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 
ABSTRACT 
 
Topological indices are considered as effective measures for 
analyzing and quantifying the topological structure of 
networks. Recently, many methods were proposed for 
calculating distance-based topological indices. In this article, 
the computation efficiency of a measure named the 
generalized Terminal Wiener index is investigated. At first, 
we present a method that calculates the generalized Terminal 
Wiener index of a specific class of graphs and particularly the 
graphenylene systems in a linear time complexity. After that, 
we use the proposed technique to analyze the structural 
properties of two graphenylene networks, called the 
graphenylene chain network nGC and the graphenylene sheet 
network nGS . 
 
Key words: Topological indices, Network, Generalized 
Terminal Wiener, Graphenylene, Computational complexity. 
 
1. INTRODUCTION 
 
Nowadays, the topological indices are investigated as a 
fundamental tool to characterize and represent the structural 
properties of any network in quantitative terms [1].  For 
instance, they have been used to analyze the chemical 
structure of molecules, the social networks, the 
interconnection networks and many other networks from 
different fields. The theory of topological indices began in 
1947, when the physical chemist H. Wiener used the Wiener 
index for predicting the temperature at which paraffins boil 
[3]. Later, this measure became one of the most used 
descriptors and has found numerous applications, such as for 
the development of Quantitative Structure-Property 
(Structure-Activity) Relationships (QSPRs/QSARs) [2]. 
Many years after the introduction of the Wiener index and due 
to its success, an enormous number of other topological 

 
 

 

indices have been put forward in the literature [4]. The most 
considered class of these graph invariants is distance-based 
topological indices, which are derived from the distance 
matrix or some related distance-based matrices [5], [6].  
Many methods and algorithms for calculating distance-based 
topological indices were proposed in the literature. The 
complexity of these algorithms is overpowered by extracting 
and calculating all shortest paths [7]. An efficient algorithm 
was presented in [8] to reduce the computation of the Wiener 
index for benzenoid networks. Later, similar algorithms were 
developed for calculating some other topological indices 
[9]-[11]. 
 
In this research article, we concentrate on a recent topological 
index called the generalized Terminal Wiener index [12]. 
Our ultimate objective is to extend the method used in [8] and 
[13] to find the relation between the generalized Terminal 
Wiener index of a class of graphs, named partial cubes, and 
the Wiener index of weighted quotient graphs. Then, we 
prove that the application of this method on a partial cube 
named the graphenylene system can be implemented in linear 
time complexity.  The graphenylene system is a two 
dimensional structure with an interesting topology, which 
was proposed by Balaban et al. [14] and is considered as a 
basis for nanostractural and electronic materials [15], [16]. 
The second objective of this work is to discuss and quantify 
the topological structure of two graphenylene networks, 
called the graphenylene chain network nGC and the 
graphenylene sheet network nGS . 
The outline of this paper is organized as follows. In section 2, 
we give a general overview on the basic definitions and 
concepts that are required to present and prove the main 
results of this work. In section 3, we use the cut approach to 
calculate the generalized Terminal Wiener index of partial 
cubes. Then, we apply the main result to calculate the 
generalized Terminal Wiener index of graphenylene systems. 
Also, we show that the computation by using this technique 
can be done in )(nO  time complexity. In section 4, we give 
the construction method of the graphenylene chain network 
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nGC and the graphenylene sheet network nGS . 

Furthermore, we apply the discussed linear method to find the 
generalized Terminal Wiener index of these structures. 
Finally, we recapitulate our findings in the last section. 
 
2. PRELIMINARIES 
 
Let ))(),(( GEGVG   be a connected graph, where )(GV is 
the vertex set and )(GE  is the edge set ofG . The distance 

),( vudG  between two vertices u  and v  is defined as the 
number of edges in a shortest path from u  to v  in G . The 
notation )deg(v is the degree of a vertexv , which indicates 
the number of links incident tov . In the case of 1)deg( v , 
then the vertex v  is a pendent vertex. A graph G  is called a 
bipartite graph if the vertex set )(GV  can be divided into two 
disjoint sets )(1 GV  and )(2 GV  such that each edge in G  
must joins precisely one vertex of )(1 GV  to  one vertex of 

