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ABSTRACT 
 
In this paper new approach for the optimization of training 
data for object detection particularly object localization 
problems in genetic programming (GP) is discussed. For the 
fitness function, the weighted F-measure of a genetic program 
is used considering localization fitness values of the detected 
object locations. The training data is categorized into four 
types: exact center, close to center, include center, and 
background for investigation data with this fitness function. 
An existing fitness function using above approach is 
examined and compared on three object detection problems of 
increasing difficulty. The results also suggest that using 
different proportion of all these data types to optimal results 
can be achieved which reduces time required for detection of 
objects. Only two data types Exact center type and close to 
center type data can be used to produce good detection results. 
As background type data contains less information we can 
neglect that type of data. 
 
Key words : Evolutionary computing, fitness function, 
Genetic programming, object detection, object localization, 
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1. INTRODUCTION 
 
As most of the images are captured in electronic form, the 
need for of image processing is increasing. In order to get an 
enhanced image or to extract some useful information from it, 
Image processing is a method used to perform some 
operations on image. Finding objects of interest in database of 
images is one of the applications of image processing. Thus 
object recognition and classification tasks arise in a very wide 
variety of practical situations, such as detecting faces from 
video images, finding tanks and helicopters from satellite 
images, identifying suspected terrorists from fingerprint 
images, and diagnosing medical conditions from X-rays. In 
many cases, people (possibly highly trained experts) perform 
the recognition/ classification tasks well, but there is either a 
shortage of such experts or the cost of people is too high. 
Therefore if the amount of image data containing objects of 
interest that need to be classified and recognized is given, 
then automatic computer based classification and recognition 
programs / systems are of immense social and economic value 
[1], [2].  
 

 

 
Genetic programming (GP) is a relatively recent and fast 
developing approach to automatic programming. In GP, 
solutions to a problem can be represented in different forms 
but are usually interpreted as computer programs. Darwinian 
principles of natural selection and recombination are used to 
evolve a population of programs towards an effective solution 
to specific problems. The flexibility and expressiveness of 
computer program representation, which combined with the 
powerful capabilities of evolutionary search, make GP an 
exciting new way to solve a great variety of problems.  
 
Various fitness functions have been devised for object 
detection, with varying success [3, 4, 5, 9, 11, 12, 13, 16, 17]. 
These tend to combine many parameters using scaling factors 
which specify the relative importance of each parameter, with 
no obvious indication of what scaling factors are good for a 
given problem. Many of these fitness functions for 
localization require clustering to be performed to group 
multiple localizations of single objects into a single point 
before the fitness is determined [14, 13, 12, 15]. 
 
Organizing training data is critical to any learning 
approaches. The previous approaches in object detection tend 
to use all possible positions of the large image in training an 
object detector. However, this usually requires a very long 
training time due to the use of a large number of positions on 
the background. 
 
This paper aims to investigate a novel approach to optimize 
the training data in GP for object detection, in particular 
localization to reduce the training time.  

 
2. METHODOLOGY 

 
Object detection is the task of processing an image to both 
localize a particular object or objects and to then classify each 
object found. The process for object detection is shown in 
Figure 1.  

 
Figure 1: An overview of the Object Detection Process 

 

 
Object Detection: Optimization of training Data in  

Genetic Programming 
 Viddulata. A. Patil 

SVERI’s College of Engineering, Pandharpur, viddulata@gmail.com 

ISSN 2278-3091              
Volume 9, No.3, May - June 2020 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse69932020.pdf 

https://doi.org/10.30534/ijatcse/2020/69932020 
 

 



       Viddulata. A. Patil, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2941 – 2946 

2942 
 

 

A trained localizer applied to raw image, producing a set of 
points found to be the positions of these objects. Single objects 
could have multiple positions (“localizations”), however 
ideally there would be exactly one localization per object. 
Regions of the image are then “cut out” at each of the 
positions specified. Each of these cutouts is then classified 
using the trained classifier. This method treats all objects of 
multiple classes as a single “object of interest” class for the 
purpose of localization, and the classification stage handles 
attaching correct class labels. The object localization stage is 
performed by means of a window which sweeps over the 
whole image, and for each position extracts the features and 
passes them to the trained localizer. The localizer then 
determines whether each position is an object or not (i.e. 
background). 
 
