
Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7377


ABSTRACT

Modern web-based information systems generate large data
and they require cloud computing kind of environment to
store and access this huge data in order to provide their
millions of online users in a scalable manner. Cloud
computing systems make use of distributed file systems
(DFSs) in their infrastructure to store and access large data.
Hence, DFS has become an important component in the
modern web-based information systems deployed in the cloud
computing environment. Most of the users of the information
system frequently perform read operations and infrequently
perform write operations on the DFS. Hence, improving the
read operations performance in the DFS has become an
important research problem in the Big Data scenario. To
improve the read operations performance in the DFS,
prefetching and client side caching techniques are used. In the
recent works, to reduce read operation access time of
distributed file system, many collaborative client side caching
techniques are discussed. In this paper, we have proposed a
novel speculative read algorithm. Speculative read algorithm
along with rank-based replacement algorithm can improve the
read operations performance in the distributed file system.

Key words: Client side caching, Distributed file system,
Hierarchical Collaborative Caching, Prefetching, Rank based
Replacement Algorithm, Speculative Read.

1. INTRODUCTION

In the promising big data scenario, web-based information
systems (WISs) are being deployed in cloud computing
systems to cater billions of online users efficiently. Cloud
computing systems offer scalable storage and computing
power so that deploying WIS will be beneficial to the owners
of the organizations and also the users of the WIS. Cloud
computing system uses distributed file system (DFS) at the
back end to store the large data in a distributed manner so that

storage will be scalable. The distributed file system (DFS)
environment consists of data nodes (DNs) and name nodes
(NNs). The DNs are used to store the data permanently in the
hard disks and NNs are used to store metadata. Note that, the
read or update requests submitted by the users are carried out
in the DNs.

The WIS receives very frequently the read requests and
infrequently the write/update requests. For this reason,
improving read operations performance, carried out on the
DFS has become an important issue in the current context.
Two significant techniques, Client-side caching and
prefetching, are presented in the literature for improving read
operations performance in the DFS environment. It is possible
to minimize the average read operations access time in the
DFS environment, by maintaining client-side caches (local
caches) in the DNs main memory and by following
collaborative caching by combining the local caches kept in
all the DNs. In [10], authors discuss regarding the use of
global cache which is maintained in one of the dedicated
computer systems in the DFS environment to minimize the
average access time of read operation. In [51], authors discuss
the advantages of combining local, collaborative and global
caches to store the frequently accessed data which will result
in reducing average read access time further.

In this paper, we have presented a novel speculation-based
algorithm for reducing the read access time and also the
write/update overhead of the client-side caching system. We
have investigated the algorithms performance through
simulation. The results indicate that the advocated speculative
read algorithm along with rank-based replacement algorithm
can improve the read operations performance in the
distributed file system.

The rest of the paper is organized as follows: section 2
explains the related works. The speculative read algorithm
and modified write procedure are detailed in section 3 and
section 4 respectively. Our evaluation methodology and
results are presented in section 5 and conclude the paper in
section 6.

A Novel Speculation-Based Read Algorithm with Rank based

Replacement for Improving Performance of the
Distributed File System

Rathnamma Gopisetty1, Thirumalaisamy Ragunathan2, C Shoba Bindu3
1Research Scholar at Jawaharlal Nehru Technological University,

 Anantapur, India, rathnagurram@gmail.com.
2Department of Computer Science and engineering,

SRM University, Andhra Pradesh, India.
3Department of Computer Science and engineering, Jawaharlal Nehru Technological University,

Anantapur, India.

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse69952020.pdf

https://doi.org/10.30534/ijatcse/2020/69952020

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7378

2. RELATED WORKS

There are many researches on how to improve the read access
time of distributed file systems using client-side caching
prefetching and speculative techniques.
Big-data systems use hard disk drive (HDD) to store huge
amount of data to be utilized by big-data applications. For
example, Google File System (GFS), Hadoop Distributed File
System (HDFS), stores massive amounts of data on large
number of data nodes. HDDs alone become inadequate to
meet the exigent requirements of the big-data applications.
PACMan [43] uses main memory-based caching to enhance
application efficiency and performance of cluster based file
systems. Global memory caching systems (GMS) project
[44], NOW project [45] and Dynamic Caching using
Memcached servers [8] have employed coordinated caching
using the memory of remote machines. The caching methods
presented in the past focus on coordinated caching by taking
into consideration only the local caches [44], [45]. And the
Memcached system proposed in [8] employs global servers
that are independent of one another. These techniques do not
exploit collaboration among local and global caches in a
combined manner. To tackle with the performance limitations
of HDDs and global memory caching systems, we are
presenting a hierarchical global collaborative caching
(HCGC) technique [51] that makes use of collaborative local
caching and the collaborative global caching in the DFS.

The growing gap between processing speeds and disk access
times [1] is causing data intensive applications to spend most
of their execution times on disk I/O to fetch data from disk.
I/O prefetching is a renowned technique to solve the disk
stalling problem even though the data is need to be fetched
from multiple disks distributed across various geographical
locations.

