
 Viddulata. A. Patil, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2941 – 2946

2941

ABSTRACT

In this paper new approach for the optimization of training
data for object detection particularly object localization
problems in genetic programming (GP) is discussed. For the
fitness function, the weighted F-measure of a genetic program
is used considering localization fitness values of the detected
object locations. The training data is categorized into four
types: exact center, close to center, include center, and
background for investigation data with this fitness function.
An existing fitness function using above approach is
examined and compared on three object detection problems of
increasing difficulty. The results also suggest that using
different proportion of all these data types to optimal results
can be achieved which reduces time required for detection of
objects. Only two data types Exact center type and close to
center type data can be used to produce good detection results.
As background type data contains less information we can
neglect that type of data.

Key words : Evolutionary computing, fitness function,
Genetic programming, object detection, object localization,
object recognition, object classification, training data

1. INTRODUCTION

As most of the images are captured in electronic form, the
need for of image processing is increasing. In order to get an
enhanced image or to extract some useful information from it,
Image processing is a method used to perform some
operations on image. Finding objects of interest in database of
images is one of the applications of image processing. Thus
object recognition and classification tasks arise in a very wide
variety of practical situations, such as detecting faces from
video images, finding tanks and helicopters from satellite
images, identifying suspected terrorists from fingerprint
images, and diagnosing medical conditions from X-rays. In
many cases, people (possibly highly trained experts) perform
the recognition/ classification tasks well, but there is either a
shortage of such experts or the cost of people is too high.
Therefore if the amount of image data containing objects of
interest that need to be classified and recognized is given,
then automatic computer based classification and recognition
programs / systems are of immense social and economic value
[1], [2].

Genetic programming (GP) is a relatively recent and fast
developing approach to automatic programming. In GP,
solutions to a problem can be represented in different forms
but are usually interpreted as computer programs. Darwinian
principles of natural selection and recombination are used to
evolve a population of programs towards an effective solution
to specific problems. The flexibility and expressiveness of
computer program representation, which combined with the
powerful capabilities of evolutionary search, make GP an
exciting new way to solve a great variety of problems.

Various fitness functions have been devised for object
detection, with varying success [3, 4, 5, 9, 11, 12, 13, 16, 17].
These tend to combine many parameters using scaling factors
which specify the relative importance of each parameter, with
no obvious indication of what scaling factors are good for a
given problem. Many of these fitness functions for
localization require clustering to be performed to group
multiple localizations of single objects into a single point
before the fitness is determined [14, 13, 12, 15].

Organizing training data is critical to any learning
approaches. The previous approaches in object detection tend
to use all possible positions of the large image in training an
object detector. However, this usually requires a very long
training time due to the use of a large number of positions on
the background.

This paper aims to investigate a novel approach to optimize
the training data in GP for object detection, in particular
localization to reduce the training time.

2. METHODOLOGY

Object detection is the task of processing an image to both
localize a particular object or objects and to then classify each
object found. The process for object detection is shown in
Figure 1.

Figure 1: An overview of the Object Detection Process

Object Detection: Optimization of training Data in

Genetic Programming
 Viddulata. A. Patil

SVERI’s College of Engineering, Pandharpur, viddulata@gmail.com

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse69932020.pdf

https://doi.org/10.30534/ijatcse/2020/69932020

 Viddulata. A. Patil, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2941 – 2946

2942

A trained localizer applied to raw image, producing a set of
points found to be the positions of these objects. Single objects
could have multiple positions (“localizations”), however
ideally there would be exactly one localization per object.
Regions of the image are then “cut out” at each of the
positions specified. Each of these cutouts is then classified
using the trained classifier. This method treats all objects of
multiple classes as a single “object of interest” class for the
purpose of localization, and the classification stage handles
attaching correct class labels. The object localization stage is
performed by means of a window which sweeps over the
whole image, and for each position extracts the features and
passes them to the trained localizer. The localizer then
determines whether each position is an object or not (i.e.
background).