The object localization stage is performed by means of a 
window sweeping method which sweeps over the whole 
image and for each position extracts the features and passes 
them to the trained localizer. Figure 2 shows how sweeping 
window sweeps on image. The localizer then determines 
whether each position is an object or not (i.e. background). 
The window-sweeping method is a dimensionality reduction 
technique used to extract image features such as pixel 
statistics from the entire image. The window-sweeping 
method involves moving a fixed-size input window across an 
image, pixel by pixel, extracting image features at every 
location of the sweeping window. The size of the input 
window is usually large enough to contain the largest object of 
interest in the image but also small enough as not so miss out 
on too much detail when extracting features. 

 
Figure 2: Figure (a) Original position of sweeping 

window, (b) Sweeping window at first step along the x-axis, 
(c) Sweeping window at second step along x-axis and (d) 
Sweeping window at first step along y-axis 

 
We used the fitness function based on a “Relative 
Localization Weighted F-measure” (RLWF) [3]. This fitness 
function attempts to recognize the goodness of individual 
localizations made by the genetic program. Each localization 
is allocated a weight instead of using either correct or 
incorrect to represent localization which is called as the 
localization fitness, LF. This represents its individual worth 
and counts towards the overall fitness. According to the  

relative location, or the distance of the localization from the 
center of the closest object Each weight is calculated , as 
shown in Equation 1. 

LF(x,y)=          (1)                                      

where   is the distance of the localization position 
(x, y) from target object centre, and r is called the 
“localization fitness radius”, defined by the user. In this 
system, r is set to the radius of the largest object. We used the 
localization fitness to calculate this fitness function, as shown 
in Eq.s 2 to 4. The precision and recall are calculated by 
taking the localization fitness for all the localizations of each 
object and dividing this by the total number of localizations or 
total number of target objects respectively.         

WP =          (2)                              

WR =               (3) 

FitnessRLWF =           (4) 
                                                                                 
where N is the total number of target objects, (xij,yij) is the 
position of the j-th localization of object i, Li is number of 
localizations made to object i, WP and WR are the weighted 
precision and recall, and FitnessRLWF is the localization 
fitness weighted F-measure, which is used as the fitness 
function. we chose three image data sets of coins in the 
experiments. The data sets are intended to provide object 
localization/detection problems of increasing difficulty. The 
first data set (easy) contains images of coins against an almost 
uniform background. The second (medium difficulty) is of 
coins against a noisy background, making the task harder. 
The third data set (hard) contains tails and heads of coins 
against a noisy background. 
 

 
            (a)                       (b)                   (c) 

Figure 3:  Images in the three data sets. (a) Easy; 
(b) Medium difficulty; (c) Hard 

When a trained localizer is applied to the above images we get 
localizations as shown in figure 4. For this localization we 
used window size of 60X60 and step size of 20 which gave us 
result as per Table 1 

 
Figure 4: Coins detected locations with window size 

60x60 and step size 20 for 
(a) Coins easy (b) Coins medium   (c) Coins hard  images 
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Table1 : Results for fitness function-RLWF with window  
size 60x60 and step size 20 

 

Image Weighted 
recall 

Weighted 
precision Fitness 

Time 
Elapse

d in 
sec. 

coins_easy 0.63 0.45 0.52 4.03 
coins_med 0.81 0.41 0.55 2.88 
coins_har

d 0.88 0.57 0.69 3.90 

 
3.RESULTS FOR OPTIMIZATION OF TRAINING 
DATA      

 
For optimization of training data, first training data is 
categorized into four types 1. Exact center 2. Close to center 3. 
Include center 4. Background data. Figure 5.shows example 
of how training data is categorized into different data types. 
When sweeping window moves on image if the center of the 
window which is tentative coin localization is containing a 
center of coin then it is considered as close to center, If it 
contains only small part of object then it is categorized as 
include center and if no part of the object is within window 
then it is considered as background type. All the known coin 
positions are considered as exact center data type.  

 
           (a)                             (b)                         (c) 

 
Figure 5: Categorization of data into different data Type 
(a) Easy coin image (b)Medium coin image (c)Hard coin 

image 
 
For the optimization we used all the exact center data type and 
percentage from 0 to 100% for all other data types. It was 
found that exact center type data is important and if the 
percentage of all other data is used then we get optimal 
results. For all different percentage of different data types 
fitness performance for easy, medium and hard coin image 
was calculated. We calculated relative fitness and time 
elapsed for training for all three images considering different 
proportion of four different data types. 
 
