
408

Binary Voting Fragmented Database Replication Model

Noraziah Ahmad1,2*, Ainul Auni Che Fauzi1, Syifak Izhar Hisham1, Zarina Mohd3, Mohd Helmy Abd Wahab4
1Faculty of Computer Systems & Software Eng., Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

2IBM Centre of Excellence, Universiti Malaysia Pahang,26300 Kuantan, Pahang, Malaysia
3Faculty of Informatic and Computing, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia.

4Department of Computer Engineering, Faculty of Electrical and Electronic Eng.,
 Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia.

*Corresponding author E-mail: noraziah@ump.edu.my

ABSTRACT

Replication is a useful technique for distributed database
systems. Existing techniques such as Read One-write-All
(ROWA) and Branch Replication Scheme (BRS) are the
popular techniques being used. However, these tech-
niques have their weaknesses in terms of replication time
taken and communication costs. Consequently, ROWA
and BRS take long executing time for a transaction since
they have to replicate its data to all servers. In this re-
search, the some-data-to-some-sites technique Binary
Voting Fragmented Database Replication (BVFDR)
model is proposed. This technique only considers the
adjacent servers binary vote assignment to its logical grid
structure on fragmented data copies in order to manage
transactions in the systems. Thus, it minimizes the stor-
age capacity needed since we store database that has
been fragmented. An experiment has been carried out in
three replicated servers. The results have been compared
with existing techniques such ROWA and BRS. The
result shows that BVFDR is able to preserve data con-
sistency and outperformed in terms of time taken for a
complete transaction compare to existing techniques.
Overall, BVFDR able to manage fragmented data repli-
cation and transaction management in distributed data-
base environment by preserving data consistency through
the synchronization approach.

Key words: Data Grid; Distributed Database; Fragmen-
tation; Replication; Computational Intelligence.

1. INTRODUCTION

Nowadays, huge numbers of data are generated around
the world distributed across data grid. Data grid is
emerging as the main part of the infrastructure for large-
scale data intensive applications. One of the biggest
problems that data grids users have to overcome today is
to improve the management of data. Providing reliable
services along with high data availability and the per-
formance are the important requirements that need to be
essentially met.

The concept of replication is used to ensure these re-
quirements. The process of data replication is keeping
several copies of a data file at multiple servers in order to
achieve better performance, availability and reliability.

Replication strategy is one of effective solutions to meet
the requirement of service response time by preparing
data in advance to avoid the delay of reading data from
servers [1]. Replication is commonly used in data inten-
sive applications where data is shared and need to be
accessed from different servers, situated at different geo-
graphical locations.

As everything has pros and cons, replication too has
some drawbacks associated with it. As the number of
replicas of data files increases, the cost of creating and
maintaining these replicas also increases. One way to
provide reliable data with low cost and minimum re-
sponse time, a database fragmentation can be combined
with data replication. In order to fragment a file, it will
split data into fragments, which should be allocated to
sites over the network in the allocation stage [2]. Every
part that produced after fragmentation is called as a data-
base fragment. Fragmentation in distributed database is
very beneficial in terms of practice, dependability and
effectiveness of a system. Fragmentation phase is the
process of distributing a database table into a set of
smaller tables. The process of distributing the generated
fragments over the database system servers is called al-
location.

Each part of the fragmented distributed database may be
copied. When a data is updated at one site, the changes
are noted and kept locally. Then, they are submitted and
applied at all of the distant servers. In order to ensure the
consistencies for all the replicated data, synchronous
replication can be practiced. It can be divided into sever-
al methods, i.e., copy all data to all servers, copy all data
to some servers and copy some data to all servers. A
proper synchronization method is required to preserve
the integrity and reliability of the data in distributed en-
vironments.

In this paper, we manage fragmented database replica-
tion and management of data transaction for online web-
site using a new proposed technique called Binary Vot-
ing Fragmented Database Replication model. This tech-
nique is the combination of replication and fragmenta-
tion. Combining these two techniques will increase data
availability and data reliability as one server goes down,
users can still query or update data by accessing the rep-
lica servers.