The object localization stage is performed by means of a
window sweeping method which sweeps over the whole
image and for each position extracts the features and passes
them to the trained localizer. Figure 2 shows how sweeping
window sweeps on image. The localizer then determines
whether each position is an object or not (i.e. background).
The window-sweeping method is a dimensionality reduction
technique used to extract image features such as pixel
statistics from the entire image. The window-sweeping
method involves moving a fixed-size input window across an
image, pixel by pixel, extracting image features at every
location of the sweeping window. The size of the input
window is usually large enough to contain the largest object of
interest in the image but also small enough as not so miss out
on too much detail when extracting features.

Figure 2: Figure (a) Original position of sweeping

window, (b) Sweeping window at first step along the x-axis,
(c) Sweeping window at second step along x-axis and (d)
Sweeping window at first step along y-axis

We used the fitness function based on a “Relative
Localization Weighted F-measure” (RLWF) [3]. This fitness
function attempts to recognize the goodness of individual
localizations made by the genetic program. Each localization
is allocated a weight instead of using either correct or
incorrect to represent localization which is called as the
localization fitness, LF. This represents its individual worth
and counts towards the overall fitness. According to the

relative location, or the distance of the localization from the
center of the closest object Each weight is calculated , as
shown in Equation 1.

LF(x,y)= (1)

where is the distance of the localization position
(x, y) from target object centre, and r is called the
“localization fitness radius”, defined by the user. In this
system, r is set to the radius of the largest object. We used the
localization fitness to calculate this fitness function, as shown
in Eq.s 2 to 4. The precision and recall are calculated by
taking the localization fitness for all the localizations of each
object and dividing this by the total number of localizations or
total number of target objects respectively.

WP = (2)

WR = (3)

FitnessRLWF = (4)

where N is the total number of target objects, (xij,yij) is the
position of the j-th localization of object i, Li is number of
localizations made to object i, WP and WR are the weighted
precision and recall, and FitnessRLWF is the localization
fitness weighted F-measure, which is used as the fitness
function. we chose three image data sets of coins in the
experiments. The data sets are intended to provide object
localization/detection problems of increasing difficulty. The
first data set (easy) contains images of coins against an almost
uniform background. The second (medium difficulty) is of
coins against a noisy background, making the task harder.
The third data set (hard) contains tails and heads of coins
against a noisy background.

 (a) (b) (c)

Figure 3: Images in the three data sets. (a) Easy;
(b) Medium difficulty; (c) Hard

When a trained localizer is applied to the above images we get
localizations as shown in figure 4. For this localization we
used window size of 60X60 and step size of 20 which gave us
result as per Table 1

Figure 4: Coins detected locations with window size

60x60 and step size 20 for
(a) Coins easy (b) Coins medium (c) Coins hard images

 Viddulata. A. Patil, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2941 – 2946

2943

Table1 : Results for fitness function-RLWF with window
size 60x60 and step size 20

Image Weighted
recall

Weighted
precision Fitness

Time
Elapse

d in
sec.

coins_easy 0.63 0.45 0.52 4.03
coins_med 0.81 0.41 0.55 2.88
coins_har

d 0.88 0.57 0.69 3.90

3.RESULTS FOR OPTIMIZATION OF TRAINING
DATA

For optimization of training data, first training data is
categorized into four types 1. Exact center 2. Close to center 3.
Include center 4. Background data. Figure 5.shows example
of how training data is categorized into different data types.
When sweeping window moves on image if the center of the
window which is tentative coin localization is containing a
center of coin then it is considered as close to center, If it
contains only small part of object then it is categorized as
include center and if no part of the object is within window
then it is considered as background type. All the known coin
positions are considered as exact center data type.

 (a) (b) (c)

Figure 5: Categorization of data into different data Type
(a) Easy coin image (b)Medium coin image (c)Hard coin

image

For the optimization we used all the exact center data type and
percentage from 0 to 100% for all other data types. It was
found that exact center type data is important and if the
percentage of all other data is used then we get optimal
results. For all different percentage of different data types
fitness performance for easy, medium and hard coin image
was calculated. We calculated relative fitness and time
elapsed for training for all three images considering different
proportion of four different data types.