Existing prefetching methods are broadly classified into
predictive prefetching and informed prefetching. Predictive
prefetching predicts the upcoming Read/Write access patterns
based on the past data accesses of applications [2]. Informed
prefetching makes prefetching choices based on application’s
upcoming access hints [3], [4].

The I/O access performance capabilities of a storage system
also depend on the placing of the data. Generally a high-level
storage store hot data which is to be accessed in the near
future. Previous studies [5]–[10], [51] show that there is more
benefit of having a multi-level caches or hierarchical caches.
In hierarchical cache systems if the requested data is not found
in the higher level storage, the subsequent storage level is
checked until the requested data is fetched.

By instigating prefetching and speculative executions on the
data might decrease the I/O stall time of target standard
executions. Modern processors use Speculative execution
technique to alleviate pipeline stall problem by executing the
next likely instructions in advance [11]–[17]. Examples of
speculative execution are Branch prediction [11], [12]
[17]–[20] and load value speculation [15], [16].

A large body of research has been devoted to enhance the
performance of storage systems by reducing the disk I/O
operations. A speculation-based method discussed in [21],
starts the speculative execution using the local cache contents
first. The timestamps obtained from the server disk and local
caches are compared to commit the execution. An aggressive
hint-driven prefetching system [22] is proposed to pre-execute
speculatively the application’s code to determine and supply
hints for its upcoming read accesses, but the applications need
to be explicitly modified to issue the hints. Big Data systems
such as Google Map Reduce, Apache Hadoop, and Apache
Spark depend on speculative execution [23]–[25] to mask
slow tasks in turn to cut down job execution time.

Replacement algorithms play a significant role to overcome
the performance problems caused by the speed difference
among processor and memory. Many replacement algorithms
were proposed to determine what to eject from memory when
the cache is full and to replace the new file block with the
existing file block.

The replacement policies are generally categorized [26] as
recency-based policies, frequency-based policies, size-based
policies, function-based policies and randomized polices. In
recency-based policies, recency is used as the key decision
making aspect. LRU and LRU variant replacement policies
fall under this category. Frequency-based policies consider
the popularity or frequency count as the most important factor
and LFU is one of the examples of this class. Size based
policies use the object size as the main factor, and this
replacement policy removes larger objects first, from the
cache. Function-based policies assign a utility value for each
object. This value is computed using different factors such as
time, frequency, size, cost, latency. GD-Size is the best
example policy in this class. Randomized polices evicts an
object selected arbitrarily from the cache.

Low inter-reference recency Set (LIRS) proposed by [27],
uses the access recency information known as inter-reference
recency to anticipate the pages which are more likely to be
accessed in the near future. The clock-based algorithms, for
example CLOCK [28], CLOCK-PRO [29], CAR [30], and
ARC [31], use a reference bit or a reference counter to find the
victim page. Clock-based algorithms record only history
access information of pages, but will not consider the order in
which the pages got accessed. The scarcity of affluent history
information can damage the hit ratios.

Detection-based adaptive block replacement scheme (DEAR)
[32], and AFC [33], analyze the memory accesses to find
specific patterns and adopts diverse replacement conditions
for each pattern like MRU for sequential accesses and LRU or
LFU for other kind of patterns.

Fuzzy inference techniques by [34], [35] and Artificial
Intelligence techniques by [36], [37] are also proposed to
make the replacement decisions. An intelligent replacement
strategy combined with GDSF and SVM is proposed for web
caching in [38] and [39]. The cache replacement decisions
will be made using the object re-accessed probability. These

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7379

intelligent algorithms are computationally difficult to take
cache replacement decisions.

In the Big data and cloud computing era, efficient multi level
cache management is one of the biggest challenges. The
replacement algorithm has most important impact on the
efficiency of a caching. A number of replacement algorithms
such as first in first out (FIFO), most recently used (MRU),
least recently used (LRU), and least frequently used (LFU)
emerged as more effective. The most generally used
replacement policy is LRU (Least Recently Used) and it
records the pattern of recent referenced blocks. The important
limitation of LRU policy is it keeps track of the present
accesses of the blocks without considering the file block
access frequency, (file level access patterns) and file block
support. In face of this problem, we have proposed support
based replacement algorithm and rank based cache
replacement algorithm [51]. In these algorithms the
replacement choices are made using the support value of a file
block.

All of these methods bring significant intangible benefits to
the conventional replacement algorithms. In many cases they
need more complex implementations, additional data
structures and also entail data update for each memory access.

3. PROPOSED SPECULATIVE READ ALGORITHM

Speculative execution is a significant issue in computer
architecture. It enables parallel execution of serial programs.
Executing instructions ahead of their typical schedule is called
as speculative execution. The origin of speculative execution
is speculative instruction execution with branch prediction
[52]. The style of speculative execution is more influenced
and led to the development of the thread level parallelism.
Control, data dependence and data value speculation are the
three important ways of implementing thread level
speculations [53].

Speculative execution is also applied on relational databases
[54], [55], [56]. Speculative query execution allows the
queries to be performed in advance in the database system to
reduce the response time.