 ISSN 2278-3091
Volume 9, No.1.1, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse6791.12020.pdf

https://doi.org/10.30534/ijatcse/2020/6791.12020

Noraziah Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 408 - 413

409

The paper is organized as follows. In Section 2, we re-
viewed previous techniques on replication in distributed
database. In Section 3, we explained the proposed tech-
nique. Next, we presented the results and discussions,
including the real time result in Section 4. Finally, we
concluded our work in Section 5.

2. RELATED WORKS

In this section, it reviews about replication, database
fragmentation and the existing techniques that used the
same technique with BVFDR which is replication in dis-
tributed database system.

2.1. Replication

The general idea of replication is to store several copies
of the same data in different sites across the grid. This
clearly scales up the performance by reducing remote
access delay and mitigating single point of failure. In
addition, data replication helps overcoming long wide-
area data transfer latencies by keeping data close to loca-
tions where queries are originated. Indeed, through repli-
cation, data grid can achieve high data availability, im-
proved bandwidth consumption, and better fault toler-
ance [3]. Replication is commonly used in data intensive
applications where data are shared and need to be ac-
cessed from different sites, situated at different geo-
graphical locations.

2.2. Database Fragmentation

Fragmentation in a single database needs to be divided
into two or more pieces such that the combination of the
pieces yields the original database without any loss of
information. Each piece that produced after fragmenta-
tion is known as a database fragment [4]. Fragmentation
in distributed database is very useful in terms of usage,
reliability and efficiency [5]. Fragmentation phase is the
process of clustering the information accessed simulta-
neously by applications in fragments, while the process
of distributing the generated fragments over the database
system sites is called allocation phase [6]. In order to
fragment a database, it is possible to use two basic meth-
ods which are vertical fragmentation and horizontal
fragmentation. Other than these two methods, it is also
possible to execute mixed or hybrid fragmentation on a
class by combining both techniques [6]. In the object
model, vertical fragmentation breaks the class logical
structure (its attributes and methods) and distributes
them across the fragments, which will logically contain
the same objects, but with different structures. On the
other hand, horizontal fragmentation distributes class
instances across the fragments, which will have exactly
the same structure but different contents. Thus, a hori-
zontal fragment of a class contains a subset of the whole
class extension [6]. Each partition/fragment of a distrib-
uted database may be replicated [7]. Changes applied at
one site are captured and stored locally before being
forwarded and applied at each of the remote locations.

2.3. Existing Techniques

2.3.1. Read-One-Write-All Monitoring Synchroniza-
tion Transaction System (ROWA-MSTS)

Read-One-Write-All Monitoring Synchronization Trans-
actions System (ROWA-MSTS) has been developed
based on ROWA technique. The ROWA-MSTS tech-
nique handles each site either it is operational or down.
The researcher used VSFTPD (GPL licensed FTP server
for UNIX systems) as an agent communication between
replicated servers [8]. In ROWA-MSTS techniques, rep-
licas consistencies are guaranteed by the consistency of
execution on one replica, but the client replicas are only
updated and cannot provide accurate responses to queries.
Synchronous replication methods guarantee that all rep-
licas are maintained consistently at all times by execut-
ing each transaction locally only after all replicas have
agreed on the execution order. Hence, a very strict level
of consistency is maintained. Figure 1 shows the frame-
work of ROWA-MSTS in distributed environment.

Figure 1: The framework of ROWA-MSTS

(Source: Noraziah et al., 2010)
However, this strategy practices all-data-to-all-sites rep-
lication protocol. That means, all servers will have the
same data. There will be a lot of data redundancy and
waste of space. In addition, the execution time for a
transaction will be high since the primary server has to
wait for all other neighbour servers to proceed with the
transaction.

