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ABSTRACT 
 
 
This paper presents the design and implementation of 
Message Passing Interface (MPI) -Dynamic Error Detection 
mechanisms  contributing to the early detection of some 
scenarios of errors during static analysis by defining a novel 
representation of the target application based on stack 
structures. The representation is an extension of the one used 
by the clang compiler. This fine-grained representation 
allows for analyzing the flow of concurrent messages being 
exchanged, which is important for deadlock errors and race 
conditions detection. We detect these kinds of errors in 
point-to-point and collective communication. In a broader 
context, this paper aims to improve the performance of error 
detection in MPI applications by integrating static analysis 
and dynamic analysis, where potential problematic 
constructs that are reported by the static part of our tool are 
further checked during program execution. Hence, we focus 
our analysis to consider only the highlighted paths, to be 
able to reduce time overhead of dynamic analysis. Several 
mini-programs are selected from a benchmark that contain 
examples of the errors identified by our work. These mini 
programs are then tested by our tool. The experimental 
results show that our tool is capable of finding deadlocks 
and race conditions. 
 
Key words: Parallel computing, message passing interface, 
static analysis, deadlocks, race conditions detection. 
 
 
1. INTRODUCTION 
 
The message passing interface (MPI) has become one of the 
more commonly used models for application development in 
high performance computing (HPC). MPI implementation in 
HPC is error prone, and testing tools can greatly increase 
MPI programmers’ productivity. However, MPI programs 
can be checked using either a static approach (i.e., during 
compile time) or a dynamic approach (i.e., during runtime). 
Static approach can in fact considerably save computing 
resources during the runtime since no additional overhead is 
induced during the program execution. However, it is a 

challenge to obtain all the required information for the 
checking algorithm only during compile time. For instance, 
the process rank cannot be obtained easily in some cases. On 
the other hand, dynamic MPI analysis approaches can easily 
provide all the required information since this data is already 
available whenever processes communicate with each other 
peers. However, injecting the checking algorithm during the 
execution of the MPI programs affects the performance of 
the running code. In fact, checking algorithms need to be 
executed almost during every communication between two 
or more processes. Despite such an efficiency drawback, the 
majority of available MPI checkers are based on this 
dynamic checking method. This paper presents an approach 
of designing and implementing an MPI checking technique 
that combines static and dynamic approaches. Our static 
checking approach is based on the Clang/LLVM [1] 
framework, which intercepts the syntax tree during the 
program compilation. We also propose an efficient approach 
to trace MPI calls while they are translated by clang by 
employing the call stack idea to match MPI calls while 
checking the program statically. Moreover, we support 
detecting basic race conditions that can result from 
inappropriate structure of the MPI code. To overcome the 
shortcomings of the static approach, we have also 
implemented a dynamic approach for detecting deadlock and 
race conditions. To reduce the computational overhead due 
to the checking procedure, we have combined the two 
approaches to implement a hybrid scheme for detecting 
deadlock and race conditions in MPI programs. The 
remainder of the paper is organized as follows: Section II 
presents a detailed description of the types of MPI errors. 
Section III presents the system architecture design. Section 
IV presents a description of the static and dynamic analysis. 
As well as representative parts of the implementation of our 
tool. Then, section V presents the performance assessment 
results, and section VI concludes the paper. 
 
2.MPI DYNAMIC USAGE ERRORS 

It is clear, that all debugging problems of sequential codes 
are inherited by parallel programs. Communication and 
synchronization of parallel task can be source of additional 
errors. parallel programs do not always have reproducible 
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behavior and can be completely different from run to run. 
So, debugging of a parallel program cannot rely on cycling 
running the code with the comparison of results. The use of 
MPI is a potential source of additional hard-to-detect errors. 
There are lot of possible errors related to usage of MPI like 
deadlocks, race condition erroneous buffer and type 
mismatches. 

Deadlocks typically happen in MPI programs when there is a 
sender or receiver call not found a match [2]. There are two 
types of deadlock: actual deadlock that should occur and 
potential deadlock that occurs in some cases. 

The following are the categories of deadlock situations that 
occur when using point-to-point MPI routines:  

(a) deadlock due to send receive mismatch [3]: the number 
of send and receive calls is not the same. Figure 1 illustrates 
a case of actual deadlock, in this example, processes 0 sends 
message to process 1 and process 1 receives that message. 
After that process 1 sends message to process 0 but no 
corresponding call in process 0, leading to a deadlock. 

