
Shouki A. Ebad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 428 - 433

428

ABSTRACT
In large scale object-oriented (OO) software, package forms
the essential structural component of the system. Packaging
operation aims at grouping OO classes to provide well-
identified functions to the rest of the software. It is meant to
improve the software quality such as high maintainability
and high reusability. Most of the packaging approaches are
based on an optimal balance between cohesion and coupling
quality attributes. In this article, we compare of two
packaging approaches: functionality-based packaging relied
on genetic algorithm, GA (measured with a metric named
OverallPackaging) and adaptive k-nearest neighbor (A-
KNN) clustering. The comparison was done in terms of
cohesion and coupling at package level. Both approaches are
applied on an open-source system called Trama. In term of
cohesion and coupling at the package level, both approaches
achieved good results compared with the original packaging
of Trama. However, the A-KNN-based approach achieved
better results than OverallPackaging.

Key words: search-based software engineering (SBSE),
software packaging, package cohesion, package coupling.

1. INTRODUCTION
Software packaging is grouping object-oriented (OO) classes
into packages so that a package does one task, which is
completely carried out in the package [[1]]. Packaging is
interchangeably referred to as clustering [[2]]-[[4]],
modularization [5]]-[[7]], and decomposition [8]]. Because
this process is done by changing the software structure and
architecture without affecting its internal behavior, packaging
is mainly meant to achieve quality objectives such as high
maintainability and high reusability [[1]]-[[4]]. Software
architecture has become a more mature area with regards to
applying empirical research [[9]]. Packaging is often
employed during the architectural design stage of the
software development lifecycle [[1]]. Some employed the
same process on the source code level; i.e., after the source
code is available; it is called refactoring [10]]-[[12]].

Although the effort spent on packaging is worthwhile since
it, in general, improves software quality, each packaging
approach has a different impact on software quality [[11]].
Therefore, in order to optimize the software structure for

maintainability, for instance, architects should strive to build
well-structured software. Finding such a number of solutions
exhaustively is impracticable because of the combinatorial
nature of the packaging. We thus approximated the number
of optimal packagings using a search mechanism that
minimizes the solution space by choosing a subset of
solutions that could guide to a good solution. However,
finding the best packaging of a system might not be cheap to
be done manually [[13]]. For this, packaging is often treated
as an optimization problem where the fitness function that
leads the search using considered heuristic techniques is
equivalent to a relevant software metric [1]], [[10]][14]].
Different automatic approaches aimed at performing
software packaging have been proposed; a critical analysis of
the existing approaches is in [[15]].

The objective of this paper is then to compare two
approaches used recently to package OO classes. Our
comparison would be in terms the cohesion and coupling
amount at package level. Herein, we are considering package
cohesion to be the connection amount in packages and
package coupling to be the connection amount out packages.
We applied functionality-based packaging and A-KNN
clustering on an open source project, Trama, to investigate
their impact on the cohesion and coupling at package level.
Therefore, the main contribution of our work here is in this
direction. The study is organized as follows. In Section 2, we
review the literature of packaging approaches. Section 3
gives an overview of the two packaging approaches used in
our research. In Section 4, we explain the process to extract
some of the structure artifacts required for one of the two
approaches. In Section 5, we present a comparative
experiment; this includes the material, heuristic algorithms,
tools and the analysis of results. Section 6 discusses some
limitations of the study. In Section 7, we finally present the
conclusions and future work.

2. RELATED WORK
Using GGA, [[8]] proposed a decomposition approach with a
multi-modal function that included some attributes including
cohesion and coupling [[5]] defined the fitness function using
several measures inspired by the concept of package
coupling and package cohesion [[16]]. Their approach allows
maintainers to define certain constraints on the suggested
packaging. [[12]] packaged classes using the similarity
measure of a previous study [[17]] with fixed number and

A Comparison of Functionality-Based Packaging Using GA and Adaptive
KNN Clustering as Two Approaches to Package Software