2.3.2. Branch Replication Scheme (BRS) Protocol

Figure 2: Data replication in BRS
(Source: Pérez et al., 2010)

 Mohd Amran M D et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 400 -
407

410

The goals of Branch Replication Scheme (BRS) are to
increase the performance, fault tolerance and scalability.
In BRS, by using hierarchical topology each replica is
composed of a different set of organized subreplicas us-
ing a hierarchical topology. In order to increase the
scalability and performance of the system for read and
write operations, BRS uses parallel I/O. The main fea-
tures of BRS are root replica, parallel replication; fine
grain replication, partial replication of popular file frag-
ments. Parallel data access better resource usage. This
technique needs low space per storage to support replica.
Figure 2 shows data replication in BRS.

In BRS, replicas are created as close as possible to the
clients that request the data files. The root replica grows
towards the clients in a branching way, where the repli-
cas will be split into several subreplicas. By using this
approach, the growing of replica tree is driven by client
needs. This means a replica is expanded or attracted to-
wards the clients [9].

In addition, replication does not have to be for the entire
replica. Subreplicas can also be replicated based on the
previous conditions. Assume that accesses to a file are
not uniformly distributed and that, as a result, the
subreplica Ri storage node is overloaded. BRS can repli-
cate only this subreplica to discharge this node. Conse-
quently, the growth of the replication tree might not be
symmetric and different branches could have different
depths [9].

In order to maintain consistency among the updates by
clients, a mechanism is proposed. Clients only can modi-
fy the data located in the terminal replica, or referred as
the leaf nodes of the replication tree. Thus, the location
of the replica is reduced to the location of the deepest
subreplicas that support the range of data requested by
the application. Data update is performed bottom_up,
from the children replicas to the parent until the root rep-
lica is reached. Only updated blocks are propagated. As-
sume, for the example in Figure 2, that block 3 of replica
2 (located in SITE 5) is written. The consistency algo-
rithm sends block 3 to the replica's parent (SITE 2), that
again sends block 3 to its parent (SITE 1). As the replica
in SITE 1 is the root, the algorithm stops. Thus replica
updating can be executed minimizing the number of
steps (3) and the amount of information sent (only 1
block in this example). The amount of data transferred
would be a minimum of 8 blocks.

A problem may occur when a client tries to write in a
subreplica which is not terminal, because that subreplica
has been split into other subreplica. In this case, the error
“write not allowed” is sent to the client. This may only
happen because the client opens the file in the read-only
mode. Thus, the client has to open the file for writing or
updating and look for the replica that contains the data
range needed by the client. Besides, the drawback for
BRS is it is costly because it requires many servers.

2.3.3. Popular Group of File Replication (PGFR) Al-
gorithm

Popular Group of File Replication (PGFR) considers
dependency between files (data) for data replication. It
also replicates a group of dependent files to the requested
grid sites and reduces mean job execution time, band-
width consumption as well as avoiding unnecessary rep-
lication. The proposed algorithm is based on three as-
sumptions: jobs in a grid site have similar interests in
files, jobs have the temporal locality of file accesses, and
all files are read-only [10]. Based on this assumption,
and file access history, PGFR builds a connectivity graph
to recognize a group of dependent files in each grid site
and replicates the most Popular Groups of Files to each
grid site, thus increasing the local availability. This pa-
per used OptorSim simulator to evaluate the efficiency of
PGFR algorithm [10]. The simulation results show that
PGFR achieves better performance compared to the ex-
isting algorithm; PGFR minimized the mean job execu-
tion time, bandwidth consumption, and avoiding unnec-
essary replication. PGFR discovers the most Popular
Group Files for a grid site according to their file access
history, and then replicates the most dependent files to
each grid site. Therefore, later when a user of that grid
site requests some files, they will be available locally.
Thus, PGFR decreases access latency and bandwidth
consumption. To evaluate the efficiency of the algorithm,
data grid simulator has been used, OptorSim. PGFR then
is compared to five existing algorithms which are No-
Replication, Least Recently Used (LRU), Least Fre-
quently Used (LFU), EcoModel Zipf-like distribution,
and PDDRA [11]. The first four techniques exist in the
OptorSim. In the simulation performance evaluation
metrics of Mean Job Execution Time (MJET), Total
number of replications, and Effective Network Usage
(ENU) were used. The simulation has been running for
different file access patterns. The simulation results
showed that PGFR reduces MJET and ENU.