In the Figure 6 the x and y axes are the Close to center and
Background, and the z axes is the Relative fitness, time
elapsed and weighted precision for training for the particular
image. Here we observed that for close to center type data the
best results can be obtained and when we do not use any
example in this type at all then worst results were produced.
when percentage of object examples in close to center type is
more, the best results are achieved. The Background type
objects were not serious for these data sets. Any bad or good

influence was not observed by including or excluding these
data type. The results suggest that, for these object
localization using the relative localization weighted fitness
function, good fitness results can be achieved with only the
two types of data types, Exact Centre and Close to Centre, and
even if not all object examples for the other two types Include
Object and Background can be taken out from the training set
would not affect much on the result. Also time required for
training is less when close to center type data is used then as
compared to the other data types as that data type is more as
compared to close to center type data.

Table 2 (a) and (b) gives relative fitness and time elapsed
using different data proportion for easy coin image and Fig 6
(a) and (b) shows its graphical representation of relative
fitness and time elapsed. Here from the table it is observed
that when close type percentages is zero (0) and include object
type percentage is 100% and background type percentage is
ranging from 0 to 100% , less detection is obtained as
compared to the detection when maximum percentage of
close to center type data is used. From fitness values we
observe that as the percentage of close to center data type
increases, fitness increases and it does not affect much on the
fitness even though we use less percentage of background type
and include object type data type. Include object type data and
background type data makes very less effect on fitness.

Table 2 (a): Relative fitness for easy coin image.
B\C 0 20 40 60 80 100

0 0.17 0.01 0.01 0.42 0.48 0.64

20 0.19 0.01 0.09 0.40 0.48 0.68

40 0.19 0.20 0.28 0.41 0.48 0.64

60 0.19 0.01 0.28 0.42 0.49 0.64

80 0.13 0.01 0.30 0.42 0.52 0.64

100 0.16 0.06 0.01 0.15 0.50 0.63

Table 2(b): Time elapsed for training for easy coin image

Table 2(c) : Weighted Precision for easy coin image.
B\C 0 20 40 60 80 100

0 0.08 0.09 0.13 0.18 0.25 0.38

20 0.08 0.08 0.14 0.23 0.30 0.39

40 0.07 0.00 0.12 0.22 0.30 0.38

60 0.08 0.11 0.15 0.23 0.25 0.38

80 0.05 0.00 0.14 0.20 0.30 0.38

100 0.08 0.11 0.15 0.00 0.30 0.38

B\C 0 20 40 60 80 100

0 1.99 1.37 1.24 1.44 0.92 0.70

20 1.82 1.39 1.28 1.39 0.93 0.65

40 1.76 1.43 1.28 1.33 0.87 0.66

60 1.96 1.46 1.23 1.44 0.92 0.70

80 1.82 1.40 1.29 1.53 1.15 0.67

100 1.88 1.45 1.24 1.10 0.89 0.68

 Viddulata. A. Patil, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2941 – 2946

2944

Figure 6.: (a)Relative fitness (b) Time elapsed (c) Weighted
precision using different Training Data Proportions for easy

coin image

Figure 5 (c). shows the weighted precision for easy coin image
with different proportion of training data. It is clearly
observed that as percentage of close to center type data is
increased weighted precision increases which mean that
number of correctly detected objects with respect to number of
total detected objects increases. Table 1 (c) gives weighted
precision for easy coin image.

Table 3 (a), (b) and (c) gives relative fitness time elapsed and
weighted precision using different data proportion for
medium coin image and Fig 7 shows its graphical
representation. From fitness values it is clear that as the
percentage of close to center data type increases detection
increases and it does not affect much on the detection even
though we use less percentage of background type and include
object type data type. Include object type data and background
type data makes very less effect on fitness. Also as the
percentage of close to center type increases weighted
precision increases.