Shouki A. Ebad1, Moataz Ahmed2
1Computer Science Department, Faculty of Science, Northern Border University, Saudi Arabia

shouki.abbad@nbu.edu.sa
2Department of Info. & Comp. Science, King Fahd University of Petroleum & Minerals, Saudi Arabia

moataz@kfupm.edu.sa

 ISSN 2278-3091
Volume 8, No.1.4, 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse6781.42019.pdf

https://doi.org/10.30534/ijatcse/2019/6781.42019

Shouki A. Ebad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 428 - 433

429

variable number of packages. [[18]] worked on level of class,
attribute, method/parameter names, comments, and
statements. They grouped source files based on the lexical
information using a hierarchical clustering algorithm. [[19]]
automated the architecture recovery process of systems. They
used (1) latent semantic indexing (LSI) to get similarities
among software parts, (2) the k-means clustering algorithm
to create groups of entities, and (3) fold-in and fold-out
mechanisms to improve computational time. [[20]] focused
on a specific restructuring: given a package with less
cohesion, partition it into smaller packages having higher
cohesion. To measure package cohesion, they used
conceptual coupling between classes (CCBC) [[22]] and
information-flow-based coupling (ICP) [[22]] to capture
semantic relationships and structure relationships between
classes, respectively. They then used a metric to find classes
that should put in a package. [[7]] used NSGA-II to
implement a remodularization approach to maximize
package cohesion, minimize package coupling, minimize
package cycles, avoid Blob packages, and minimize the
changes of the original design. [[1]] proposed a new
packaging approach based on UCs, which in turn are realized
by sequence diagrams (SDs). This approach came to reflect
the functionality perspective of systems. [13]] presented the
results of objectively and subjectively studies about
modularization based on package cohesion and coupling. As
results (1) most of the analyzed systems exhibit low values
for cohesion and coupling at package level (2) most of the
developers confirmed that other attributes guided the
modularization of their systems.

Our literature survey reveals that the available works do not
consider the package level in their modularization/ packaging
but class level [5]], [[8]] or method and attribute level [[18]].
Others focused on architecture recovery [[19]]. Although few
works concentrated on the package level [[1]], [[12]], their
approaches still require more validation. This paper tried to
fill this gap. To the best knowledge, there is a little research
to compare new packaging approaches in term of package
cohesion and package coupling through applying them on a
real-world software system. Even though our comparison
needs more to be worked on including applying on a big-
sized software system, the paper has covered a topic that is
interesting and relevant to the domain of software
engineering, has some recent references that support that.

3. BACKGROUND

3.1 Functionality-based Approach
According to Jacobson [[23]], functionalities that users need
of the OO software are represented by UCs. A UC is
reflected by a SD or more that in turn reflect how the objects
work to provide functions [[1]]. Unlike other packaging
approaches which are applicable at source code level, this
approach is proposed to be applied at the architectural design
stage to put classes inside packages using SDs. That
packaging should decompose the software into packages;
each package does one task, which is, as much as possible,
completely carried out in the package. To this end, a metric is
designed to have two parts: (a) a UC is covered by the
minimum number of packages, (b) classes in a package are

related so that they contribute to the same set of UCs. These
aspects reflect loose coupling and high cohesion,
respectively. The packaging quality metric of a package Pi is

PackagingQlty(Pi) = wU× degree of UC coverage by Pi +
wC × degree of class relevancy of Pi (1)

where wU and wC are the weights of the first and second
parts, respectively, so that wU, wC [0, 1] and wU + wC =
1.

UC coverage and class relevancy are aggregated to calculate
the PackagingQlty. The average PackagingQlty for all
software packages represents the new metric as follows:

OverallPackaging(system)= Avg (PackagingQlty(Pj)) Pj
in system (2)

The packaging process tries to maximize Eq. (2). The
OverallPackaging metric would be used as the fitness
function of the algorithm. The OverallPackaging components
and examples of application are found in [1]. This approach
relies on the search-based mechanism i.e., heuristic
algorithms. Herein, we used a genetic algorithm (GA) as a
famous heuristic algorithm proved its success with many
optimization problems. Cohesion metrics at the package level
have been reviewed in details by [[24]].