Today’s world is lead by data. People along with machines are
producing massive amounts of data every second by
communicating messages, uploading multimedia content like
photos and videos, collecting sensor data from various types
of sensors and so on. In order to pace with the changes in the
data patterns and to accommodate the requirements of big
data, the platform for storage and processing also requires
great advancements. To dynamically support and speed-up
execution of user applications we propose speculative read
algorithm.

This section illustrates how the proposed speculative read
algorithm works. Speculative execution permits serial tasks to
be executed in parallel. To implement speculative execution,
the system anticipates the result of a certain operation and

carries out its execution using the predicted value. After the
operation execution, the obtained result is compared with the
predicted result. The system commits the speculative state, if
the prediction was correct. Otherwise, rollbacks the system
state to a prior consistent state.

Figure 1: Speculative Threads created in the Cache Hierarchy
during the implementation of Speculative Read Algorithm.

Speculative execution is used to improve performance in
various systems including distributed file systems [21]. The
hierarchical global collaborative caching (HCGC) algorithm,
searches for the requested file block to complete the read
operation, in a sequential fashion starting from lower level
cache to higher level cache of the multi level caches available
in the system. It would be beneficial if we execute the read
operation concurrently as the hierarchical caches present in
the system are pre-filled with the popular file blocks and the
possibility to find these file blocks in any one (or more) of the
caches of the system.

The motivation behind speculative read algorithm is to reduce
the read latency. The proposed speculative read algorithm
allows the application to concurrently execute the read
operation on the contents of local cache (LC), the
collaborative local cache (LCC), the global cache (GC), the
collaborative global cache (GCC) and disk to reduce the read
operation latency.

The proposed speculative read algorithm along with the
support based prefetching [10], hierarchical collaborative
global caching and the rank based replacement algorithms
[51] works as follows. When a client application program
executing on a DN need a file block fb, then the local cache
manager concurrently check with the local cache (LC), the
collaborative local cache (LCC), the global cache (GC) and
the collaborative global cache (GCC) for the file block, by
conversing with the pertinent cache managers and also creates
speculative executions (SPs).

Speculative threads are created on behalf of each speculative
execution and named as SP1, SP2, SP3, SP4, SP5, SP6, and
SP7. Speculative thread SP1 represents the speculative
execution initiated at local cache (LCDN). SP2 is a
speculative thread, which represents the speculative execution

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7380

initiated at one of the local cache on the same rack (local
collaborative cache-LCC). The speculative execution started
at global cache (GC) present on same rack is carried out by the
speculative thread SP3. SP4 is the speculative thread created
to represent the speculative execution started at global
collaborative cache (global cache present on any rack-GCC).
Speculative execution started at a nearest data node (DN) is
represented by the speculative thread SP5.

Speculative thread SP1 starts its execution if the requested file
block Fb is available in the local cache (LCDN) otherwise it
will get terminated. SP2 execution will be started if the
requested Fb is available in any one of the local cache present
on the same rack i.e the collaborative local cache (LCC). SP3
execution will be started if the requested Fb is available in the
global cache (GC) connected to the same rack. SP4 execution
will be started if the requested Fb is available in any one of the
global cache present on any rack i.e the global collaborative
cache (GCC).

Simultaneously, the DFS user application program executing
on the DN starts the speculative execution by invoking SP5
thread for reading the file block from a nearest DN disk by
contacting the NN and also collects the timestamp of the file
block. After that, the time stamp collected from the NN is
compared with the time stamp of the file blocks in the local
cache, collaborative local cache, global cache, and
collaborative global cache. If any file blocks time stamp value
is matching with the time stamp collected from the NN, then
the corresponding speculative execution initiated in the cache
is allowed to complete. All the remaining speculative
executions initiated in the other caches will be terminated. If
time stamp is not matching with any of the cached file blocks
then the speculative execution initiated at the disk is
committed. Algorithm 1 describes the speculative read
algorithm. Figure 1 describes the speculative threads created
in the Cache Hierarchy during the implementation of
Speculative Read Algorithm.

Algorithm 1 Speculative read algorithm
/* A user application program AP executing on a data node
DN has issued read operation for File block fb of file F */
1: Timestamp t1=getNameNodeTimeStamp(fb)
2: Timestamp t2=get-LC-TimeStamp(fb)
3: Timestamp t3=get-LCC-TimeStamp(fb)
4: Timestamp t4=get-GC-TimeStamp(fb)
5: Timestamp t5=get-GCC-TimeStamp(fb)
6: Timestamp t6=get-closest DNs-TimeStamp(fb)
/* Create speculative execution threads SP1, SP2, SP3, SP4,
and SP5 and all these threads will be executed in parallel */
7: if (fb is present in the LCDN) then SP1 starts execution
8: else SP1 is terminated
9: end if
10: if (fb is present in the LCC) then SP2 starts execution
11: else SP2 is terminated
12: end if
13: if (fb is present in the GC (present on same rack)) then
SP3 starts execution
14: else SP3 is terminated
15: end if

