017) 
[12]  

DFD Level 0, 
UML Use 
Case, and 
UML 
Sequence 
 

Yes Transformation 

Jacob et. al 
(2016) [8]  

DFD Level 0, 
DFD Level 1, 
and UML Use 
Case 
 

No Transformation 

Handigund & 
Nagalaksmi 
(2014) [10] 

DFD Level 0, 
and UML Use 
Case 
 
 

Yes Transformation 

Fries (2012) [7] DFD Level 0, 
DFD Level 1, 
UML Use 
Case, and 
UML 
Sequence 
 

Yes Transformation 

Tiwari et. al 
(2012) [11] 

DFD Level 0, 
DFD Level 1, 
and UML Use 
Case 
 

No Merging 



    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

788 
 

 

3.  SYNTAX RULES FOR DFD AND UML 
In this section, we describe syntax rules for similarities 
between the DFD Level 0 and Use Case Diagram as stated in 
Table 2. Meanwhile in Table 3 shows syntax rules for 
similarities between the DFD Level 1 and Sequence Diagram. 
 
Table 2:  Syntax Rules for Similarities between DFD and UML Use 

Case Diagram 
DFD Level 0 UML Use Case 
Rule 1:  
External Entity, Process 

Rule 1: 
Actor, Use case 

Rule 2:  
At minimum one input 
data flow for an external 
entity, 
At minimum one output 
data flow for an external 
entity,  
At minimum one input 
data flow for  a process,  
At minimum one output 
data flow for a process,  
At minimum one input 
data flow for  a data 
store,  
At minimum one output 
data flow for a data store,   
Output data flows 
usually have different 
name than input data 
flows for a process,  
Every data flow connects 
to at minimum one 
process, 
Data cannot move 
directly from one data 
store to another data 
store. 

Rule 2:  
An actor can be associated 
with other actors using a 
specialization  or superclass 
relationship, 
An actor is placed outside the 
subject boundary, 
An actor can provide input to 
the system,  
An actor receives output from 
the system,  
A use case can have a 
relationship (extend/ include) 
with another use case 
A use case is placed inside the 
system boundary, 
A relationship has a modality 
of null or not null as a 
property, 
A relationship is dependent or 
independent.  

Rule 3:  
A specific name that is a 
verb phrase, a number 
and a description for a 
process, 
A specific name that is a 
noun and a description 
for the external entity, 

Rule 3:  
A specific name that is a noun 
and a description for the actor, 
A specific name that is a verb 
and a description of the use 
case 

Based from Table 2, from our define syntax rules, the 
elements involved in the similarities are detected. All of 
syntax referred to DFD [13] and UML standard [14]. The 
elements are external entity and process for DFD while, actor 
and use case for Use case Diagram in Rule 1. Furthermore, 
Rule 2, and 3 will follow during creating the elements in the 
diagrams.   
 
Based from Table 3, the elements of DFD Level 1 are data 
flows and data stores while, the message and object for 
Sequence Diagram in Rule 4. Furthermore, Rule 5 and 6 will 
be followed during creating the elements in the diagrams.   

 
Table 3: Syntax Rules between DFD Level 1 and UML Sequence 

Diagram 
 

DFD Level 1 UML Sequence 
Rule 4:  
Data flows, Data stores 

Rule 4:  
Message, Object 

Rule 5:  
At minimum one input 
data flow for an external 
entity, 
At minimum one output 
data flow for an external 
entity,  
At minimum one input 
data flow for  a process,  
At minimum one output 
data flow for a process,  
At minimum one input 
data flow for  a data 
store,  
At minimum one output 
data flow for a data store,   
Output data flows 
usually have different 
name than input data 
flows for a process,  
Every data flow connects 
to at minimum one 
process, 
Data cannot move 
directly from one data 
store to another data 
store 

Rule 5:  
An actor can send message to 
another actor or object, 
An actor can receive messages 
from another actor, 
An actor is placed on the top of 
the diagram,  
An object can send message to 
another actor or object, 
An object can receive 
messages from another actor 
or object, 
An object is placed on the top 
of the diagram,  
A message to pass on 
information from one object to 
another object, 

Rule 6: 
A specific name that is a 
noun and a description 
for the data store, 
A specific name that is a 
noun and a description 
for the data flow 

Rule 6: 
A specific name that is a noun 
and a description for the 
object, 
A specific name that is a verb 
and a description of the 
message 

 
4. A CASE STUDY FOR EXTRACTING THE 
SIMILARITY SYNTAX RULES (SSR) 
We use the Library system in this section, as a case study to 
describe the similarity syntax rules (SSR) between DFD Level 
0 and use case diagram based on Rule 1 until Rule 3 of syntax 
rules as stated in Table 2. Figure 1 illustrates the DFD Level 0 
of the Library system. While, Figure 2 states the Use Case 
diagram of library system.  
 