 

Figure 1:Deadlock due to send receive mismatch 

(b) Send -send deadlock [4]: if two processes issue send 
calls to each other before receiving calls that may leading to 
deadlock in two cases: if the size of MPI runtime buffer is 
insufficient or if standard send is implemented as a non- 
buffer send, but if it implemented in buffered mode and the 
size of MPI runtime buffer is sufficient this call will not 
deadlock. Figure 2 illustrates a case of potential deadlock .in 
this example, both processes of rank 0 and 1 issue send calls 
to each other, Deadlock may not occur if the call to 
MPI_send copies the message to a buffer and execution 
continues, and may it occurs if the size of message buffer 
bigger than amount of buffering the MPI routine provides. 
Arising of deadlock in such case depends on implementation 
of sending procedure (causes a potential deadlock). 

 
Figure 2:Send-Send Deadlock 

(c) Receive -receive deadlock [4]: if two processes issue 
receive calls that only complete and return to overflow if a 
matching sends calls issued, which is never happened as a 
result all processes wait for each other send calls in a cycle, 

and for that can’t continue execution (causes an actual 
deadlock). Figure 3 illustrates a case of actual deadlock .in 
this example, both processes of rank 0 and 1 issues receive 
operations before send operations since no send operation is 
available. Both processes will wait each other. so, the 
program will block in a finite waiting state. 

 
Figure 3:Recv-Recv Deadlock 

The following points describe the categories of deadlock 
situations that occur when using collective routines: 

(a) Deadlock due to mismatched collective operations: All 
members of the communicator may not call the same 
collective routines in the same order. The MPI standard 
requires “A correct, portable program must invoke collective 
communications so that deadlock will not occur, whether 
collective communications are synchronizing or not.” 
[2].Figure 4 illustrates this situation of potential Deadlock 
when one of processes executes distinct collective. For a 
correct MPI program, all processes must execute an identical 
type of collectives with consistent arguments in the same 
order; If the operation is synchronizing then a deadlock will 
occur. Collective operations must be executed in the same 
order at all members of the communication group 

 
Figure 4:Deadlock due to mismatched collective operation 

(b) Deadlock due to incorrectly ordering of collective and 
point to point routines. MPI standard requires “The relative 
order of execution of collective operations and pointto- point 
operations should be such, so that even if the collective 
operations and the point-to-point operations are 
synchronizing, no deadlock will occur” [2]. Figure 5 
illustrate this situation, one of processes executes distinct 
call, Process0 first executes a broadcast, followed by a 
blocking send call. process1 first executes a blocking receive 
call that matches the send call in process0, followed by 
broadcast call that matches the broadcast of process zero. 
This program may deadlock. The broadcast call on process 0 
may block until process1 executes the matching broadcast 
call, so that the send is not executed. Process one will block 
on the receive call while waiting for the send call. 
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Figure 4: Deadlock due to Incorrectly ordering of collective and 

point-to-point routines 

A message race [4],[5] occurs if two or more send calls send 
messages over communication channels to process have 
wildcard receive (MPI-ANYSOURCE) simultaneously in 
transit without guaranteeing the order of their arrivals. In an 
example in Figure 6 all operation may run correctly if the 
send call of process 0 matches the wildcard receive from 
process 2, but if the send of process 1 matches the wildcard 
receive of process 2 instead that will lead to deadlock since 
no receive call available for the receive from process 0, that 
depending of run time choices of implementation. 

 
Figure 5: An example of message race 

Using of wild card receives (such as MPI-ANY-SOURCE) 
not always lead to message race. There are some cases that 
there are no message races even though using of (MPI-
ANY-SOURCE). In Figure 7(A) P0 and P1 send messages 
to P2 with different tags, every receive call in P2 called with 
(MPI-ANY-SOURCE) but with different tag, first receive 
call will receive message sent by P0 with tag=1 and second 
receive call will receive message sent by P1 with tag=2. In 
this example, even though receive calls are called with MPI 
any source, two messages being sent by P0 and P1 will be 
received deterministically because of the different tags. In 
Figure 7(B), P0 and P1 send messages to P2 with different 
tags. In this example, two messages will be received 
deterministically because first receive in P2 will just receive 
message from P0 and second receive which is called with 
MPI any source and MPI any tag will receive message sent 
by P1. In Figure 7(C), P0 send messages to P1. Every 
receive call in P2 called with (MPI-ANY-SOURCE) but 
with different tag, two receive calls will receive the 
messages sent by P0 respectively. 