)(2 GV  . Let H  be a subgraph ofG , we say H  is a convex 
subgraph of G  if for any two vertices u  and v  in H , every 
shortest path between u  and v  in G   lies completely to H . 
If ),( vud H  = ),( vudG  for every two vertices u  and v  of H , 
then H  is an isometric subgraph of G . The hypercube nQ  of 
dimension 1n  is a graph constructed from a vertex set that 
are all binary strings of length n , such that two strings are 
adjacent if they differ in precisely one position. So, the 
category of partial cubes is constructed from isometric 
subgraphs of hypercubes nQ . Let xye   and uvf   be two 
edges that confirm the following relation: 

u).d(y,+v)d(x,  v)d(y,+u)d(x,   
Then, we state that e  and f  are in the relation 
Djokovic-Winkler Ɵ [17], [18]. The relation Ɵ is always 
reflexive symmetric, and transitive on partial cubes. 
Therefore, Ɵ partitions the edge set of a partial cube into 
equivalent classes  }E ..., ,{E q1 called Ɵ classes or cuts. Now, 

we can note that G  is a partial cube if and only if G  is a 
bipartite graph and the components induced by iEG   are 
convex subgraphs of G . For more details on this category of 
graphs see [19] . 
In [3], the Wiener index of a graph G  is defined as the sum of 
distances between all the vertices in G . Then 






)(,

),()(
GVvu

G vudGW .            ( 1) 

For acyclic graphs T , the Wiener index can be calculated as: 


e

enenTW )()()( 21
,            ( 2) 

where )(1 en  and )(2 en  are the number of vertices of  T  
located on the two sides of the edge e . 
In [20], an extended version of the Wiener index for weighted 
graphs was proposed and formulated as follows.  Let G  be a 
graph and let RGV )(:  be a weight function for the 
vertices ofG . Then, the weighted Wiener index is defined as:  






)(,

).,()()(),(
GVvu

G vudvuGW    ( 3) 

Gutman et al. [21] introduced an extension of the Wiener 
index called the Terminal Wiener index and is defined as: 






)(,

),()(
GVvu

G
p

vudGTW          ( 4) 

where )(GV p  denotes the set of pendent vertices of the graph 

G . 
Afterward, a generalization for the Terminal Wiener index 
was proposed in [12] and is defined as: 






)(,

),()(
GVvu

GK
K

vudGTW         ( 5) 

where )(GVK  denotes the set of vertices with degree 1K . 
Toward more additional references on the Terminal Wiener 
index and its generalization, we refer to see [6], [22]. 
 
Now, we introduce the concept of the cut method, which is 
used as a tool to reduce the computation of the topological 
indices. The following theorem represents the first instance of 
this technique. 
Theorem 1: [23] Let G  be a partial cube and let  q

iiE 1
 be its 

Ɵ -classes. Let )(1 iEn  and )(2 iEn  be the number of vertices 
in the two connected components of iEG  . Then 





q

i
ii EnEnGW

1
21 )()()( .         ( 6) 

The cut method for the generalized Terminal Wiener index 
reads as follows: 
Theorem 2: Let G  be a partial cube and  q

iiE 1
 be its 

Ɵ-partitions. Let )()(
1 i

K En  and )()(
2 i

K En be the number of 

vertices of degree 1K  in the two connected components 
of iEG  . Then 





q

i
i

K
i

K
K EnEnGTW

1

)(
2

)(
1 )()()( .       ( 7) 

Toward more results on the cut method, we refer to the papers 
[23]-[26]. 
 
3. A LINEAR METHOD FOR COMPUTING THE 
GENERALIZED TERMINAL WIENER INDEX OF 
GRAPHENYLENE SYSTEMS 
 
In this section, we prove the relation between the generalized 
Terminal Wiener index of partial cubes and the weighted 
Wiener index of quotient graphs. Then, we apply the obtained 
result to calculate the generalized Terminal Wiener index of 
graphenylene systems and to prove that the computation can 
be done in )(nO  time complexity. 

3.1 Generalized Terminal Wiener index of Partial Cubes 
Let G  be a partial cube and  }E ..., ,{E  q1  be its Ɵ-classes. 

The generalized Terminal Wiener index of G  can be 
efficiently computed by applying the cut method, which was 
defined in Theorem 2. In the case of a huge partial cubeG , 
the number of Ɵ -classes can be considerable. Based on this 
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limitation, we consider in the remaining of this study a 
partition  }F ..., ,{F r1 of the set )(GE coarser than  such that 

iF  is the union of one or more Ɵ-classes of G . For proving 
our primary result, we have to introduce the notion of quotient 
graphs. 
The quotient graph iFG / , for  ri ,...,1 , is a graph in which 
the vertices are the connected components of iFG  . Two 
vertices C  and 'C  in iFG /  being adjacent if there exist 
vertices Cx  and 'Cy   such that iFxy . Let ),/( iiFG   
be a weighted quotient graph, such that NFGV ii )/(: is 
the weight function that assigns to a vertex of iFG / the 
number of vertices of degree K  in the corresponding 
connected components of iFG  . We note that we must 
consider only the vertices of degree K  that already exist in 
the partial cube G . 
Therefore, the computation of the generalized Terminal 
Wiener index can be reduced as follows: 
Theorem 3: Let G be a partial cube with 'n  vertices of 
degree K . Then 