In the Figure 6 the x and y axes are the Close to center and 
Background, and the z axes is the Relative fitness, time 
elapsed and weighted precision for training for the particular 
image. Here we observed that for close to center type data the 
best results can be obtained and when we do not use any 
example in this type at all then worst results were produced. 
when percentage of object examples in close to center type is 
more, the best results are achieved. The Background type 
objects were not serious for these data sets. Any bad or good 

influence was not observed by including or excluding these 
data type. The results suggest that, for these object 
localization using the relative localization weighted fitness 
function, good fitness results can be achieved with only the 
two types of data types, Exact Centre and Close to Centre, and 
even if not all object examples for the other two types Include 
Object and Background can be taken out from the training set 
would not affect much on the result. Also time required for 
training is less when close to center type data is used then as 
compared to the other data types as that data type is more as 
compared to close to center type data. 
 
Table 2 (a) and (b) gives relative fitness and time elapsed 
using different data proportion for easy coin image and Fig 6 
(a) and (b) shows its graphical representation of relative 
fitness and time elapsed. Here from the table it is observed 
that when close type percentages is zero (0) and include object 
type percentage is 100% and background type percentage is 
ranging from 0 to 100% , less detection is obtained as 
compared to the detection when maximum percentage of 
close to center type data is used. From fitness values we 
observe that as the percentage of close to center data type 
increases, fitness increases and it does not affect much on the 
fitness even though we use less percentage of background type 
and include object type data type. Include object type data and 
background type data makes very less effect on fitness. 
 

Table 2 (a):  Relative fitness for easy coin image. 
B\C 0 20 40 60 80 100 

0 0.17 0.01 0.01 0.42 0.48 0.64 

20 0.19 0.01 0.09 0.40 0.48 0.68 

40 0.19 0.20 0.28 0.41 0.48 0.64 

60 0.19 0.01 0.28 0.42 0.49 0.64 

80 0.13 0.01 0.30 0.42 0.52 0.64 

100 0.16 0.06 0.01 0.15 0.50 0.63 
 

Table 2(b):  Time elapsed for training for easy coin image 

 

Table 2(c) : Weighted Precision for easy coin image. 
B\C 0 20 40 60 80 100 

0 0.08 0.09 0.13 0.18 0.25 0.38 

20 0.08 0.08 0.14 0.23 0.30 0.39 

40 0.07 0.00 0.12 0.22 0.30 0.38 

60 0.08 0.11 0.15 0.23 0.25 0.38 

80 0.05 0.00 0.14 0.20 0.30 0.38 

100 0.08 0.11 0.15 0.00 0.30 0.38 

 

B\C 0 20 40 60 80 100 

0 1.99 1.37 1.24 1.44 0.92 0.70 

20 1.82 1.39 1.28 1.39 0.93 0.65 

40 1.76 1.43 1.28 1.33 0.87 0.66 

60 1.96 1.46 1.23 1.44 0.92 0.70 

80 1.82 1.40 1.29 1.53 1.15 0.67 

100 1.88 1.45 1.24 1.10 0.89 0.68 
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Figure 6.: (a)Relative fitness (b) Time elapsed (c) Weighted 
precision using different Training Data Proportions for easy 

coin image 
 

  
Figure 5 (c). shows the weighted precision for easy coin image 
with different proportion of training data. It is clearly 
observed that as percentage of close to center type data is 
increased weighted precision increases which mean that 
number of correctly detected objects with respect to number of 
total detected objects increases. Table 1 (c) gives weighted 
precision for easy coin image. 
 
Table 3 (a), (b) and (c) gives relative fitness time elapsed and 
weighted precision using different data proportion for 
medium coin image and Fig 7 shows its graphical 
representation. From fitness values it is clear that as the 
percentage of close to center data type increases detection 
increases and it does not affect much on the detection even 
though we use less percentage of background type and include 
object type data type. Include object type data and background 
type data makes very less effect on fitness. Also as the 
percentage of close to center type increases weighted 
precision increases.  