16: if (fb is present in the GCC (global cache present on any
rack)) then SP4 starts execution
17: else SP4 is terminated
18: end if
19: if (fb is present in the closest DNs disk)) then SP5 starts
execution
20: else SP5 is terminated
21: end if
22: if (t1! = null) and (t2! = null) and (t2 == t1) then
23: Terminate SP2, SP3, SP4, SP5
24: Wait for SP1 to complete
25: else if (t3! =null and t3 == t1) then
26: Terminate SP1, SP3, SP4, SP5
27: Wait for SP2 to complete
28: else if (t4! =null and t4 == t1) then
29: Terminate SP1, SP2, SP4, SP5
30: Wait for SP3 to complete
31: else if (t5! =null and t5 == t1) then
32: Terminate SP1, SP2, SP3, SP5
33: Wait for SP4 to complete
34: else if (t6! =null and t6 == t1) then
35: Terminate SP1, SP2, SP3, SP4
36: Wait for SP5 to complete
37: else File not found
38: end if

4. MODIFIED WRITE PROCEDURE

The procedure followed for implementing modified write
operation is discussed in this section. When a user application
program executing on a data node has issued a write/update
operation on file block then the file block is first copied into
the local cache, global cache and to fulfil the requirement of
replication factor the file block is written to local disk, remote
disk on same rack and remote disk on different rack. The write
procedure is described in algorithm 2.

Algorithm 2 Write Procedure
/* A user application program AP executing on a data node
DN has to write/update a File block fb of file F */
1: if (write (new file block fb) then
2: Write in local cache
3: Write in global cache
4: write to local disk
5: Write in remote disk on same rack (replica on same rack)
6: Write in remote disk on different rack (replica on different
rack)
7: end if

The traditional write procedure writes the data only to the
disks available in the DFS. We have modified the write
operation such that the newly written or updated copy is also
placed in the local cache and also in the global cache along
with one or more disks according to the replication factor
followed in the DFS. So that the subsequent read operations
invoked on the new blocks will get benefited from the data
copies present in the local cache , global cache also avoids the
disk accesses. This will also increases the system performance
by reducing the read operation latency.

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7381

5. PERFORMANCE EVALUATION

We cover the assumptions for implementing the speculative
read algorithm in this section. The implementation aspects of
the proposed algorithms are covered next.

5.1 Assumptions
1) To avoid the communication overhead, no protocols are
used to synchronize the caches.
 2) The DFS user program converse with the NN to collect the
DNs addresses where the requested file blocks are available.
3) The size of Local and global caches are predetermined.
4) During the write of a file block, it will first be written to the
local cache, global cache and then written to the DNs disk
according to the write-through strategy.
5) 80% of read and 20% of write operations.
6) The minimum threshold value considered for prefetching is
0.6.

5.2 Experimental Setup

The computing and storage infrastructure of the DFS
considered to conduct the experiments consists of 10 racks
R1, R2... R10 and each rack consist of ten DNs. Each rack
also consists of a cache node with the global cache to facilitate
the implementation of HCGC algorithm. We have also
assumed that NN is connected to rack R1.

5.3 Specifications

We have considered the following specifications for
computing read access time for a file block. We presumed that
the file block size should be of 4 KB for the DFS and the
communication delay (CD) requisite to transfer a file block
from a distant data node to the local data node as 4 ms. Based
on the specifications of the switched local area network [46],
the time requisite to transfer time stamp and metadata is
considered as 0.125 ms. By considering the latest Seagate disk
storage devices [47], the disk access time is 12 ms. We have
presumed that the main memory access time is 0.005 ms,
according to the latest DDR4 dynamic random access
memory technologies [48]. The access time to read 4KB file
block from the distant memory as 4.01 ms. And access time
for transferring metadata as 0.125 milliseconds. The
communication delay (CD) requisite to transfer a file block
from a remote data node (present in a different rack) to a local
data node is 6 milliseconds. We have also considered that the
cache invalidation time is 0.125 milliseconds.

5.4 Synthetic Log Generation

In order to generate a more realistic log, we used MediSyn
[49], [50]. We have assumed that, there are 100 files present in
the DFS and each file consists of 25 to 1000 blocks. The file
and block popularity ranks are generated by using the random
permutation and rejection method. We have used a
generalized Zipf distribution function to generate file and
block frequencies. We have fixed popularity parameter (p)
value as 0.8 and maximum file frequency (Mf) value as 500,
maximum file block frequency (Mb) value as 1000, and scale

parameter k as 30. The request arrival for a day is modelled as
a non-homogeneous Poisson distribution function and each
interval consists of 1000 requests. After sessions are
generated, we have merged all the sessions according to the
arrival time to build the complete log.

For conducting simulation experiments, we have
contemplated that a log with 100000 sessions and each
session has got a number of read or write requests. Note that,
each read or write requisition consists of 5 to 15 file blocks.
We have to calculate local support and global support values
for all the files by considering a DN. We have contemplated
that the popular files will have support value greater than
60%. After that popular file blocks are computed for all the
popular files. Local caches of the DNs is filled with the
popular file blocks and the remaining popular file blocks and
the globally popular file blocks are stored in the
corresponding global caches present in the cache node of the
rack in which that DN is present.

In each experimentation, 100000 log entries are created using
non-homogeneous poisson distribution function, and each
interval consists of 1000 read/write requests and computed the
average read operation access time.