3. BVFDR MODEL

In this section, we proposed Binary Vote Fragmented
Database Replication (BVFDR) model by considering
the distributed database fragmentation. The following
notations are defined:

a) S is a transaction.
b) R is a relation in database.
c) T is a tuple in fragmented
d) x is an data in T which will be modified by element of
S.
e) y is an data in T which will not be modified by ele-
ment of S.
f) R1 is a vertical fragmented relation with data x derived
from R.
g) R2 is a vertical fragmented relation without data x de-
rived from R1.
h) Pk is a primary key.
i) Pk,x is a primary key and data x.
j) Pk,y is a primary with data y, where y x
k) ܴଵ(ುೖ,ೣ) and	ܴଵ(ುೖ,೤) are a horizontal fragmentation
relation derived from R1.

Noraziah Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 408 - 413

411

l)  and  are groups for the transaction S.
m) or  where it represents different group for the
transaction S (before and until get quorum).
n) 	 ܵ	is a transaction that comes before ܵ, while ܵ is a
transaction that comes after ܵ.
o) U is a union of all data objects managed by all trans-
actions S of BVFDR.
p) ቒ௡

ଶ
ቓ is the greatest integer function (i.e., n=9, ቒଽ

ଶ
ቓ = 5).

3.1. Implementation of BVFDR

To demonstrate BVFDR transaction, nine servers that
logically organized in 3 × 3 are considered based on
BVFDR two-dimensional logical design. The number of
replicated data, d, can be 3, 4 or 5. The 3 replication
servers are deployed as in Figure 3. Each server or node
is connected to one another through a local network. An
experiment has been done where two transactions re-
quest to update same instant at two different servers.

Figure 3: Three replication servers connect each other.

and the primary replication server should be connected
each other logically. Each server has been assigned with
vote 0 or 1. Vote 0 means the server is free locked and
able to proceed with a new transaction. In contrast, vote
1 means the server is busy which means it is already
locked. Hence, new transaction cannot be initiated on
that server.

Using BVFDR model, each primary replica copies other
database to its neighbour replicas. Client can access
other database at any server that has its replica. We as-
sume that data x located in primary Server A while
Server B and Server D are the neighbour replicas. If two
transactions, ࡿ and ࡿ request to update instant x at two
different servers, A and D at the same time, the result as
shown in Table 1.

Table 1: Result for two transactions initiate at two sites

From Table 1, at time equals to 1 (t1), instant x at all
servers are unlocked. At t2, the transaction begins. At t3,
there are two transactions, ࡿ࢞ and ࡿ࢞ 	request to update
instant x at the same time. Both of transactions initiate
lock. Based on Table 1, t2 and t3 is the Initiate Lock. At
this time, the target set for each server has changed to 1
which means the server is busy. Hence, write counter for
both server A and D now is equal to 1. Next, propagate
lock at server B at t4. At t5, ࡿ࢞ 	lock(x) from A and write
counter for ࡿ࢞ 	 now equal to 2 at t6. At the same time,
࢞ࡿ 	propagate lock at server A. Since ࡿ࢞ already lock
instant x at server A, the target set for the server has now
been equal to 1. Hence, ࡿ࢞will not success to get lock
from it. Then, at t7, ࡿ࢞obtain majority quorum and re-
lease lock ࡿ࢞		at server D. Based on Figure Table 1, at t8
࢞ࡿ ,release lock At t9 ࢞ࡿ	 	lock(x) from A at server D
write counter for ࡿ࢞ 	 now equal to 3 at t10. Therefore,
instant x is updated at A at t11, the relation S is frag-
mented into S1 and S2 using vertical fragmentation. The
relation S1 fragmented again at t13 using horizontal
fragmentation into ࡿ૚(࢞,࢑ࡼ) and	ࡿ૚(࢟,࢑ࡼ) . Finally, at t17,

࢞ࡿ ࡿ is commit to all sites and at t14, instant x at all
replica servers will unlock and ready for the next trans-
action to take place. Based on Table 1, t15, t16 and t17 is
the Database Fragmentation and Commit.