 
    Table 3 (a) : Relative fitness for medium coin image 

B\C 0 20 40 60 80 100 

0 0.30 0.38 0.41 0.47 0.48 0.68 

20 0.33 0.35 0.41 0.47 0.52 0.60 

40 0.30 0.38 0.41 0.47 0.48 0.68 

60 0.30 0.38 0.41 0.35 0.52 0.60 

80 0.17 0.38 0.41 0.47 0.48 0.68 

100 0.33 0.38 0.41 0.47 0.48 0.68 

 
 
 
 
 

Table 3 (b) : Time elapsed for training of medium coin image 
B\C 0 20 40 60 80 100 

0 2.22 1.81 1.18 1.04 0.81 0.56 

20 1.77 1.56 1.68 1.06 0.92 0.59 

40 1.78 1.56 1.43 1.20 0.96 0.56 

60 1.94 1.38 1.25 1.09 0.78 0.61 

80 1.70 1.52 1.21 1.04 0.85 0.56 

100 1.90 1.50 1.31 1.16 0.75 0.64 

 
Table 3 (c) : Weighted Precision for medium coin image 

B\C 0 20 40 60 80 100 

0 0.15 0.21 0.27 0.33 0.38 0.44 

20 0.21 0.24 0.27 0.33 0.38 0.45 

40 0.15 0.21 0.27 0.33 0.38 0.44 

60 0.15 0.21 0.27 0.17 0.38 0.45 

80 0.00 0.21 0.27 0.33 0.38 0.43 

100 0.21 0.21 0.27 0.33 0.26 0.44 

 
Table 4 (a), (b) and (c) gives relative fitness time elapsed and 
weighted precision using different data proportion for hard 
coin image and Fig. 8 shows its graphical representation. 
From fitness values it is clear that good results are obtained 
with close to center data type. Include object type data and 
background type data makes very less effect on fitness. Even 
though less percentage of background type data and include 
center type data is used it gives good results. Also as the close 
to center type data proportion is less so it requires less time for 
training which reduces training time.  

 
Figure 7:  (a) Relative fitness (b) Time elapsed (c) Weighted 

precision using different Training Data Proportions for 
medium coin image 
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Table  4 (a ):  Relative fitness for hard coin image. 
B\C 0 20 40 60 80 100 

0 0.25 0.32 0.36 0.40 0.49 0.69 

20 0.25 0.32 0.36 0.40 0.49 0.69 

40 0.25 0.32 0.36 0.40 0.49 0.69 

60 0.25 0.32 0.36 0.40 0.49 0.69 

80 0.25 0.32 0.36 0.40 0.49 0.69 

100 0.25 0.32 0.36 0.40 0.49 0.56 

 
Table 4(b): Time elapsed for training of hard coin image 

B\C 0 20 40 60 80 100 

0 1.91 1.62 1.31 1.13 1.06 0.77 

20 1.84 1.59 1.28 1.08 1.00 0.79 

40 1.96 1.55 1.29 1.07 0.95 0.78 

60 2.04 1.62 1.35 1.12 0.90 0.75 

80 2.50 1.65 1.32 1.11 0.94 0.61 

100 2.02 1.56 1.30 1.12 0.82 0.58 

 
Table 4(c) :Weighted Precision for hard coin image 

B/C 0 20 40 60 80 100 

0 0.10 0.16 0.22 0.24 0.26 0.45 

20 0.10 0.16 0.22 0.24 0.26 0.45 

40 0.10 0.00 0.22 0.24 0.26 0.45 

60 0.10 0.21 0.22 0.24 0.26 0.45 

80 0.10 0.16 0.22 0.24 0.26 0.45 

100 0.05 0.16 0.22 0.24 0.26 0.48 

 
 

Figure 8:  (a)Relative fitness (b) Time elapsed (c) Weighted 
precision using different Training Data Proportions for hard 
coin image 
 
4. CONCLUSION 

 
We can categorize a training data into four data types and 
using different proportion of all these data types to get optimal 
results which reduces time required for detection of objects. 
Only Exact center type and close to center type data these two 
data types can be used to produce good detection results. As 

background type data contains less information we can 
neglect that type of data. 
 
Precision & Recall have proved as excellent performance 
measures and have replaced false alarm and detection rates. 
Genetic programming has proved that it can be used 
standalone as an efficient object recognition engine. 

 
REFERENCES 

 
1. J. R. Koza, “Genetic programming: on the 

programming of computers by means of natural 
selection”. London, England: Cambridge, Mass.: MIT 
Press, 1992. 

2. R. Poli, “Genetic programming for image analysis,” in 
Proc. 1st Annu. Conf. Genetic Program., J. R. Kosa, D. 
E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., Jul. 
28–31, 1996, pp. 363–368. 