In developing DFD Level 0 diagram for the Library system as 
shown in Figure 1, we have recognised two (2) external 
entities to show parts of an automated library circulation 
system. These external entities can receive information from 
or provide information to the system. Students specify key 
inputs to the systems and librarians provides information to 
the system. We have identified five (5) separate processes.   



    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

789 
 

 

Librarian  D2 Student Data

Maintain 
Book 

Collection

1

new book details

new student ID 

entry ID

updated book collection book collection information

book details

book to remove

entry details
Manage 

Catalogue

2

updated entry
entry to remove

new book information

Borrow 
Book

3

student ID

Student

valid IDs

book to check out

Overdue 
Book

6

borrowing  information

overdue item

Return Book

4

book returnedbook to return

fine information

fine details

new entry detail

item borrowed details

overdue notice

Catalogue 
Data D1

updated returns

D3 Book Data

fine rules

Fines D4fine details

book status
book entry

book information

book returned details

 
Figure 1:  DFD Level 0 of Library System 

 
 
 

Librarian Student

Borrow Book

Overdue Book

Return Book

Maintain Book Collection

Manage Catalogue

 
Figure 2:  Use Case of Library System  

 
 
 
 
 



    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

790 
 

 

While in the DFD level 0 diagram, these major functions 
correspond to actions such as the following: 

     Process 1: maintenance book collection activities 
handle with inserting and deleting books from the 
library’s book collection. 

      Process 2: students can be searched managing 
catalogue on the website including book’s 
availability.  

      Process 3: borrowing activities built around 
registering student as a borrower, checking books 
out and borrowers’ status. 

      Process 4: returning activities deal with checking 
returning books by students. 

      Process 5: the librarian can verify either the 
students have any overdue books or unpaid fines. 
 

Meanwhile, the primary actors in the developing Use Case 
diagram are Librarian and Student. While the primary 
business processes are the following: 

i.      Librarian maintain book collection activities 
which handle with inserting and deleting books 
from the library’s book collection. 

ii.      The librarian can manage catalogue that searched 
by Students on the website including book’s 
availability.  

iii.     The librarian can register a student. The student 
can do borrowing activities, which are checking 
books out and get status from systems.  

iv.     The student can do returning activities such as 
checking returning books. 

v.     The librarian can verify either the students have 
any overdue books or unpaid fines. 

 
Typically, a use case is initiated by actors. For example, 
Overdue Book is initiated by the Librarian. A use case 
can interact with actors other than the one that initiated it. 
The Overdue Book although initiated by the Librarian, 
interacts with Student by sending reminder emails to them 
who have overdue books. Figure 2 shows all the association 
between actors and use cases.  

 
Table 4: Similarities of Elements for DFD Level 0 and UML Use 
Case Diagram 
 

DFD Level 0 Use Case 
External Entity 
Librarian                   
Student                 

Actor 
Librarian                   
Student                                             

Process 
Maintain Book 
Collection 
Manage Catalogue 
Borrow Book 
Return Books 
Overdue Book 

Use case 
Maintain Book 
Collection 
Manage Catalogue 
Borrow Book 
Return Books 
Overdue Book 

 
Therefore, we can detect both diagrams have similarities from 
system users (Librarian and Student) and functional 

requirements (Maintain Book Collection, Manage 
Catalogue, Borrow Book, Overdue Book and 
Return Books). Similarities elements of DFD from the 
structured approach and Use case diagram from the 
object-oriented approach is summarized in Table 4. 