 Table 3 (a) : Relative fitness for medium coin image

B\C 0 20 40 60 80 100

0 0.30 0.38 0.41 0.47 0.48 0.68

20 0.33 0.35 0.41 0.47 0.52 0.60

40 0.30 0.38 0.41 0.47 0.48 0.68

60 0.30 0.38 0.41 0.35 0.52 0.60

80 0.17 0.38 0.41 0.47 0.48 0.68

100 0.33 0.38 0.41 0.47 0.48 0.68

Table 3 (b) : Time elapsed for training of medium coin image
B\C 0 20 40 60 80 100

0 2.22 1.81 1.18 1.04 0.81 0.56

20 1.77 1.56 1.68 1.06 0.92 0.59

40 1.78 1.56 1.43 1.20 0.96 0.56

60 1.94 1.38 1.25 1.09 0.78 0.61

80 1.70 1.52 1.21 1.04 0.85 0.56

100 1.90 1.50 1.31 1.16 0.75 0.64

Table 3 (c) : Weighted Precision for medium coin image

B\C 0 20 40 60 80 100

0 0.15 0.21 0.27 0.33 0.38 0.44

20 0.21 0.24 0.27 0.33 0.38 0.45

40 0.15 0.21 0.27 0.33 0.38 0.44

60 0.15 0.21 0.27 0.17 0.38 0.45

80 0.00 0.21 0.27 0.33 0.38 0.43

100 0.21 0.21 0.27 0.33 0.26 0.44

Table 4 (a), (b) and (c) gives relative fitness time elapsed and
weighted precision using different data proportion for hard
coin image and Fig. 8 shows its graphical representation.
From fitness values it is clear that good results are obtained
with close to center data type. Include object type data and
background type data makes very less effect on fitness. Even
though less percentage of background type data and include
center type data is used it gives good results. Also as the close
to center type data proportion is less so it requires less time for
training which reduces training time.

Figure 7: (a) Relative fitness (b) Time elapsed (c) Weighted

precision using different Training Data Proportions for
medium coin image

 Viddulata. A. Patil, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2941 – 2946

2945

Table 4 (a): Relative fitness for hard coin image.
B\C 0 20 40 60 80 100

0 0.25 0.32 0.36 0.40 0.49 0.69

20 0.25 0.32 0.36 0.40 0.49 0.69

40 0.25 0.32 0.36 0.40 0.49 0.69

60 0.25 0.32 0.36 0.40 0.49 0.69

80 0.25 0.32 0.36 0.40 0.49 0.69

100 0.25 0.32 0.36 0.40 0.49 0.56

Table 4(b): Time elapsed for training of hard coin image

B\C 0 20 40 60 80 100

0 1.91 1.62 1.31 1.13 1.06 0.77

20 1.84 1.59 1.28 1.08 1.00 0.79

40 1.96 1.55 1.29 1.07 0.95 0.78

60 2.04 1.62 1.35 1.12 0.90 0.75

80 2.50 1.65 1.32 1.11 0.94 0.61

100 2.02 1.56 1.30 1.12 0.82 0.58

Table 4(c) :Weighted Precision for hard coin image

B/C 0 20 40 60 80 100

0 0.10 0.16 0.22 0.24 0.26 0.45

20 0.10 0.16 0.22 0.24 0.26 0.45

40 0.10 0.00 0.22 0.24 0.26 0.45

60 0.10 0.21 0.22 0.24 0.26 0.45

80 0.10 0.16 0.22 0.24 0.26 0.45

100 0.05 0.16 0.22 0.24 0.26 0.48

Figure 8: (a)Relative fitness (b) Time elapsed (c) Weighted
precision using different Training Data Proportions for hard
coin image

4. CONCLUSION

We can categorize a training data into four data types and
using different proportion of all these data types to get optimal
results which reduces time required for detection of objects.
Only Exact center type and close to center type data these two
data types can be used to produce good detection results. As

background type data contains less information we can
neglect that type of data.

Precision & Recall have proved as excellent performance
measures and have replaced false alarm and detection rates.
Genetic programming has proved that it can be used
standalone as an efficient object recognition engine.

REFERENCES

1. J. R. Koza, “Genetic programming: on the

programming of computers by means of natural
selection”. London, England: Cambridge, Mass.: MIT
Press, 1992.

2. R. Poli, “Genetic programming for image analysis,” in
Proc. 1st Annu. Conf. Genetic Program., J. R. Kosa, D.
E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., Jul.
28–31, 1996, pp. 363–368.