3. Mengjie Zhang, Malcolm Lett. “Genetic Programming 
for Object Detection: Improving Fitness Functions and 
Optimising Training Data”, IEEE Intelligent 
Informatics Bulletin (IEEE Computational Intelligence 
Bulletin). Vol. 7, No. 1. 2006. pp. 12-21. 

4. J. F. Winkeler and B. S. Manjunath, “Genetic 
programming for object detection,” in Proc. 2ndAnnu. 
Conf. Genetic Program., J. R. Koza K. Deb, M. Dorigo, 
D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, Eds., 
Jul. 13–16, 1997, pp. 330–335. 

5. M. Zhang, V. Ciesielski, and P. Andreae, “A domain 
independent window-approach to multiclass object 
detection using genetic programming,”EURASIP 
Journal on Signal Processing, Special Issue on Genetic 
and Evolutionary Computation for Signal Processing 
and Image Analysis, vol. 2003, no. 8, pp. 841–859, 
2003.  
https://doi.org/10.1155/S1110865703303063 

6.  W. Smart and M. Zhang, “Classification strategies for 
image classification in genetic programming,” in 
Proceeding of Image and Vision Computing 
Conference, D. Bailey, Ed., Palmerston North, New 
Zealand, November 2003, pp. 402–407. 

7.  D. Howard, S. C. Roberts, and R. Brankin, “Target 
detection in SAR imagery by genetic programming,” 
Advances in Engineering Software, vol. 30, pp. 
303–311, 1999. IEEE Intelligent Informatics Bulletin 
December 2006 Vol.7 No.1  
https://doi.org/10.1016/S0965-9978(98)00093-3 

8. Pritchard, M. Zhang , “Genetic programming for 
multi-class object detection”. Tech. rep. School    of 
Mathematical and Computing Sciences, VUW, 2002. 

9. A. Teller and M. Veloso, “A controlled experiment: 
Evolution for learning difficult image classification,” in 
Proc. 7th Portuguese Conf. Artif. Intell., C. 
Pinto-Ferreira and N. J. Mamede, Eds., Oct. 3–6, 1995, 
Lecture Notes in Artificial Intelligence, vol. 990, pp. 
165–176. 
https://doi.org/10.1007/3-540-60428-6_14 



       Viddulata. A. Patil, International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2941 – 2946 

2946 
 

 

10. W. A. Tackett, “Genetic programming for feature 
discovery and image discrimination,” in  Proceedings 
of the 5th International Conference on Genetic 
Algorithms, ICGA-93, S. Forrest, Ed. University of 
Illinois at Urbana-Champaign: Morgan Kaufmann, 
17-21 July 1993, pp. 303–309. 

11. U. Bhowan, “A domain independent approach to 
multi-class object detection using genetic 
programming,” BSc Honours research thesis, School of 
Mathematical and Computing Sciences, Victoria 
University of Wellington, 2003. 

12. Bunna NY and M.Zhang “Multi-class object 
classification and detection using neural networks”, 
Tech. rep.School of Mathematical and Computing 
Sciences, VUW, 2003. 

13. Schneiderman, H., And Kanade, T., “Object detection 
using the statistics of parts”. Int. J. Comput. Vision 56, 
3 (2004), 151.177. 

14. Barret Chin and Mengjie Zhang, “Object Detection 
using Neural Networks and Genetic Programming” 
Technical Report CS-TR-07/03. School of 
Mathematical and Computing Sciences, VUW, 
November 2007 

15. Roy Chow,M.Zhang and PeterAndreae, “ Multiple 
Class Object Detection Using Pixel Statistics in Neural 
Networks”, Technical Report  , School of Mathematical 
and Computing Sciences, VUW, October 2002 

16. Will Smart and Mengjie Zhang, “Applying Online 
Gradient Descent Search to Genetic Programming for 
Object Recognition”, Conferences in Research and 
Practice in Information Technology,Vol. 32. 
Australasian Workshop on Data Mining and Web 
Intelligence(DMWI2004), Dunedin  

17. Mengjie Zhang, Will Smart, “Using Gaussian 
Distribution to Construct Fitness Functions in Genetic 
Programming for Multiclass Object Classification”, 
Technical Report CS-TR-05/5, School of Mathematical 
and Computing Sciences, VUW, December 2005. 