 
Table 5: Similarities of Elements for DFD Level 1 and UML 
Sequence Diagram 
 

DFD Level 1 UML Sequence 
Data Store                 
Student  
Catalogue 
Borrowed Item               

Object                  
Student Database 
Catalogue 
Book                               

Data Flow 
new student ID  
entry ID 
valid IDs 
student ID 
book to check out 
borrower details 
book information 
book entry 
book returned 
details 
book status 

Message 
RegisterBorrower 
(NewStudentID) 
RegisterBorrower 
(EntryID) 
RegisterBorrower 
(ValidID) 
CheckBorroweredBook 
(StudentID) 
CheckBorroweredBook 
(CheckOutBook) 
CheckBorroweredBook 
(BorrowerDetails) 
CheckBorroweredBook 
(BookInformation) 
GetBorroweredStatus 
(BookEntry) 
CheckBorroweredBook 
(BookReturnedDetails) 
GetBorroweredStatus 
(BookStatus) 

 
From the comparison of similarities syntax rules (SSR) 
between DFD and UML Use Case Diagram as shown in Table 
2, we conclude that similarity of elements in Rule 1 clearly 
indicated in Table 4. Additionally, Rule 2 and, 3 also support 
the similarities when both diagrams are developed into a 
complete and consistent manner. Therefore, by introducing 
the similarities of elements of informal syntax rules, it can be 
used to determine the diagrams that are illustrated correctly. 

 
We proceed the case study of the Library system to see how 
the DFD Level 0 diagram can be further decomposed. The 
third process in Figure 3 is called Borrow Book which does 
the borrowing book activities. The Librarian who will 
register students as a borrower (3.1). After the registration 
process, the librarian will examine the book borrowed by 
the Student (3.2). The Student with valid ID and does not 
have any overdue books or any fines can borrow the books. 
Then, Student will make a book checkout and accept the 
Student's status. The similarities elements are shown in Table 
5. 
 



    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

791 
 

 

 
 

Catalogue 
DataD2

student ID

D3 Book Data

book status

book borrowed details

 D2 Student Datanew student ID 
entry ID

valid IDsRegister  
Borrower   

3.1

Check 
Borrowed 

Book

3.2

borrower details

Get Borrowed 
Status

3.3

book informationbook to check out

book entry

borrowed status

book returned details

 
Figure 3: DFD Level 1 of Library System 

 
 

:Student :Librarian :Student 
Database

:Catalogue 
Database

:Book 
Database

CheckBorroweredBook
(CheckOutBook)

CheckBorroweredBook   
(StudentID)

RegisterBorrower   
(EntryID)

RegisterBorrower   
(ValidID)

CheckBorroweredBook
(BorrowerDetails)

CheckBorroweredBook
(BorrowerDetails)

CheckBorroweredBook
(BookInformation)

GetBorroweredStatus
(BookStatus)

RegisterBorrower   
(NewStudentID)

GetBorroweredStatus
(BookStatus)

GetBorroweredStatus
(BookEntry)

GetBorroweredStatus
(BookEntry)

CheckBorroweredBook
(BookReturnedDetails) 

 
Figure 4: Sequence Diagram of Library System 

 



    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

792 
 

 

 
 

Figure 5: Framework of Consistency and Similarity Rules for Structured Approach with Object Oriented Approach  
 
 
 
 
 
 



    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

793 
 

 

Figure 4 shows the UML sequence diagram. In this case study, 
we draw use case Borrow Book for students who have valid 
IDs and do not have any overdue books and fines. 
Librarian executes the procedure. This procedure allows 
the student as one of Student type to send the message 
CheckBorrowedBook(CheckOutBooks) to ask the 
Librarian to perform the process when the student gives 
the Librarian the books to check out. The Librarian in 
return register the Student. Then, the Librarian activate 
RegisterBorrower(EntryID) procedure in the 
Student Database to execute the EntryID data to validate 
the student’s ID number. This process is performed during 
checking borrowed book until the StudentID and BookStatus 
data displayed to student. From the case study in Figure 3 
(structured approach) and Figure 4 (object-oriented 
approach), we can identify similarities for DFD Level 1 and 
UML Sequence Diagram. Both diagrams describe the data 
used during the development of the Library system. 
Similarities elements of DFD Level 1 from the structured 
approach and UML Sequence diagram from the 
object-oriented approach are summarized in Table 5. 