5.5 Simulation Results

In this section we present the results of simulation
experiments of speculative read algorithm using support
based prefetching, hierarchical collaborative global caching,
LRU replacement, support based replacement, and the rank
based replacement algorithms.

Figure 2 portray the average read access time (ARAT) of
speculative read algorithm with LRU, support and rank based
replacement techniques. To conduct these experiments, we set
the size of local cache as 100 global cache as 500, total
number of files available in the system as 100 and varied the
number of blocks of a file from 25 to 100.

Through the experiments we can see that the proposed
speculative read algorithm with support and rank-based
replacement techniques performs better than speculative read
algorithm with LRU replacement.

The reason behind this is, the cache content usually becomes
stable, after filled with the file blocks of maximum support
value (in support based replacement) and top n ranked file
blocks (in rank based replacement).

Figure 3 depicts the cache hit ratio (CHR) of the speculative
read algorithm with LRU, support and rank-based
replacement techniques. To conduct these experiments, we set
the size of local cache as 100 global cache as 500, total
number of files available in the system as 100 and varied the
number of blocks of a file from 25 to 100.

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7382

Figure 2: Number of blocks of a file Vs ARAT (LC size is 100

and GC size is 500 blocks).

Experiments can prove that the local cache hit ratio of the
proposed speculative read algorithm with rank-based
replacement algorithm is better than speculative read
algorithm with support and LRU replacement algorithms. We
can also observe that collaborative local cache hit ratio of the
proposed speculative read algorithm with rank-based
replacement technique is better than speculative read
algorithm with support and LRU replacement algorithms. It is
also observed that local cache hit ratio, collaborative local
cache hit ratio and global cache hit ratio of speculative read
algorithm with rank based replacement algorithm is better
than speculative read algorithm with support and LRU
replacement algorithms. We also observe that speculative
read algorithm with rank based replacement algorithm has got
a good hit ratio value for collaborative global caches.

Figure 4 illustrates the average read access time of speculative
read algorithm with LRU, support and rank based replacement
techniques. To conduct these experiments, we set the size of
local cache as 100 global cache as 500, total number of files
available in the system as 100 and varied the number of blocks
of a file from 200 to 500.

Speculative read algorithm with rank based replacement
technique performs better than speculative read algorithm
with support based replacement.

Speculative read algorithm with support based replacement
technique performs better than speculative read algorithm
with LRU replacement. We can also observe that, the
proposed speculative read with rank-based replacement
performs better than the remaining three algorithms.

Speculative read algorithm with support based replacement
technique performs better than speculative read algorithm
with LRU replacement. We can also observe that, the
proposed speculative read with rank-based replacement
performs better than the remaining three algorithms.

Figure 3: Number of blocks of a file Vs CHR (LC size is 100 and

GC size is 500 blocks).

Figure 4: Number of blocks of a file Vs ARAT (LC size is 500
and GC size is 2000 blocks).

The local cache size is set as 500 global cache as 2000, total
number of files available in the system as 100 and varied the
number of blocks of a file from 200 to 500 and potted the
graphs for cache hit ratio.

In Figure 5 we have plotted graph with the cache hit ratios of
local and collaborative caches, of speculative read algorithm
with rank based replacement algorithm is better than
speculative read algorithm with support-based replacement
and speculative read with LRU.

We also find that the global cache hit ratios of speculative
read algorithm with rank-based replacement technique is
better than speculative read algorithm with support-based
replacement and speculative read with LRU.

We also find that the collaborative global cache hit ratio of
speculative read algorithm with rank-based replacement
technique is better than remaining algorithms. So, we can say
that speculative read algorithm with rank-based replacement
technique surpasses the remaining two algorithms.

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7383

Figure 5: Number of blocks of a file Vs CHR (LC size is 500 and

GC size is 2000 blocks).

For this and next experiments, we have fixed the local cache
size as 1000 blocks, global cache size as 5000 , varied the
number file blocks in a file from 250 to 1000 and plotted the
graph which are shown in Figure 6. In Figure 6, we can
examine the average read access time performance of the
speculative read algorithm with LRU, support and rank-based
replacement techniques. Speculative read algorithm with rank
based replacement technique performs better than speculative
read algorithm with support based replacement. The
performance of speculative read algorithm with LRU
replacement support and rank-based replacement increase as
the size of the global cache also increases. We can also
observe that, the proposed speculative read algorithm with
rank-based replacement performs better than the remaining
three algorithms.

In Figure 7, we have plotted the graph with cache hit ratios of
local and collaborative caches, of speculative read algorithm
with rank based replacement algorithm is better than
speculative read algorithm with LRU and HCGC with support
based replacement. We also find that the local, collaborative
local, global cache hit ratios of speculative read algorithm
with rank based replacement technique is better than
speculative read algorithm with LRU and HCGC with support
based replacement. We also find that the collaborative global
cache hit ratio of speculative read algorithm with rank based
replacement technique is better than remaining algorithms.
So, we can say that speculative read algorithm with
rank-based replacement technique performs better than
remaining three algorithms.