 
Figure 6: No Message races with MPI ANY SOURCE 

In Figure 8 we present a simple example of an MPI code. Its 
focuses on point-to-point communication calls; send to and 
receive from calls. This example will be referred to in 
subsequent sections, when describing the steps of the static 
analysis part of our system. 

 
Figure 7:MPI code Example 

3.SYSTEM ARCHITECTURE 

The system generally takes the Abstract Syntax Tree (AST) 
as its input and generates a report of its analysis. AST is 
used to collect information from the code and detect MPI 
communication patterns in the code. All collected 
information are stored in two main data structures 
MPIRankCase and MPICall. The MPICall class store the 
information related to a single MPI call (send/receive) 
including the number and values of each argument. On the 
other hand, MPIRankCase represents a list of processes, it 
also keeps a record of all MPI calls that are related to each 
process. The word ‘rank’ has the same meaning of ‘process’ 
and from this point onward they will be used 
interchangeably. Figure 9 presents the system architecture of 
our error detection system. It consists of 3 modules: The 
Stacks builder, the Static analyzer and the dynamic analyzer. 
The Stacks builder creates a call stack for each rank (every 
rank in program refers to process) in the program. The Static 
analyzer is responsible for matching each send call with its 
corresponding receive call in the whole program, since in 
MPI to fulfil a communication between two ranks, the 
sender rank should issue a send to call and the receiver rank 
should issue a receive from call. It can signal out errors 
when the matching process flow faces problems. The static 
analyzer either terminates the analysis and reporting the 
existence of actual deadlocks or race condition or completes 
the analysis of the whole program. The dynamic analyzer 
takes as input the executable file and the report generated by 
the static analyzer. The report points out the type of potential 
error – whether it is a deadlock or race condition – and the 
ID of the problematic rank. The error is considered as 
potential since there is not enough information during static 
analysis to confirm its existence. During the execution of the 
program, the dynamic analyzer captures actual call 
information, i.e. a call that has been issued by a rank - and 
makes necessary checks to detect errors. It is noteworthy to 
explain that only certain types of incoming calls that are 
analyzed, which are send, receive and finalize. The finalize 
call signifies that a process has ended. This information is 
used during the application of the time-out mechanism. 
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Figure 8:System Architecture 

4.STATIC AND DYNAMIC ANALYSIS 

In this section, we first describe the general process of 
analysing the code during compile time. Then, we present 
detailed description of the design decisions related to static 
analysis made in certain parts of the process. Figure 10 
shows a schematic description of the steps of the process. 

 
Figure 9:Main steps in static checking phase of MPI programs 

The steps of the process are as follows: 

1- The call information within all ranks are collected in the 
rank and call constructs to generate the AST-extracted 
representation of the MPI code. 

2- For each rank in the MPI program a stack is built and all 
calls issued by the specific rank are pushed in the stack. The 
calls are organized in the stack in an order that ensures that 
the top of the stack will be the call that will be the first to be 
executed. Figure 11 shows the stack representation of the 
code example described in Figure 7. 

 
 Figure 10: Stack representation of the MPI code example of 

Figure 7 

3- Creating the expected MPI communication pattern for 
each call, by matching each send call with its corresponding 
receive call and each receive call with its corresponding send 
call. This should be completed for the whole program to 
consider it as a correct piece of code. Any error in the flow 
of this matching will indicate a deadlock error. In this step, 
certain checks are also done to detect race conditions.  

4- Whenever an error is found the analysis process will stop 
and a report describing the type of error and the problematic 
rank is presented to the user. If the deadlock errors found are 

actual then the dynamic analyzer will not be triggered, 
where as potential errors found, whether it be a deadlock or 
a race condition, then the same report along with the 
executable file of the MPI program will be fed to the 
dynamic analyzer, and then the dynamic analysis will start. 

Before commencing the process of checking the MPI code, 
we have to collect all MPI calls in the source code. 
Fortunately, there are many tools that can parse the C++ 
code and provide us with a syntax tree that can be further 
processed by our algorithm. Clang is a well-known tool that 
can achieve this goal. It is a frontend compiler that exposes 
the generated commencing information by the backend 
compiler to the application programmers such that they can 
make use of the generated parsing to check C++ code or 
even to adjust legacy C++ code by automatically replacing 
certain constructs. This feature is indeed very useful 
compared to the manual amend of the code. For the purpose 
of our application, we have adopted the clang infrastructure 
to collect MPI calls. 