3.2 A-KNN-based Approach
A-KNN clustering approach is proposed by [[12]] based on
the similarity metric proposed by [[17]]. According to the
authors, the approach decreases the computation cost
compared with the other approaches. It works as follows: it
considers each class as a package; each class is identified
with an ID representing the package ID. In the second
iteration for k = 3 (k is the number of nearest neighbor to be
chosen), the three nearest neighbors to the class that would
be packaged are chosen, and their identification are checked.
When 2 out of the 3 packages have the same identification,
the current class with the same identification of those two
classes are identified. However, if the 3 entities do not have
the same identification, the current class with the same
identification of the closest class (NN) is identified. the
packaging process is repeated until no more changes happen.
Therefore, the algorithm generates a package at the highest
level of the hierarchy. The similarity metric that the approach
depends on is described in terms of the connection amount
in/out the package.

4. EXTRACTING THE ARCHITECTURAL
ARTIFACTS

When the software size increases, packaging process does
not only become important but also difficult. In trying to
apply our approach to real systems, “data scarcity” issue
appeared in our research; UCs and SDs are not available for
public access. Therefore, we have the source code of real-
world project, JHotDraw and then reverse engineered it to
find the required SDs along with the list of classes. Our
packaging approach is applied and the remarks are analyzed

Shouki A. Ebad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 428 - 433

430

according to ASM values. AltovaUModel 1 is used in this
extraction and reverse engineering. Although AltovaUModel
can produce SDs from source code, such SDs depend on
methods behavior at run time. Many statements representing
the run time context are often found in the source code of real
software systems such as control and loop statements. After
generating the SDs, a transient task should then be
performed; filtering. The objective of filtering process is to
remove all run-time variables and messages displayed in
UML-SDs. This makes the produced “run-time” SDs mimic
the “functional” SDs that represent the “functional”
perspective of UCs via messages and objects starting from
the pre-condition to the post-condition. Details of packaging
process at early design phase are found in [[1]], [[15]].
Besides, we used XMI2UC tool to find UCs from the XMI
documents produced by AltovaUModel. [[25]]. Figure 1
describes this reverse engineering process could be
described.

5. THE EXPERIMENT

5.1 Material
We compare both approaches, functionality-based packaging
and A-KNN; described in the previous sections. From now
on we call the first approach (OverallPackaging). The
packaging process should then try to maximize the
OverallPackaging metric [[1]].

To this end, we apply Overallpackaging on the same project
that Alkhalid et al. [[12]] applied their technique. In
particular, they used an open source project, Trama2; which
consists of 15 classes, 6 packages, 200 methods, and ~6000
LOC. Table 1 describes the classes, considered packages,
and the connection amount inside/outside each package.

Figure 1: the reverse-engineering process modeled by data flow

diagram (DFD)

1 http://www.altova.com/umodel.html
2 http://sourceforge.net/projects/trama/

Table 1: Trama raw data

Pkg.# Pkg. Class
number

Class Connecti
ons in
pkg.

Connecti
ons out

pkg.
1 Negocio 1 ControleProje

to
4 7

2 ControleTela
3 Main
4 Matriz

2 negocio.l
eitor

5 LeitorDeMod
elo

0 0

3 negocio.l
eitor.Inte

rface

6 PluginInterfac
e

0 0

4 Persisten
cia

7 DadosMatriz 0 0
8 PersistenciaPr

ojeto
9 Projeto

5 Visao 10 JTableCusto
mizado

9 4

11 ModeloTabel
a

12 Tela
6 visao.ren

derizador
13 Renderizador

Celula
0 0

14 Renderizador
TituloColuna

15 Renderizador
TituloLinha

Total 13 11

As we mentioned earlier, this approach depends on the
connection amount; this is computed according to the amount
of the class instances used as the package’s attribute.
Alkhalid et al [[12]] used the same number of packages.