From the experiments results, we can see that the cache hit
ratio of all algorithms is in the increasing order. We believe
that this is due to the support based prefetching technique and
it leads to number of hits in the cache hierarchy.

Figure 6: Number of blocks of a file Vs ARAT (LC size is 1000
and GC size is 5000 blocks).

We can observe that with the tiny caches, cache can
accommodate only limited file blocks, in such contexts, if
there are large number of client requests, it leads to more
number of misses, so the cache hit ratios of the algorithms are
not high. But when the cache size is larger, cache can
accommodate more number of file blocks from different files,
hat will result in high cache hit rate.

Figure 7: Number of blocks of a file Vs CHR (LC size is 1000

and GC size is 5000 blocks).

Next we discuss about the overhead that occurs with the cache
invalidation. When multiple caches have the same file blocks,
we need to maintain cache consistency. Change to a cached
file block occurs when it got updated by the application
program. These changes cause the file block to be out of sync
with the other cached copies and or with storage server copies.
To solve this hitch, the change should be propagated to all
other caches whichever have the file block. The strategy
applied to notify all the caches regarding the update is called
as cache invalidation policy. This problem is more definite in
collaborated caching schemes as there are multiple copies of
the same file block existing at different caches.

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7384

Figure 8: Number of blocks of a file Vs Cache invalidation time

overhead (LC size is 100 and GC size is 500 blocks).

Figure 9: Number of blocks of a file Vs Cache invalidation time

overhead (LC size is 500 and GC size is 2000 blocks).

Figure 10: Number of blocks of a file Vs Cache invalidation time

overhead (LC size is 1000 and GC size is 5000 blocks).

To compute the cache invalidation overhead, we ran the
simulation experiments of hierarchical collaborative global
caching algorithm using the support based prefetching, and
the rank based replacement algorithms but without
speculative execution. Through the simulation experiments
we have calculated the cache invalidation time overhead and
the obtained results are depicted in figures 8, 9, and 10. From
the results, we can observe that the Cache invalidation time
overhead increases along with the cache size. We can also
observe that the Cache invalidation time overhead is more in
HCGC algorithm with LRU replacement when compared to
HCGC algorithm with support based replacement algorithm.
And the Cache invalidation time overhead is more in HCGC
algorithm with support replacement when compared to HCGC
algorithm with rank based replacement algorithm. However,
the speculative read algorithm does not employ any cache

synchronization or invalidation protocol, so cache
invalidation time overhead problem will get resolved.

6. CONCLUSION

Cloud computing systems use distributed file system at the
back end for storing large data in a scalable manner.
Improving the read operations performance of the distributed
file system is one of the key research issues. We proposed a
novel speculative read algorithm for hierarchical local and
global caching environment to improve the read operation
performance in the distributed file system. Experimentation is
done by considering the presence of local, global,
collaborative local and collaborative global caches.
Experimental results shows that the proposed speculative read
algorithm can reduce the average read access time of the
distributed file system in comparison with the algorithm that
does not carry out speculative executions.

REFERENCES

1. William A. Wulf and Sally A. McKee, Hitting the
memory wall: Implications of the obvious, ACM
SIGARCH Computer Architecture News 23, pp.20–24, 1
March 1995.

2. Griffioen, J. and Appleton, R., Reducing File System
Latency Using a Predictive Approach, Proceedings of
the 1994 USENIX Annual Technical Conference,
Boston, 6-10 June 1994.

3. [R. Hugo Patterson, Informed prefetching and caching,
PhD thesis, Carnegie Mellon University, December
1997.

4. M.M.A. Assaf, X. Jiang, X. Qin, M.R. Abid, M. Qiu, J.
Zhang, Informed prefetching for distributed
multi-level storage systems, Journal of Signal
Processing Systems, vol. 90, no. 4, pp. 619-640, 2018.

5. D. Muntz and P. Honeyman , Multi-Level Caching in
Distributed File Systems, Proc. USENIX Winter
Conference, 1992.

6. Rafael Alonso and Matthew Blaze, Dynamic
hierarchical caching for large-scale distributed file
systems, Proceedings of the Twelfth International
Conference on Distributed Computing Systems, June
1992.

7. Michael D. Dahlin , Randolph Y. Wang , Thomas E.
Anderson , David A. Patterson, Cooperative caching:
using remote client memory to improve file system
performance, Proceedings of the 1st USENIX
conference on Operating Systems Design and
Implementation, Monterey, California, pp.267-280,
November , 1994.

8. Gurmeet Singh, Puneet Chandra and Rashid Tahir, A
Dynamic Caching Mechanism for Hadoop using
Memcached, in proceedings of Tahir 2012 ADC,2012.

9. Meenakshi Shrivastava, Hadoop-Collaborative Caching
in Real Time HDFS, Rochester Institute of Technology,
Rochester, NY, USA. Dec 2012.

10. Rathnamma Gopisetty T Ragunathan C.Shobha Bindu,
Support-Based Prefetching Technique for

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7385

Hierarchical Collaborative Caching Algorithm to
Improve the Performance of a Distributed File
System, Seventh International Symposium on Parallel
Architectures, Algorithms and Programming,
IEEE,2168-3042/15 , 2015.