During the process of extracting and collecting the MPI 
calls, we follow a similar approach in [6] by classifying call 
statements into different categories depending on the 
statement type. The MPI statements can be classified into: 
declarative statement versus executive statements, blocking 
versus non-blocking, point-to-point versus collective calls, 
or send versus receive calls. It should be noted that this list is 
not exclusive, i.e., a call can belong to more than one 
category. For instance, an MPI_Send can belong to the 
executive, blocking, and point-to-point communication 
group at the same time. Declarative MPI statements are used 
only to specify some parameters to the MPI programs. They 
do not involve any sort of communication when they are 
called. For example, the MPI_Comm_rank and 
MPI_Comm_size statements are used to populate a variable 
with the current process rank as well as the total number of 
processes, respectively, that take place on the application. 
This type of calls is imperative to the checking procedure, 
and they have to be collected during the parsing stage as the 
information collected by such calls will be required during 
the checking phase to help inferring the process rank. In 
contrast, the executive calls perform communication 
between two or more processes when they are called. It is 
also important to distinguish such calls from the declarative 
calls such that the checking algorithm is not applied to a call 
that belongs to the former group. Furthermore, MPI calls can 
be classified into blocking and non-blocking calls. During 
the collection phase, we also mark the call type so that we 
can make use of such information during the checking 
process. The call type is determined by comparing the call 
text to the list of calls in this group. A map can be filled with 
the calls that belong to one type. This map is then searched 
using the call on hand. As a further classification of the MPI 
calls, we examine if the call is a collective or a point-to-
point call. Point-to-point calls communicate directly to a 
single node process while collective calls communicate with 
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more than one processes when the call is issued. It is 
important to note that the check can be implemented by 
storing all the calls that belong to a certain class in a 
standard container (e.g., map, vector, or a list), and then, we 
search this list each time we have a call whose type needs to 
be determined. Besides, this list of checks can be extended 
by adding further checks. Once the call category has been 
determined, it can be stored into the corresponding call 
structure. We assume that each call has a special structure 
that encapsulates all the required information by a certain 
call. To store the different categories of calls, one solution is 
to add a Boolean field representing which category this call 
belongs to. After all of the required information has been 
collected, we move to the actual check of the MPI code. In 
fact, it is not an easy process to perform the check statically 
since a lot of information is missing. Here, we classify the 
required information into two categories: identification of 
the MPI process ranks and deciding the calling order of the 
MPI calls. As there is no runtime information available, 
there is no direct way to easily obtain the process ranks. 
Therefore, we have to use an algorithm that can extract as 
much of such information as possible so that it can assist our 
MPI checkers when the rank information is required. 
Similarly, the call order of the MPI functions is not available 
during compile time. Unfortunately, this information is 
imperative to the operation of the deadlock detection 
algorithm since deadlock might be caused by a direct call of 
two MPI processes.  Generally, when an MPI program is 
written, it is usually subdivided into a number of MPI cases 
in the form of (if ...else) statements. Each conditional 
statement that includes a rank inside its condition can be 
considered as an MPI case, according to the discussion given 
at [6]. Therefore, we can make use of this information by 
collecting each MPI case while collecting the MPI calls. 
Moreover, each MPI call is associated with an MPI case 
such that we can extract all the number of calls that belong 
to the same MPI case. Eventually, each MPI case will 
represent an MPI process. Of course, there are some cases 
when the MPI case might refer to range of processes (e.g., 
when the if condition consists of less than or greater than 
logical operator). Ideally, the MPI case can represent one 
process when the condition operator inside the if statement 
employs the equal conditional operator. If we have identified 
all or most of the process via their corresponding MPI case. 
In this case, we insert all the MPI calls belonging to the 
same process into its corresponding stack. However, they are 
inserted in the reverse order of their calls. So, the top will be 
the first to be executed. When we start the checking 
procedure, we try to match the top element from a stack with 
another one from any of the other stacks. However, while we 
are trying to match the stack top with another call, the 
matched call might be not at the top of the stack. In this case, 
we might need to search the whole stack for the matched 
call. If the matched call is not located at the top of stack, 
then we have to recursively match all calls that proceed or 
goal one.  