5.2 Results and Discussion
In Alkhalid et al [[12]] experiment, the connection amount in
the packages is increased by 3 while the connection amount
out the packages is decreased by 3 too. In our packaging
approach and after the reverse engineering process described
in Section 3, the XMI2UC tool produced 26 UCs from the
Trama source code. We also found the OveralPackaging
values of the original Trama packaging and that of Trama
packaging suggested by A-KNN were 0.42 and 0.48
respectively. That means the packaging suggested by A-
KNN is better than the original Trama packaging from
OverallPackaging perspective. For OverallPackaging, we
conduct an experiment using based on a group genetic
algorithm (GGA), a suitable algorithm to identify groups in
data [[26]]. To package Trama classes, we used the Evolver
tool, v. 6.0. Table 2 states the distribution of Trama classes in
the packages after using the three packagings, the original,
A-KNN-based, and GGA-Evolver. The values of the
parameter settings are 30, 0.5, 0.06, and 50 for population
size, crossover, mutation, and number of trials, respectively.
We ran the experiment four times to find the best packaging.
We varied the values of some optimization parameters such
as population size and number of trials based on the size of
the system. Therefore, for packaging Trama, population size
and number of trials were 30 and 50 respectively; these small

Shouki A. Ebad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 428 - 433

431

values were chosen according to the small size of Trama. In
this research, we are not interested mainly with the
performance but with investigation of cohesion and coupling
at package level produced by packaging approaches. We ran
the experiment until we reach a good result compared with
some previous runs; the goodness here is measured in terms
of both OverallPackaging. Whenever found it, we stopped
the experiment especially if we take into account that the
process is computationally intensive where each run for the
Trama experiment took few hours. All GGA-Evolver runs
achieved a better OverallPackaging value than that of the
original packaging and K-NNA; the best value (0.52) was
obtained by Run 1 and Run 4 while the worst value (0.49)
was obtained by Run 2. According to Run 1 (the best), it is
suggested making two changes on Trama modular structure,
(1) shifting ControleTela from the package Negocio to Viesa
since the number of ControleTela instances in the Viesa is 1
and 0 in the Negocio; i.e., the connection amount out of
Viesa is reduced by 1, (2) shifting DadosMatriz from
package Persistence to Viesa because the number of class
instances of DadosMatriz is 0 with the two packages, no side
effect with this change. Table 3 compares the number of
connections between the three different packaging
approaches: the original packaging, A-KNN-based approach,
and the GGA-Evolver packaging shown in Table 2. From
Table 3, we noticed that connection amount in the packages
is increased by 1 (13 was changed to 14). The package
cohesion has then been improved compared with the original
packaging. We noticed that the connection amount out the
packages is decreased by 1. Contrast to the the original
packaging, package coupling has been improved (11 was
changed to 10). It is clear that both GGA-Evolver and A-
KNN approaches improved the packaging quality compared

to the original packaging; they increased cohesion amount
and decreased coupling amount. Additionally, A-KNN-based
packaging approach achieved better results than GGA-
Evolver. However, the key feature of OverallPackaging was
performing packaging at architectural design compared with
A-KNN approach that could not be used unless the code is
available.

Table 3: Connection amount after applying packaging approaches.

6. TREATS TO VALIDITY
As with any heuristic-based experimental study, the factor
that may lead to threat is the selection of parameter setting of
the heuristic technique. Herein, if an approach performs
better than another approach, it can be due to something
other than the approach itself; possibly this could be due to
the poor parameter settings of one or more of the heuristic
techniques. A factor influencing the generalization validity is
that we considered only one open-source system in our
comparison. This may not be a good representative of actual
systems.

Table 2: Comparison among different packaging: original, A-KNN based and GGA-Evolver

Class Original pkgg.

A-KNN
based pkgg.

GGA-Evolver

1st Run 2nd Run 3rd Run 4th Run
 Package number

ControleProjeto 1.0 1.0 1.0 1.0 1.0 1.0
ControleTela 1.0 1.0 5.0 1.0 1.0 1.0

Main 1.0 1.0 1.0 1.0 1.0 1.0
Matriz 1.0 4.0 1.0 1.0 1.0 1.0

LeitorDeModelo 2.0 2.0 2.0 5.0 2.0 2.0
PluginInterface 3.0 3.0 3.0 3.0 3.0 3.0
DadosMatriz 4.0 4.0 5.0 2.0 1.0 5.0