11. D. I. August, D. A. Connors, S. A. Mahlke, J.W. Sias, K.
M. Crozier, B.-C. Cheng, et al., Integrated predicated
and speculative execution in the IMPACT EPIC
architecture, In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pp.
227-237, 1998.

12. I.-Cheng K. Chen, C.-C. Lee, and T. N. Mudge,
Instruction prefetching using branch prediction
information, In Proceedings of the International
Conference on Computer Design VLSI in Computers and
Processors (ICCD’97), pp.593–601, 1997.

13. A. N. Eden et al., The YAGS branch prediction
scheme, In Proceedings of the 31st Annual ACM/IEEE
International Symposium on Micro architecture
(MICRO’98), pp.69-77, 1998.

14. Jose Gonzalez and Antonio Gonzalez, Speculative
execution via address prediction and data
prefetching, In Proceedings of the 11th International
Conference on Supercomputing (ICS’97), pp.196-203,
1997.

15. Mikko H. Lipasti, Christopher B.Wilkerson, and John
Paul Shen, Value locality and load value prediction,
ACM SIGPLAN Notices 31, 9 (1996), pp.138-147, 1996.

16. Avi Mendelson and Freddy Gabbay, Speculative
Execution Based on Value Prediction, Technical
Report. EE Department TR 1080, Technion-Israel
Institute of Technology, 1996.

17. G. S. Tyson, The effects of predicated execution on
branch prediction, In Proceedings of the 26th Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO’94), pp.196-206, 1994.

18. Tullsen D. M., Eggers S.J. and Levy H.M, Simultaneous
Multithreading: Maximizing On-Chip Parallelism, In
Proc.of the 22nd Int. Symp. On Computer Architecture,
pp. 392- 403, 1995.

19. Marcuello P., González A. and Tubella J., Speculative
Multithreaded Processors, 12th Int. Conf. on
Supercomputing,Melbourne, Australia, pages 77-84, July
1998.

20. Roth and Sohi G.S., Speculative Data-Driven
Multithreading, In Proc. of the 7th. Int. Symp. On High
Performance Computer Architecture, pp. 37-48, 2001.

21. E. B. Nightingale, P. M. Chen, and J. Flinn, Speculative
execution in a distributed file system, In Proceedings of
the Twentieth ACM Symposium on Operating Systems
Principles, SOSP’05, pp. 191-205, New York, NY, USA,
2005.

22. Fay Chang and Garth A. Gibson, Automatic I/O Hint
Generation through Speculative Execution, In
Operating Systems Design and Implementation, pp. 1-14,
1999.

23. Chen Q, Liu C, Xiao Z, Improving Map Reduce
performance using smart speculative execution
strategy, IEEE Transactions on Computers ,
pp.954-967,2014.

24. T. Phan, G. Pallez, S. Ibrahim, P. Raghavan, A New
Framework for Evaluating Straggler Detection
Mechanisms in MapReduce, ACM Transactions on
Modeling and Performance Evaluation of Computing
Systems, 2019.

25. X Huang, C Li, Y Luo., Optimized Speculative
Execution Strategy for Different Workload Levels in
Heterogeneous Spark Cluster, Proceedings of the 4th
International Conference on Big Data and Computing,
pp. 6-10, May 2019.

26. S. Podlipnig and L. B. Osz, A Survey of Web Cache
Replacement Strategies, ACM Computing Surveys, vol.
35, no. 4, pp. 374-398, 2003.

27. S. Jiang and X. Zhang, LIRS: An efficient low
inter-reference recency set replacement policy to
improve buffer cache performance, In Proc. ACM
SIGMETRICS Conf., 2002.

28. Corbat, F. J, A paging experiment with the Multics
system, In Honor of P. M. Morse, pp. 217-228, MIT
Press, Also as MIT Project MAC Report MAC-M-384,
1969.

29. Song Jiang, Feng Chen, Xiaodong Zhang, CLOCK-Pro:
an effective improvement of the CLOCK
replacement, Proceedings of the annual conference on
USENIX Annual Technical Conference, Anaheim, CA,
pp.35-35, April 10-15, 2005.

30. Bansal, S. and Modha, D. S, CAR: Clock with Adaptive
Replacement, In Proceedings of the USENIX
Conference on File and Storage Technologies
(FAST-04), San Francisco, pp. 187-200, 2004.

31. Megiddo, N. and Modha, D. S., ARC: A Self Tuning,
Low Overhead Replacement Cache, In Proceedings of
the USENIX Conference on File and Storage
Technologies (FAST-03), San Francisco, pp.
115-130,2003.

32. Jongmoo Choi , Sam H. Noh , Sang Lyul Min , Yookun
Cho, An implementation study of a detection-based
adaptive block replacement scheme, Proceedings of the
annual conference on USENIX Annual Technical
Conference, Monterey, California, pp. 239-252, June
06-11, 1999.

33. Jongmoo Choi , Sam H. Noh , Sang Lyul Min , Yookun
Cho, Towards application/file-level characterization
of block references: a case for fine-grained buffer
management, Proceedings of the 2000 ACM
SIGMETRICS international conference on Measurement
and modeling of computer systems, Santa Clara,
California, USA, p.286-295, June 18-21, 2000.