Replica
A B D Time

t1 unlock(x) unlock(x) unlock(x)
t2 begin_transaction begin_transaction begin_transaction

t3
௫ߝܵ 	write
lock(x),

counter_w(x)=1

௫ߩܵ 	write
lock(x),

counter_w(x)=1

t4 ܵߝ௫	propagate
lock:B

ܵೣ 	propagate
lock:A

t5
 fail to get	௫ߩܵ

lock:A,
counter_w(x)=1

ܵೣ 	lock(x) from
A

t6 ܵߝ௫	get lock:B,
counter_w(x)=2

t7 obtain quorum,
release lock: D

t8 ܵೣ 		release lock

t9 ܵೣ 	lock(x) from
A

t10
 get lock:D	௫ߝܵ

and H,
counter_w(x)=3

t11 update x

t12 S is fragmented
into S1 and S2

t13
S1 is fragmented
into ܵଵ(ುೖ,ೣ)

 and
	 ଵܵ(ುೖ,೤)

t14 commit መܵೣ
ܵ

commit መܵೣ
ܵ

commit መܵೣ
ܵ

t15 unlock(x) unlock(x) unlock(x)

  

 Mohd Amran M D et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 400 -
407

412

4. RESULTS AND DISCUSSION

In this section, the times taken to update data and com-
plete a transaction are compared between two existing
techniques, namely ROWA and BRS, and the technique
proposed in this research which is BVFDR.
In ROWA, the data is replicated to all sites, means the
data is available at all sites. Hence, ROWA has high data
availability. In BRS, a data is chunk into several
subreplica and allocated in a server. This server is organ-
ized in the form of tree structure. When a data is updated,
it will be replicated using bottom up scheme. A problem
may occur when a client tries to write in a subreplica
which is not terminal, because that subreplica has been
split into other subreplicas. In this case, the error han-
dling control sent the message to prevent the write au-
thorization to the client. In BVFDR, the server is organ-
ized in a form of two-dimensional grid structure. Each
site has a premier data. When data is updated, it will rep-
licate to its neighbours. When data is not available at a
particular site, user still can access the data through other
replica site. Therefore, the data availability is high in
BVFDR.

4.1. Time Taken Comparison

In this section, the time captured is compared to BVFDR
in order to prove BVFDR technique requires the lowest
time to update a data.
Table 2 shows the executing time comparison between
ROWA, BRS with BVFDR. From Table 2, it is proved
that BVFDR requires the lowest time to complete a
transaction. Total time taken for BVFDR is 29 ms. The
highest time taken is BRS with 623 ms. This is because
BRS required 8 replica copies. Moreover, the replicas
can be more than 8 due to client request but cannot be
lowered than 8 replicas. BVFDR has 95.35% improve-
ment from BRS technique in terms of time taken. Hence,
time taken for the transaction also can be increased when
the techniques does not the database fragmentation
which causes of large amount of bandwidth every time
data been updated. Besides that, ROWA took 72 ms for a
transaction due to its maximum numbers of replica cop-
ies. BVFDR has 59.72% improvement from ROWA
technique. For ROWA, it would be a greater different
result when the server involved is 9 or more.