PersistenciaProjeto 4.0 4.0 4.0 4.0 4.0 1.0

Projeto 4.0 4.0 4.0 5.0 4.0 4.0
JTableCustomizado 5.0 5.0 5.0 5.0 5.0 5.0

ModeloTabela 5.0 1.0 5.0 5.0 5.0 5.0
Tela 5.0 1.0 5.0 5.0 5.0 5.0

RenderizadorCelula 6.0 6.0 6.0 6.0 6.0 6.0
RenderizadorTituloColuna 6.0 6.0 6.0 6.0 6.0 6.0
RenderizadorTituloLinha 6.0 6.0 6.0 6.0 6.0 6.0
Overallpackaging value 0.42 0.48 0.52 0.49 0.51 0.52

Connections Original
Packaging

A-KNN based
Packaging

GGA-Evolver
packaging

 In pkg. 13 16 14
Out pkg. 11 8 10
Total connections 24 24 24

Shouki A. Ebad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 428 - 433

432

7. CONCLUSION AND FUTURE WORK
Software packaging is grouping the OO classes into packages
so that a package does one task, which is completely carried
out in the package. Because this process is done by changing
the structure without affecting its internal behavior,
packaging improves the software quality through improving
its architecture, maintainability, and reducing future changes.
In this paper we compared two packaging approaches
proposed recently: functionality-based packaging proposed
that uses UCs as an input to the packaging process, and the
A-KNN-based packaging approach. The comparison was
done through applying the approaches on Trama, an open-
source software project. In terms of cohesion and coupling at
package level, A-KNN-based approach achieved better
results than the functionality-based packaging
(OverallPackaging). However, both approaches achieved
better results than the original packaging of the system under
study. An essential limitation of the A-KNN-based approach
is that it relies on source code artifacts so that the packaging
would not be done unless the code is available. Because
packaging can be performed to remove the erosion produced
from software evolution and fix issues in the design a
software system, our future research would work at this
direction; investigating the impact of packaging on software
stability and evolution. Tuning the optimization parameters
to improve the results of this study is another open point for
further research. The last point for research is to work on
multi-level packaging. While, packaging might continue
recursively, an architect might not package the classes but
packages.

ACKNOWLEDGMENT
We thank KFUPM to provide us with facilities.

REFERENCES
[1] S. Ebad, and M. Ahmed, Functionality-based software

packaging using sequence diagrams, Software Quality
Journal, 23(3), pp. 453-481, 2015.
https://doi.org/10.1007/s11219-014-9245-3

[2] M. Bauer, and M. Trifu, Architecture-aware adaptive
clustering of OO systems, in Proceedngs European
Conference on Maintenance and Reengineering (CSMR
04), Karlsruhe, Germany, 2004, pp. 3–14.

[3] Y. Chiricota, F. Jourdan, and G. Melancon, Software
components capture using graph clustering, The 11th
IEEE International Workshop on Program
Comprehension (IWPC), USA, 2003, pp. 2017-226.

[4] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and R.
Gansner, Using automatic clustering to produce high-
level system organizations of source code, in
Proceedings of the International Workshop on Program
Comprehension (IWPC). USA, 1998, pp. 45–53.

[5] S. Mancoridis, B. Mitchell, Y. Chen, and R. Gansner,
Bunch: a clustering tool for the recovery and
maintenance of software system structures, in

Proceedings of the IEEE International Conference on
Software Maintenance, USA, 1999, pp.50–59.
https://doi.org/10.1109/ICSM.1999.792498

[6] H. Abdeen, S. Ducasse, H. Sahraouiy, and I. Alloui,
Automatic package coupling and cycle minimization,
in Proceedings of the 16th Working Conference on
Reverse Engineering (WCRE). Lille, France, 2009, pp.
103-122.
https://doi.org/10.1109/WCRE.2009.13

[7] H. Abdeen, S. Ducasse, H. Sahraouiy, and I. Alloui,
Modularization metrics: assessing package
organization in legacy large object-oriented
software, in Proceeding of the 18th Working
Conference on Reverse Engineering (WCRE), USA,
2011, pp. 394-398.
https://doi.org/10.1109/WCRE.2011.55

[8] H. Abdeen, O. Sahraoui, N. Shata, S. Anquetil, and S.
Ducasse, Towards automatically improving package
structure while respecting original design decisions,
in Proceedings of the 2013 20th Working Conference
on Reverse Engineering (WCRE), 2013, pp. 212–221,
https://doi.org/10.1109/WCRE.2013.6671296

[9] O. Seng, M., Bauer, M. Biehl, and G.Pache, Search-
based improvement of subsystem decompositions, in
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’5), 2005, pp. 1045-
1051.