3. Mengjie Zhang, Malcolm Lett. “Genetic Programming
for Object Detection: Improving Fitness Functions and
Optimising Training Data”, IEEE Intelligent
Informatics Bulletin (IEEE Computational Intelligence
Bulletin). Vol. 7, No. 1. 2006. pp. 12-21.

4. J. F. Winkeler and B. S. Manjunath, “Genetic
programming for object detection,” in Proc. 2ndAnnu.
Conf. Genetic Program., J. R. Koza K. Deb, M. Dorigo,
D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Eds.,
Jul. 13–16, 1997, pp. 330–335.

5. M. Zhang, V. Ciesielski, and P. Andreae, “A domain
independent window-approach to multiclass object
detection using genetic programming,”EURASIP
Journal on Signal Processing, Special Issue on Genetic
and Evolutionary Computation for Signal Processing
and Image Analysis, vol. 2003, no. 8, pp. 841–859,
2003.
https://doi.org/10.1155/S1110865703303063

6. W. Smart and M. Zhang, “Classification strategies for
image classification in genetic programming,” in
Proceeding of Image and Vision Computing
Conference, D. Bailey, Ed., Palmerston North, New
Zealand, November 2003, pp. 402–407.

7. D. Howard, S. C. Roberts, and R. Brankin, “Target
detection in SAR imagery by genetic programming,”
Advances in Engineering Software, vol. 30, pp.
303–311, 1999. IEEE Intelligent Informatics Bulletin
December 2006 Vol.7 No.1
https://doi.org/10.1016/S0965-9978(98)00093-3

8. Pritchard, M. Zhang , “Genetic programming for
multi-class object detection”. Tech. rep. School of
Mathematical and Computing Sciences, VUW, 2002.

9. A. Teller and M. Veloso, “A controlled experiment:
Evolution for learning difficult image classification,” in
Proc. 7th Portuguese Conf. Artif. Intell., C.
Pinto-Ferreira and N. J. Mamede, Eds., Oct. 3–6, 1995,
Lecture Notes in Artificial Intelligence, vol. 990, pp.
165–176.
https://doi.org/10.1007/3-540-60428-6_14

 Viddulata. A. Patil, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2941 – 2946

2946

10. W. A. Tackett, “Genetic programming for feature
discovery and image discrimination,” in Proceedings
of the 5th International Conference on Genetic
Algorithms, ICGA-93, S. Forrest, Ed. University of
Illinois at Urbana-Champaign: Morgan Kaufmann,
17-21 July 1993, pp. 303–309.

11. U. Bhowan, “A domain independent approach to
multi-class object detection using genetic
programming,” BSc Honours research thesis, School of
Mathematical and Computing Sciences, Victoria
University of Wellington, 2003.

12. Bunna NY and M.Zhang “Multi-class object
classification and detection using neural networks”,
Tech. rep.School of Mathematical and Computing
Sciences, VUW, 2003.

13. Schneiderman, H., And Kanade, T., “Object detection
using the statistics of parts”. Int. J. Comput. Vision 56,
3 (2004), 151.177.

14. Barret Chin and Mengjie Zhang, “Object Detection
using Neural Networks and Genetic Programming”
Technical Report CS-TR-07/03. School of
Mathematical and Computing Sciences, VUW,
November 2007

15. Roy Chow,M.Zhang and PeterAndreae, “ Multiple
Class Object Detection Using Pixel Statistics in Neural
Networks”, Technical Report , School of Mathematical
and Computing Sciences, VUW, October 2002

16. Will Smart and Mengjie Zhang, “Applying Online
Gradient Descent Search to Genetic Programming for
Object Recognition”, Conferences in Research and
Practice in Information Technology,Vol. 32.
Australasian Workshop on Data Mining and Web
Intelligence(DMWI2004), Dunedin

17. Mengjie Zhang, Will Smart, “Using Gaussian
Distribution to Construct Fitness Functions in Genetic
Programming for Multiclass Object Classification”,
Technical Report CS-TR-05/5, School of Mathematical
and Computing Sciences, VUW, December 2005.