Table 2: Time Taken Comparison

Repli-
cation
Tech-
nique

Initiate
Lock
(ms)

Propa
gate
Lock
(ms)

Ob-
tain
Ma-
jority
Quo-
rum
(ms)

Datana
se

Frag-
mented

&
Com-
mit

(ms)

Total
Time
Take

n
(ms)

BVFD
R

Im-
prove
ment:

ROWA 16 23 2 31 72 59.72
%

BRS 50 398
8 162 623 95.35

%
BVFDR 8 11 0 10 29 -

5. CONCLUSION

In order to preserve data availability and data consisten-
cy of the website, managing transactions is very im-
portant. With the aim of managing fragmented database
replication and transaction management, we design a
new model called Binary Voting Fragmented Database
Replication (BVFDR). From the experiment result, we
can say that managing replication and transaction
through BVFDR able to preserve data consistency in a
shorter time so it is very useful for critical data update
such us bank data, e-commerce and etc.

ACKNOWLEDGEMENT

Appreciation conveyed to University Malaysia Pahang
Internal Grant under RDU170398; Research Manage-
ment, Innovation and Commercialisation Centre
(RMIC), Universiti Sultan Zainal Abidin; and Universiti
Tun Hussein Onn Malaysia for financial support of this
project.

REFERENCES

[1] Shaoming Pan, Lian Xiong, Zhengquan Xu, Yanwey
Chong, Qingxiang Meng (2018), A dynamic replica-
tion management strategy in distributed GIS, Com-
puter and GeoSciences, Vol112, 1-8.
https://doi.org/10.1016/j.cageo.2017.11.017

[2] Hossein Rahimi, Fereshteh-Azadi Parand, Davoud
Riahi (2018), Hierarchical simultaneous vertical
fragmentation and allocation using modified Bond
Energy Algorithm in distributed databases, Applied
Computing and Informatics, Vol14, 127-133.

[3] Hamrouni T, Slimani S, Charrada F B (2015), A
Survey of Dynamic Replication and Replica Selec-
tion Strategies Based on Data Mining Techniques in
Data Grids, Engineering Applications of Artificial
Intelligence, Vol48, 140–158.

[4] Apers PMG (1988), Data Allocation in Distributed
Database Systems, ACM Transaction on Database
System, Vol13, 263–304.

[5] Ainul Azila, Noraziah A, Fauzi AAC, Deris MM,
Saman MYM, Zain NM, Khan N (2011), Lowest
Data Replication Storage of Binary Vote Assign-
ment Data Grid, Procedia-Social and Behavioral
Sciences, Vol28, 127-132.

[6] Baiao F, Mattoso M, Zaverucha G (2000), Hori-
zontal Fragmentation in Object DBMS: New issues
and Performance Evaluation, Proceeding of IEEE
International Conference on Performance, Compu-
ting, and Communications, 108-114.

[7] Deris MM, Abawajy JH, Taniar D, Mamat A (2009),
Managing Data using Neighbour Replication on a
Triangular-Grid Structure, International Journal of
High Performance Computing and Networking,
Vol6, No1, 56-65.
https://doi.org/10.1504/IJHPCN.2009.026292

[8] Noraziah A, Abdalla AN and Roslina MS (2010),
Data Replication Using Read-One-Write-All Moni-
toring Synchronization Transaction Systems in Dis-

Noraziah Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 408 - 413

413

tributed Environment, Journal of Computer Science,
Vol6, No10, 1033-1036.

[9] Pérez, JM, Carballeira FG, Carretero J, Calderón A,
and Fernández J (2010), Branch Replication Scheme:
A New Model for Data Replication in Large Scale
Data Grids, Future Generation Computer Systems,
Vol26 12-20.

[10] Leila Azari, Amir Masoud Rahmani, Helder A. Dan-
iel, Nooruldeen Nasih Qader (2018), A data replica-
tion algorithm for groups of files in data grids, Jour-
nal of Parallel and Distributed Computing, Vol113,
115-126.

[11] NazaninSaadat, Amir MasoudRahmani (2012),
PDDRA: A new pre-fetching based dynamic data
replication algorithm in data grids, Future Genera-
tion Computer Systems Vol28, No4, 666-681.
https://doi.org/10.1016/j.future.2011.10.011