5. THE FRAMEWORK FOR SIMILARITY SYNTAX 
RULES (SSR) 
Based on Table 3 and 4, the framework is proposed in Figure 
5 for similarity between DFD and UML. There are four (4) 
main steps in defining the framework of consistency and 
similarity rules, namely, define syntax rules for DFD 
diagrams and UML diagrams, set of informal rules for DFD 
Diagrams and UML Diagrams, formalization of the informal 
consistency and similarity rules and generate diagrams 
between structured and object-oriented approach. 
 
In the first step, there are two (2) DFD elements for Level 0, 
two (2) DFD elements of DFD Level 1, three (3) DFD 
elements of ERD, two (2) UML elements for use case 
diagram, two (2) UML elements for sequence diagram, and 
three (3) UML elements for class diagram will be defined 
from each syntax rules diagrams. In step 2, from the DFD 
elements that follow to each DFD diagrams and their 
consistency rules will be set of informal rules. Afterward, a set 
of similarity rules will be determined, which integrated from 
DFD rules and UML rules. Then, in  step 3, formalization of 
several consistency rules and several similarity rules between 
those diagrams will be developed. Similar approach will be 
adopted for forming the formal rules as discussed in [18], 
[19], [21], and [22].  Lastly, in step 4, a tool will be developed 
to generate UML diagrams from DFD diagrams or DFD 
diagrams from UML diagrams.  

6. CONCLUSION AND FUTURE WORKS 
This paper has discussed a comparison of a set of syntax rules 
between DFD (Level 0 and Level 1) and UML (Use Case 
Diagram and Sequence Diagram). The rules are then used to 

check the similarities between both diagrams that are DFD 
represented for the structured approach, meanwhile UML Use 
Case Diagram represented for the object-oriented approach. 
 
For future works, the formalization for syntax rules and 
similarities rules between the DFD and UML diagrams 
namely; DFD Level 0, DFD Level 1, ERD, UML Use Case 
Diagram, Sequence Diagram and Class Diagram will be 
developed.  
 
ACKNOWLEDGEMENT 
 
The authors would like to thanks the Malaysia Ministry of 
Education for supporting this research under the Scheme of 
Academic Training Initiative (SLAI) and Universiti Tun 
Hussein Onn Malaysia (UTHM) for funding this research 
under E015501, Research Management Centre (RMC). 
 

REFERENCES 
1. Lile, R., Towards a New Critical Role of Information 

Systems in the Modern Decision Making Process, Int. 
J. Adv. Trends Comput. Sci. Eng., Int. J. Adv. Trends 
Comput. Sci. Eng., vol. 8, no. 1.1 SI, pp. 48-53, 2019. 
https://doi.org/10.30534/ijatcse/2019/1081.12019 

2. Ismail, N. A., & Daud, S. N. Exploratory Factor 
Analysis of Pre-Purchase Construct for Airlines 
e-Ticketing System in Malaysia in The context of 
e-Transaction. Int. J. Adv. Trends Comput. Sci. Eng. t 
al., Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 2, 
pp. 255-258, 2019. 
https://doi.org/10.30534/ijatcse/2019/25822019 

3. M. Hagal and F. Kandemili, Reducing Missed 
Requirements Issues: Complete, Unambiguous and 
Necessary Requirements Elicitation, Int. J. Adv. Res. 
Comput. Sci. Softw. Eng., vol. 7, no. 1, pp. 10–14, 2017. 
https://doi.org/10.23956/ijarcsse/V7I1/01110 

4. J. Melegati, A. Goldman, F. Kon, and X. Wang, A model 
of requirements engineering in software startups, Inf. 
Softw. Technol., vol. 109, pp. 92–107, 2019. 
https://doi.org/10.1016/j.infsof.2019.02.001 

5. A. Dennis, B. H. Wixom, and R. M. Roth, Systems 
analysis and design, 5th ed. New Jersey: John Wiley & 
Sons, Inc., 2012. 

6. H. Zhang, W. Liu, H. Xiong, and X. Dong, Analyzing 
data flow diagrams by combination of formal 
methods and visualization techniques, J. Vis. Lang. 
Comput., vol. 48, pp. 41–51, 2018. 