Similar to deadlock detection using the static approach, we 
can also detect race conditions by searching the stacks for 
the necessary conditions that can lead to races between one 
or more MPI send calls. The main condition that might lead 
to races between MPI calls is the use of 
MPI_ANY_SOURCE constant as well as MPI_ANY_TAG. 
In this case, the receive call is prepared to receive from any 
send call. However,  the usage of such constants inside MPI 
code does not imply that a race exists. Therefore, additional 
search of the calling semantics of the MPI function is 
required to arrive at a final conclusion.  The general idea for 
detecting a race condition using our stack-based approach is 
to match the MPI calls in a similar manner as in the case of 
deadlock detection. However, instead of just matching the 
MPI calls, we will also try to detect if there is a race between 
two calls. While we are matching the call, we repeatedly 
check the tops of all stacks and not only one stack, as in the 
case of deadlock detection. If there is more than one 
matched call in the stack tops that match the one in 
consideration, then we signal that a race has occurred. If all 
the stacks are empty and we did not detect any race 
condition, this will mean that there is no race condition in 
the MPI program under investigation. During the visiting of 
the stacks, we make use of the previous procedures 
described for detecting deadlock. Moreover, it is mandatory 
for the race checking procedure to evaluate the rank of all 
the MPI senders so that it can discover the race. 

In general, it is not possible to obtain the required values for 
the ranks of MPI calls, since at this point the compiler may 
be dealing with just symbols during the compilation phase. 
Figure 12 presents the situation where x and y are 
thedestinations of the send call.  

 

Figure 11:An example using (receive –from –any) with symbol 
values 

To conclude that there is a race or not, we need to know the 
numeric value of x and y. If this value is evaluated to be 1, 
then there will be a race. If not, there is no race in these 
calls. If we are lucky, we can find the set of calls written as 
shown in Figure 13. In this figure, the destination rank of the 
send calls in processes 0 and 2 are obvious, and we can 
extract them directly as they are evaluated to constants. 

 
Figure 12:An example using (receive –from –any) with obvious 

values 

However, in Figure 14, which is similar to the previous one, 
the destination ranks are given in terms of the process 
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ranking. In this example, the destination rank is given in 
terms of the process rank itself. Although here rank is a 
variable, we can detect that there will be a race condition if 
we can know the relative ordering of each process. For 
instance, the destination of the send call in process 0 can be 
determined if we know the value of the rank variable (so the 
destination will be 1 in this case, since the process rank is 0). 
Similarly, the destination of the send call in process 2 can be 
determined (the destination will be also 1, since the process 
rank is 2). 

 
Figure 13:An example using (receive –from –any) depending on 

Rank values 

Therefore, a race can be detected in this simple MPI 
program. Similar heuristics can also be used to assist in 
discovering and evaluating the destination of the send call. 
However, if we fail to apply one of these heuristics to the 
send call under consideration, our checker will not arrive to 
a conclusion as towhether this MPI code involves a race 
condition. 

After we have provided our solution to the problem of 
checking MPI programs statically, we move to the dynamic 
approach where the checking is performed during runtime. 
In this case, we have all the required information to perform 
the check. Therefore, this approach would be more powerful 
than the static one. However, it has the disadvantage of 
introducing computational overhead each time the program 
is executed. From static analysis, the dynamic part will 
receive the following: (a) Type of error: deadlock or race 
condition, (b) Problematic process. The Static phase outlines 
all execution paths that may lead to potential deadlock. The 
dynamic phase checks only the execution processes with 
potential deadlock by using the timeout mechanism. The 
user defines a limit time to these processes to wait in an MPI 
call. If this time exceeds the limit time defined by the user 
on that process, a deadlock warning is issued. Our proposed 
approach of detecting the race dynamically involves creating 
a central entity that will be responsible for collecting the 
data from the application processes in order to analyze it. 
This entity is very important since detecting the race 
dynamically will involve analyzing information that is not 
available on a single process. Although this might introduce 
a new communication bottleneck for the application process, 
it may be acceptable because the single entity can be 
extended to include different copies that communicate to 
each other. The number of copies will depend on the user 
preference, and they can be dynamically created and 
destroyed depending on the application requirement. As 
mentioned earlier, message race means we have two send 
calls that have a race condition with one receive call 
(receivefrom- any). Obviously, only one of the two calls will 
be matched, and the other may be deadlocked. The order of 
which of them will be matched first is nondeterministic, and 
this is the problem with detecting the race conditions. 