.),/()(
1




r

i
iiK FGWGTW           ( 8) 

Proof: 
Let   be the canonical metric representation of a partial 
cubeG , such that   is defined as: 

))(),...,((

/:

1

1

vvv

FGG

r

ri
i








  

where )(vi  is the connected component of iFG   that 
contains the vertex v  of degree K . 
Let )()(

1 ,..., i
s

i
i

CC  be the connected components of iFG  and 

)( )(i
iK CV be the number of vertices with degree K  in the 

component )( i
jC . We note that 




is

j

i
jK nCV

1

')( .)(  

Let  vuP ,  be the shortest path between )(, GVvu K . We can 

verify that 0)( , ivu FPE  if vu,  belong to the same 

component )( i
jC , otherwise  .0)( , ivu FPE   

Let )( i
jC and )(

'
i

j
C be two connected components of iFG  . To 

be specific, )( i
jC and )(

'
i

j
C are two vertices of iFG / . Let 

)(, )(' i
jCVuu  and )(, )('

'
i

jCVvv  . Then, we can see that 

ivuivu FPEFPE  )()( '' ,,   (for more details, see [13]). 

This observation yields to:  
ivu

i
j

i
jFG FPECCd

i
)(),( ,

)()(
/ '  . 

We define a function  1,0)(: GV  as follows: 












)()(

)(

,
';1

,;0
)(

i
p

i
p

i
p

vu CvandCuif

Cvuif
P  

 

The summation   )(, , )(
GVvu vu

K
P is equal to the number of 

times that we pass through the edges of iF . Thus: 

 
 


)(, 1

)()(
,

'
' )()()(

GVvu sjj

i
jK

i
jKvu

K i

CVCVP


  

From the above notations and the canonical metric 
representation  , we can see that: 

 

 

 
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

 
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r

i sjj
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jK

i
jK

r

i GVvu
ivu

GVvu

r

i
ivu

GVvu
i

r

i
iFG

GVvu
G

GVvu
GK

FGW

CCdCVCV

FPE

FPE

vud

vud

vudGTW

i

i

K

K

K

i

K

K

1

)()(
/

1 1

)()(

1 )(,
,

)(, 1
,

)(, 1
/

)(,

)(,

).,/(

),()()(

)(

)(

))(,)((

))(),((

),()(

'
'

'













The proof is complete. 
 

3.2 Generalized Terminal Wiener index of 
Graphenylene Systems 

Graphenylene systems are connected graphs constructed in 
the following manner. Let Ӈ be a semiregular (4.6.12)-tiling 
lattice, such that there is one square 4C , one hexagon 6C  and 
one dodecagon 12C  on each vertex. Let Z be a circuit on Ӈ. 
Then, a graphenylene system is formed by the vertices and the 
edges of Ӈ lying on Z and in its interior. Figure 1 illustrates 
the construction method of a graphenylene system. It was 
proved in [27] that all connected subgraphs of (4.6.12)-tiling 
lattice are partial cubes. Thus, each graphenylene system is a 
partial cube. 
 
Let G  be a graphenylene system and  }E ..., ,{E q1 be its 

Ɵ-classes. From the construction method of a graphenylene 
system, we can see that G contains a dodecagon 12C , which 
holds six different directions of edges, see Figure 2. 
Therefore,  621 ,...,, FFF is a partition coarser than Ɵ-classes, 
where each  iF  is the union of all Ɵ-partitions with the same 
direction. Let iFG /  be the quotient graph whose vertices are 
the connected components of ,iFG    6,...,2,1i , and let 

),/( iiFG   be the weighted quotient graphs that are 
constructed as illustrated in the previous subsection 3.1. The 
following fundamental result is a special case of the Theorem 
3.  
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Figure 1: (Top) The (4.6.12)-tiling lattice Ӈ and the circuit Z. 
(Bottom) A graphenylene system G. 