34. Sabeghil, M. and Yaghmaee, M. H., Using fuzzy logic to
improve cache replacement decisions, International
Journal of Computer Science and Network, 2006.

35. Davood Akbari Bengar, Ali Ebrahimnejad, Homayun
Motameni, Mehdi Golsorkhtabaramiri, A page
replacement algorithm based on a fuzzy approach to
improve cache memory performance, Journal of Soft
Computing, 24:955-963, 2020.

36. Aimtongkham, Phet, Chakchai So-In, and Surasak
Sanguanpong, A novel web caching scheme using
hybrid least frequently used and support vector
machine, Computer Science and Software Engineering

Rathnamma Gopisetty et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7377 – 7386

7386

(JCSSE), and also in 13th International Joint Conference
on. IEEE, 2016.

37. Wang Y, Yang Y, Han C, Ye L, Ke Y, Wang Q,
LR-LRU: a PACS-Oriented intelligent cache
replacement policy, in IEEE Access, vol. 7, pp.
58073-58084, 2019.

38. [38] a T, Qu J, Shen W et al., Weighted greedy dual size
frequency based caching replacement algorithm, in
IEEE Access, vol. 6, pp. 7214-7223, 2018.

39. Chao W., Web cache intelligent replacement strategy
combined with GDSF and SVM network re-accessed
probability prediction, J Ambient Intell Human Comput
11, pp.581-587, 2020.

40. R. Agrawal and R. Srikant, Fast Algorithms for Mining
Association Rules, Proc. 20th Int. Conf. on very Large
Databases (VLDB 1994), Santiago de Chile),
pp.487-499. Morgan Kaufmann, San Mateo, CA, USA,
1994.

41. Yoon, S.-D., Jung, I.-Y., Kim, K.-H., Jeong, C.-S.,
Improving hdfs performance using local caching
system, In Second International Conference On Future
Generation Communication Technology (FGCT), pp.
153-156. IEEE 2013.

42. Zhang, J., Li, Q. & Zhou,W., HDCache: A Distributed
Cache System for Real-Time Cloud Services, J Grid
Computing, vol. 14, pp.407-428 ,2016.

43. G. Ananthanarayanan, A. Ghodsi, A. Wang, D.
Borthakur, S. Kandula, S. Shenker, and I. Stoica,
PACMan: Coordinated Memory Caching for Parallel
Jobs, In USENIX NSDI, 2012.

44. The Global Memory System (GMS) Project. http://www.
cs.washington.edu/homes/levy/gms/.

45. The NOW Project. http://now.cs.berkeley.edu.
46. Mace, C., Limited, S.C., Latency on a switched

ethernet network. 2014. URL
https://w3.siemens.com/mcms/industrial-communication
/en/ruggedcommunication/Documents/AN8.pdf.

47. Konstantin V.Shvachko, HDFS Scalability: The Limits
to Growth, The USENIX Magzine April, Volume 35,
Number 2, 2010.

48. Yash Pal, Member, IAENG, An Analog Method to
Study the Average Memory Access Time in a
Computer System, Proceedings of the World Congress
on Engineering, London, U.K Vol II, WCE 2013, July 3 -
5, 2013.

49. Wenting Tang, Yun Fu, Ludmila Cherkasova, and Amin
Vahdat, Medisyn: A synthetic streaming media service
workload generator, In NOSSDAV. ACM, 2003.

50. A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and
Z.-L. Zhang, Deepcache: A deep learning based
framework for content caching, In Netw.Meets AI &
ML. ACM, Budapest, Hungary, August 20-24, pp.48-53,
2018.

51. Rathnamma Gopisetty T Ragunathan C.Shobha Bindu,
Improving Performance of a Distributed File System
using Hierarchical Collaborative Global Caching
Algorithm with Rank Based Replacement Technique,
Article accepted for publication by International Journal
of Communication Networks and Distributed Systems,
IJCNDS 35604, 03 Mar 2020

52. J.E. Smith, A study of branch prediction strategies,
ISCA Conference Proceedings, 1981, New York,
pp.135-148.

53. J. Šilc, T. Ungerer, B. Robic, Dynamic branch
prediction and control speculation, Int. Journal of High
Performance Systems Architecture, Vol.1(1), pp.2-13,
2007.

54. Reddy, P.K., Kitsuregawa, M. Speculative locking
protocols to improve performance for distributed
database systems, in IEEE Trans. Knowl. Data Eng.
16(2), pp. 154-169, 2004.

55. Ragunathan, T., Krishna, R.P. Improving the
performance of read only transactions through
asynchronous speculation, In: SpringSim Conference
Proceedings, Ottawa, pp. 467-474, 2008.

56. Sasak-Okoń A. Wyrzykowski R., Deelman E., Dongarra
J., Karczewski K. Modifying Queries Strategy for
Graph-Based Speculative Query Execution for
RDBMS. In: Lecture Notes in Computer Science, vol
12043. Springer, Cham, 2020.