Therefore, the idea of detecting race conditions is based on 
how the race takes place. In particular, when a receive call is 
matched with any send call, we save the last receive call that 
has been matched. When a new send call comes, we first try 
to match it with the last matched receive call. If we can 
match it, then a race condition is detected. Otherwise the 
matching procedure will continue. This idea can be 
implemented inside the server by creating a call object that 
stores the last matched call. This object will be created 
inside each process that resides inside the server. Each time 
a receive call is matched, we record such a call as the last 
matched call. When a new send call arrives, it will be 
checked for a match with the last matched call. If the new 
send call can also be matched, then there will be a race. The 
main proposal here is that if one receive call is matched, 
there should be no other send calls that can be matched with 
this receive call. If this condition cannot be fulfilled, it 
means a race exists in this MPI call. Figure 15 presents an 
example of detecting a race condition. Process 1 sends to 
process 3, and the last matching receive will be the first call 
in process 3. Process 1 will then issue the next MPI call, 
which will be matched with the receive call in process 2 (the 
first MPI_Recv(MPI_ANY_SOURCE)). This receive call 
will be matched and marked as the last matched receive call 
in this process. Now suppose that process 3 will issue the 
next send call (MPI_Send (1)), which will be matched with 
the receive call in process 1. The last matched receive call in 
process 1 will be MPI_Recv (3).  

 
Figure 14:An example of race condition 

The order of the matching between of the send calls 
belonging to different processes is not important because 
each process request will be queued in the destination 
process when they are received. For instance, suppose that 
the second receive call in process 2 (Recv 
_ANY_SOURCE)) has arrived at the server before any send 
call. It will be then queued in the receive queue maintained 
by the process 2 data structure in the server side. When a 
new send call arrives to process 2, it will be matched with 
the last matched receive call first and then matched with one 
of the receive calls in the queue. Thecurrent situation is 
shown in Figure 16. This figure shows that each process will 
maintain the last matched receive call. Consider that process 
3 issued its last send request (MPI_Send (2)). When this 
request arrives to the server, it will route it the process data 
structure representing process 2. When this send call arrives 
at process 2, it will be matched first with the last matched 
receive call in process 2 (MPI_Recv(MPI_ANY_SOURCE) 
;). In this case, it will be matched, and therefore, a race will 
be detected. If the send call of process 3 was not matched 
with the last receive call in process 3, no race would be 
detected. 
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Figure 15:Last matched receive 

The order of the matching between of the send calls 
belonging to different processes is not important because 
each process request will be queued in the destination 
process when they are received. For instance, suppose that 
the second receive call in process 2 (Recv 
_ANY_SOURCE)) has arrived at the server before any send 
call. It will be then queued in the receive queue maintained 
by the process 2 data structure in the server side. When a 
new send call arrives to process 2, it will be matched with 
the last matched receive call first and then matched with one 
of the receive calls in the queue. 

5 OVERALL ASSESSMENT. 

In this section, we present a brief discussion of the 
implementation of our framework for dynamic race 
detection. The MPI race server is the central component of 
our framework. It is responsible for each MPI call issued by 
any of the application processes. Once a call has been 
received, it is handled by one of the analysis modules that 
resides inside the server. When an MPI call is received by an 
analysis module, a complete record about this call is stored. 
This information is useful when the analysis module starts 
working. Many entries related to the process can be located 
via this information (e.g., the call process, the call data type, 
etc.). 

The instrumentation library links between the application 
code and the remote server. It provides a way to collect the 
required information and send it automatically to the server. 
Inside the library, we designate our own wrapper to the MPI 
calls. Inside our wrapper, we collect the necessary 
information before issuing the MPI call. We call the 
requested MPI function on behalf of the application itself. 
The application code represents the user application that 
needs to be checked by our framework. It is called by the 
user, and it communicates with the server via the 
instrumentation library. The number of processes is mainly 
controlled by the user when the application command is 
issued. There is no limit on the number of processes that can 
be created by the application when it is started. Using our 
tool to analyze the programs in the Umpire benchmarks [7], 
we have successfully analyzed a lot of programs, i.e., either 
no deadlock detected or detecting a deadlock as expected. 