 
Figure 2: The six different directions of elementary cuts 

,iE  6,...,2,1i . 
Corollary 1: Let G  be a graphenylene system and  6

1iiF be a 
partition coarser than Ɵ-classes. Then 

.),/()(
6

1




i

iiK FGWGTW          ( 9) 

The final step in this subsection is to prove that the 
generalized Terminal Wiener index of a graphenylene system 
G can be computed in linear time. At first, we have to show 
that each quotient graph iFG / is a tree, with  6,...,2,1i . 
Lemma 1: Let G be a graphenylene system and  6

1iiF be a 
partition coarser than Ɵ-classes. Then, each quotient graph 

iFG / is a tree, for  6,...,2,1i . 
Proof:  Let suppose that iFG / is not a tree and obviously 
contains a cycle. This implies that G  must contain an 
interior face different than a square 4C , a hexagon 6C  and a 

dodecagon 12C . From this contradiction, there is no cycle in 

iFG /  and therefore, iFG /  is a tree.  
 
We recall from [28] that the weighted quotient trees 

),/( iiFG   can be obtained in linear time. In [8], it was 
proved that the Wiener index of a weighted tree ),( T  is 
given by: 

),()(),(
)(

21 enenTW
TEe




         ( 10) 

where  


eTui iforuen .2,1),()(   

By using equation 10 the Wiener index of a weighted tree 
),/( iiFG   is calculated in )(nO  time. Finally, we get the 

following primary result.  
Theorem 4: If G  is a graphenylene system with n  vertices, 
then the generalized Terminal Wiener index can be computed 
in )(nO  time. 
The computation in linear time is possible for some other 
systems that full under partial cubes, such as square systems, 
hexagonal systems and 84CC systems. In [10], it was proved 
that the Wiener index and the Szeged index of 84CC systems 
can be computed in linear time. Therefore, we report the 
following generalization. 
Corollary 2: If G is a system with a fixed number of 
Ɵ-classes that have the same direction, and all the 
corresponding quotient graphs are trees. Then, the 
generalized Terminal Wiener index can be computed in 
linear time. 
 
4. QUANTIFYING THE TOPOLOGICAL 
STRUCTURE OF GRAPHENYLENE NETWORKS 
 
In this section, we discuss two graphenylene networks called 
graphenylene chain network nGC and graphenylene sheet 
network nGS . At first, we present the construction method of 
these two structures. Then, we apply the linear method to find 
exact analytical expression for the generalized Terminal 
Wiener index of graphenylene chain networks nGC  and 
graphenylene sheet networks nGS .  

4.1 Graphenylene Chain Network 
Let nHS  be a hexagonal-square chain of dimension n , 
which is obtained by alternating 6C  and 4C . The graph nHS  
contains 12 n  hexagon 6C  and n2  square 4C . Thus, the 
graphenylene chain network nGC  of dimension n  is 
obtained by joining two hexagonal-square chains of 
dimension n . The construction method of a graphenylene 
chain network is illustrated in Figure 3. The number of 
vertices of nGC  is equal to 1224 n . 
Now, we apply the linear method in order to obtain exact 
formula for the generalized Terminal Wiener index of the 
graphenylene chain network nGC . We consider the case of 
K  equals to the maximum degree  . From Figure 3, we can 
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observe that 3  and the number of vertices of degree 3 is 
equal to: .420  nN   

 
Figure 3: The construction method of a graphenylene chain 
network of dimension 3. (Top) A hexagonal-square chain 3HS . 
(Bottom) A graphenylene chain network 3GC . 
 
Theorem 5: 
Let nGC  be a graphenylene chain network of 
dimension 2n . Then, 

.152524340400)( 23  nnnGCTW n     ( 11) 
Proof: The graphenylene chain network nGC  is a partial 
cube and holds six different directions of edges, as shown in 
Figure 2. First, for  6,...,2,1i , we determine the components 

in FGC  , where iF  is the union of the elementary cuts with 
the same direction i.  
Then, we get the following weighted quotient 
trees ),/( iin FGC  , for  6,...,2,1i  and 2n . 

 
Due to the symmetry in nGC  network, the weighted quotient 
tree 3/ FGCn  is isomorphic to 2/ FGCn  and 6/ FGCn  is 
isomorphic to 5/ FGCn . 
Next, we calculate the Weighted Wiener index of quotient 
trees in FGC / , for  6,...,2,1i , by using the Equation 10. 

 

nnn

iNiFGCW

nnFGCW
n

i
n

n

3
11240

3
200

)2012(*)2012(),/(

440100),/(
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0
22

2
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












 

 

 

 
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.80
3

59240
3
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)14(*14)2(*2*2),/(
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3
4480

3
400

)102(*)102(),/(

23

3

0
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23

2

0
44
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





















nnn

iNi

NNFGCW

nnn

iNiFGCW

n

i

n

n

i
n





 

Clearly, we have ),/(),/( 3322  FGCWFGCW nn   
and ),/(),/( 6655  FGCWFGCW nn  . 
Thus, from the application of Corollary 1, we get the result. 
 