[10] M. Galster, and D. Weyns, Empirical research in
software architecture: how far have we come?, in
Proceeding of The 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA), Venice,Italy, April
2016, pp. 5-8.

[11] M. Alshayeb, The impact of refactoring on class and
architecture stability, Journal of Research and
Practice in Information Technology, 43(4), pp. 269-
284, 2011

[12] M. Alshayeb, Empirical investigation of refactoring
effect on software quality, Information and Software
Technology, 51(9), pp. 1319–1326, 2009

[13] A. Alkhalid, and M. Alshayeb, and S. Mahmoud,
Software refactoring at the package level using
clustering techniques, IET Software, 5(3), pp. 274-286,
2011

[14] I. Candela, G. Bavota, B. Russo, and R. Oliveto, Using
cohesion and coupling for software
remodularization: is it enough?, ACM Transactions
on Software Engineering and Methodology, 25(3), 2016
https://doi.org/10.1145/2928268

[15] M. Harman, J. Clarke, Metrics are fitness functions
too, in Proceeding of the 10th International Symposium
on Software Metrics, USA, 2004.

[16] S. Ebad, and M. Ahmed, Software packaging
approaches – a comparison framework, in
Proceedings of The 5th European Conference on
Software Architecture (ECSA 2011), Essen, Germany,
2011, pp. 438-446.

[17] M. Fowler, Reducing coupling, IEEE Software, 2001.

Shouki A. Ebad et al ., International Journal of Advanced Trends in Computer Science and Engineering, 8(1.4), 2019, 428 - 433

433

[18] C-H. Lung, X. Xu, M. Zaman, and A. Srinivasan,
Program restructuring using clustering techniques,
The Journal of Systems and Software, 79(9), pp. 1261–
1279, 2006.
https://doi.org/10.1016/j.jss.2006.02.037

[19] A. Corazza, S.D. Martino, V. Maggio, and G.
Scanniello, Investigating the use of lexical
information for software system clustering, in
Proceeedings of The 15th European Conference on
Software Maintenance and Reengineering, Oldenburg,
Germany, March 2011, pp. 35-44.

[20] M. Risi, G. Scanniello, and G. Tortora1, Using fold-in
and fold-out in the architecture recovery of software
systems, Formal Aspects of Computing (24), pp. 307–
330, 2012

[21] G. Bavota, A.D. Lucia, A. Marcus, and R. Oliveto,
Using structural and semantic measures to improve
software modularization, Empirical Software
Engineering, 18(5), pp. 901-932, 2013
https://doi.org/10.1007/s10664-012-9226-8

[22] Y. Lee, B. Liang, S. Wu, and F. Wang, Measuring the
coupling and cohesion of an object-oriented
program based on information flow, in Proceedings
of the International Conference on Software Quality,
Maribor, Slovenia, 1995, pp. 81–90.

[23] D. Poshyvanyk, A. Marcus, R. Ferenc, and T.
Gyimóthy, Using information retrieval based
coupling measures for impact analysis, Empirical
Software Engineering, 14(1), pp. 5–32, 2009

[24] I. Jacobson, Object-oriented software engineering: a
use case driven approach. Addison-Wesley, 1992.

[25] S. Ebad, and M. Ahmed, An evaluation framework
for package-level cohesion metrics, in Proceedings of
the 2nd International Conference on Future Information
Technology (ICFIT). Singapore, 2011.

[26] S. Ebad, and M. Ahmed, XMI2UC: an automatic tool
to extract use cases from object-oriented source
code, in Proceeding of the International Conference on
Advancements in Information Technology (ICAIT),
Hong Kong, 2012.
https://doi.org/10.7763/IJFCC.2012.V1.50

[27] E. Falkenauer, Genetic algorithms and grouping
problems. New York, Wiley, 1998.