Table 1 and Figure 17 summarize the outcome of the 
performed experiments. The first column presents the 
Umpire benchmarks, the second column provides the 
execution time with static phase information and the third 
column provides the execution time without static phase 
information. We execute all benchmarks in this experiment 
with 8 processes. From the presented data in this table it can 
be shown the time overhead decrease about 60% when we 
use static phase information. Table 2 and Figure 18 show 

that the time overhead in different number of processes. 
From this table, we can observe that, for all the selected 
benchmarks, the execution time does not increase 
exponentially with respect to the number of processes. It 
justifies that our tool avoids the exponential increasing of 
execution. 

Table 1:Time overhead in run time with and without static phase 

 

 
Figure 16:The experimental results with and without Static phase 

 
Figure 17:The experimental results under different numbers of 

processes 

In the sequential programs, static analysis has been 
successful at analyzing programs. However, analyzing MPI 
programs is difficult for many reasons: no runtime 
information (as in the dynamic case) is available like the 
number of MPI processes and MPI provides several 
nondeterministic calls (such as MPI _ ANY _ SOURCE and 
MPI MPI_ANY_ TAG). Some testing approaches treat MPI 
programs as sequential codes, making it possible to 
determine simple usage errors (such as type and expression 
errors). However, these approaches cannot represent the 
programs’ communication topology. Another testing 
approaches (such as MPIChecker [6]) that extends 
traditional dataflow analyses to MPI programs, extracting 
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the program's communication topology and trying to match 
the send and receive calls that may communicate at runtime. 
If they found partners, they are marked. At the end, the 
algorithm returns the set of unmarked MPI Calls which are 
considered not matched. So, they just detect one type of 
deadlock (Deadlock duo send receive mismatch) but our 
Static approach extends the program representation used in 
the LLVM and clang compilers, to enable the extraction of 
fine-grained information about exchanging messages, during 
static analysis. Our approach represents the execution of 
multiple processes using stacks idea, keeping track of any 
send and receive calls and predict many types of deadlock 
error and race condition. And we can detect many types of 
deadlock in Static phase (Deadlock duo send receive 
mismatch, Head-to-Head deadlock and collective deadlock). 
Unlike existing static analysis our tool can detect race 
condition in Static phase. Existing dynamic analysis tools 
(like Umpire, MARMOT and MUST) suffers from time 
overhead at runtime, but our dynamic analysis checks only 
execution processes with potential errors instead of checking 
all processes, for that the overhead in this phase is limited.  

Table 2:Time overhead in different number of processes 

 
There are several approaches for detecting message races 
such as MARMOT[8], MAD [9], and MPVisualizer [10]. 

However, those approaches are not suitable for debugging 
MPI programs because they do not provide information to 
locate and debug message races. Also, some of them detect 
message races just by identifying the use of wild card 
receives (like MPI_ANY_SOURCE and MPI_ANY _TAG) 
as sources of race conditions.  Using of wild card not always 
lead to message race. Therefore, programmers can be 
overwhelmed by the incorrect information or be incapable of 
finding where the races occurred in a huge source code. Our 
tool by using Stack idea in Static Phase and last matched 
receive idea in Dynamic Phase can detect race condition that 
may happened between calls without depending on 
identifying the use of wild card receives, as the only source 
of race condition. Existing hybrid analysis tools (which are 
few) as [11] does not coverall MPI communication routines, 
our tool can detect deadlock and race condition in point-to-
point and collective MPI routines. 

6.CONCLUSIONS 

In this paper, we presented our approach of designing and 
implementing an MPI checking technique that employs 
static as well as dynamic approaches. Our static checking 
approach is based on the Clang/LLVM framework [1] which 
intercept the syntax tree during the program compilation. We 
also propose an efficient approach to trace MPI calls while 
they are translated by clang by employing the call stack idea 
to match MPI calls while checking the program statically. 
Moreover, we support detecting basic race conditions that 
can result from inappropriate structure of the MPI code. To 
overcome the shortcoming of the static approach we have 
also implemented a dynamic approach for detecting 
deadlock and race conditions. To reduce the computational 
overhead due to the checking procedure we have combined 
the two approaches for implementing a hybrid scheme for 
detecting race conditions in MPI programs. The 
experimental results show that our tool efficiently verifies 
several benchmarks and detect deadlock and race condition. 
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