We show in Figure 4 the performance of the generalized 
Terminal Wiener index of the Graphenylene chain network 

nGC . In the horizontal and the vertical axis, we have the 
dimension n and the values of the generalized Terminal 
Wiener index of nGC , respectively. From this graphical 
representation, we can see that the value of the generalized 
Terminal Wiener index increases with the growth of the 
dimension n and approximates to 3400n  if the dimension n 
gets large enough. 
 

 
Figure 4: The graphical behavior of the generalized Terminal 
Wiener index of the graphenylene chain network nGC . 

4.2 Graphenylene Sheet Network 
Let nGS be a graphenylene sheet network of dimension n, 
where n denotes the number of dodecagon 12C  in each side of 
this network. The nGS  can be obtained by joining n 
graphenylene chain networks of dimension n. An example of 
a graphenylene sheet network is shown in Figure 5. The 
number of vertices of nGS  is 41612 2  nn . 
Now, we calculate the generalized Terminal Wiener index of 
the graphenylene sheet network nGS  in the case of K . 
From Figure 5, we can see that the number of vertices of 
degree    is equal to: .41612 2  nnN  
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Figure 5: A graphenylene sheet network nGS  of dimension n=3. 
 
Theorem 6: Let nGS be a graphenylene sheet network of 
dimension 2n . Then, 

nnnnnGSTW n 3
152252

3
1102740222)( 2345 

.   

                      ( 12) 
Proof: The graphenylene sheet network nGS  is a partial cube 
and holds six different directions of edges, as illustrated in 
Figure 2. The calculation process of the generalized 
Terminal Wiener index TW  of nGS  is similar to that 
for nGC . At first, we determine the components in FGS  , 
where iF  is the union of the elementary cuts with the same 
direction i. Then, we construct the weighted quotient 
trees ),/( iin FGS  , for  6,...,2,1i  and 2n , which are 
defined as follows: 

 
Due to the symmetry of the nGS  network, the weighted 
quotient tree 3/ FGSn  is isomorphic to 1/ FGSn  and 5/ FGSn  
is isomorphic to 4/ FGSn . 
Now, we calculate the Weighted Wiener index of quotient 
trees in FGS / , for  6,...,2,1i , by using the Equation 10. 

 

  

 

 



 .
2

)4)12(6(

*)4)12(6(2),/(

.)46(62

62

*62224),/(

.1224
2

))212(12

*)212(12(2),/(

.)812()210(

*)812()210(),/(

2

0

1

0 0
66

1 2

2

2 2
44

2

2

1

2 2
22

1

0
11




















































 























































































 

 




 










 









 

 



 



 



NiN

iFGSW

ini

iN

iNFGSW

NN

jN

jFGSW

innN

innFGSW

i

j

n

i

i

j
n

n

i

n

i

i

j

n

i

i

j
n

i

j

n

i

i

j
n

n

i
n









 

Obviously, we have ),/(),/( 3311  FGSWFGSW nn   and 

),/(),/( 5544  FGSWFGSW nn  . Finally, we apply the 
Corollary 1 in order to get the result. 

 
Figure 6: The graphical behavior of the generalized Terminal 
Wiener index of the graphenylene sheet network nGS . 
We show in Figure 6 the performance of the generalized 
Terminal Wiener index of the Graphenylene sheet network 

nGS . In the horizontal axis, we have the dimension n and in 
the vertical axis the values of the generalized Terminal 
Wiener index of nGS  are determined. From this graphical 
representation, we observe that the value of the generalized 
Terminal Wiener index shows a dominant change with the 
increase of the dimension n and approximates to 5222n  if the 
dimension n gets large enough. 
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5. CONCLUSION 
 
In this manuscript, we studied the computation efficiency of 
the generalized Terminal Wiener index of partial cubes. 
Then, we applied the obtained result to calculate the 
generalized Terminal Wiener index of graphenylene systems 
in linear time complexity. Also, we showed that the main 
result is an efficient tool to quantify the topological structure 
of two graphenylene systems called the graphenylene chain 
network nGC  and the graphenylene sheet network nGS . For 
these networks, we calculated the generalized Terminal 
Wiener index in the case of K equals to the maximum degree. 
The out-findings of this paper are novel and play a significant 
role to figure out the structural properties of graphenylene 
networks. Also, they are considered as an eye-opener for 
researchers working in different fields such as computer 
science, nanoscience and network science.  
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