7. T. P. Fries, Reengineering Structured Legacy System 
Documentation to UML Object-oriented Artifacts, in 
Information Systems Reengineering for Modern 
Business Systems : ERP, Supply Chain and E-Commerce 
Management Solutions, R. Valverde and M. R. Talla, 
Eds. Hershey: IGI Global, pp. 30–53, 2012. 
https://doi.org/10.4018/978-1-4666-0155-0.ch002 



    Norhanim Selamat et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(3), May - June 2019, 786 - 794 

794 
 

 

8. P. M. Jacob, Muhammed Ilyas H, J. Jose, and J. Jose, An 
Analytical approach on DFD to UML model 
transformation techniques, in 2016 International 
Conference on Information Science (ICIS), pp. 12–17, 
2016. 
https://doi.org/10.1109/INFOSCI.2016.7845292 

9. M. Dahan, P. Shoval, and A. Sturm, Comparing the 
impact of the OO-DFD and the Use Case methods for 
modeling functional requirements on comprehension 
and quality of models: a controlled experiment,” 
Requir. Eng., vol. 19, no. 1, pp. 27–43, Mar. 2014. 
https://doi.org/10.1007/s00766-012-0155-2 

10. S. M. Handigund and S. R. Nagalakshmi, An 
ameliorated methodology for the design of panoptic 
usecase flow diagram to constellate UML’s usecase 
and sequence/communication diagrams, in 
Proceedings - 2014 4th International Conference on 
Advances in Computing and Communications, ICACC 
2014, pp. 153–156, 2014. 
https://doi.org/10.1109/ICACC.2014.43 

11. K. Tiwari, A. Tripathi, S. Sharma, and V. Dubey, 
Merging of Data Flow Diagram with Unified 
Modeling Language, Int. J. Sci. Res. Publ., vol. 2, no. 8, 
pp. 1–6, 2012. 

12. R. Madanayake, K. Asanga Dias, and N. Kodikara, 
Transforming Simplified Requirement in to a UML 
Use Case Diagram Using an Open Source Tool, Artic. 
Int. J. Comput. Sci. Softw. Eng., vol. 6, no. 3, 2017. 

13. C. Gane and T. Sarson, Structured Systems Analysis: 
Tools and Techniques. New York, NY: Improved 
Systems Technologies, Inc., 1977. 

14. Object Management Group, OMG Unified Modeling 
Language TM (OMG UML), Superstructure. 
Needham, MA 02494, USA: Object Management Group 
(OMG), 2011. 

15. S. Tegginmath, Data and Process Modelling: 
Investigating the Gap between Education and 
Industry Expectations in New Zealand, M.P. Thesis, 
School of Engineering, Computer and Mathematical 
Sciences, Auckland University of Technology, New 
Zealand, 2017. 

16. H. Xiong, H. Zhang, X. Dong, L. Meng, and W. Zhao, 
DFDVis: A Visual Analytics System for 
Understanding the Semantics of Data Flow Diagram, 
Commun. Comput. Inf. Sci., vol. Vol. 727, pp. 660–673, 
2017 
https://doi.org/10.1007/978-981-10-6385-5_55 

17. K. E. Kendall and J. E. Kendall, Systems Analysis and 
Design. New Jersey: Pearson Education, Inc, 2013. 

18. R. Ibrahim and S. Y. Yen, A Formal Model for Data 
Flow Diagram Rules, J. Syst. Softw., vol. 1, no. 2, pp. 
60–69, 2011. 

19. N. Ibrahim, R. Ibrahim, M. Z. Saringat, D. Mansor, and 
T. Herawan, Consistency rules between UML use case 
and activity diagrams using logical approach, Int. J. 
Softw. Eng. its Appl., vol. 5, no. 3, pp. 119–134, 2011. 

20. R. Hazra and S. Dey, Consistency between Use Case, 
Sequence and Timing Diagram for Real Time 
Software Systems, Int. J. Comput. Appl., vol. 85, no. 16, 
pp. 975–8887, 2014. 
https://doi.org/10.5120/14924-3444 

21. H. Aman and R. Ibrahim, Formalization of 
Transformation Rules from XML Schema to UML 
Class Diagram, Int. J. Softw. Eng. Its Appl., vol. 8, no. 
12, pp. 75–90, 2014. 

22. R. Ibrahim, H. Aman, R. Nayak, and S. Jamel, 
Consistency check between XML Schema and class 
diagram for document versioning, Int. J. Adv. Sci. 
Eng. Inf. Technol., vol. 8, no. 6, pp. 2590–2597, 2018. 
https://doi.org/10.18517/ijaseit.8.6.5007 

 


