
 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7337

Design and Implementation of a Message Passing Interface
 (MPI) Dynamic Error Detection System

Rana Abdul Razaq Alnemari1 , Dr. Mai Fadel2
1Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi

Arabia, 1ranaalnemary@gmail.com
2Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi

Arabia, mfadel@kau.edu.sa

ABSTRACT

This paper presents the design and implementation of
Message Passing Interface (MPI) -Dynamic Error Detection
mechanisms contributing to the early detection of some
scenarios of errors during static analysis by defining a novel
representation of the target application based on stack
structures. The representation is an extension of the one used
by the clang compiler. This fine-grained representation
allows for analyzing the flow of concurrent messages being
exchanged, which is important for deadlock errors and race
conditions detection. We detect these kinds of errors in
point-to-point and collective communication. In a broader
context, this paper aims to improve the performance of error
detection in MPI applications by integrating static analysis
and dynamic analysis, where potential problematic
constructs that are reported by the static part of our tool are
further checked during program execution. Hence, we focus
our analysis to consider only the highlighted paths, to be
able to reduce time overhead of dynamic analysis. Several
mini-programs are selected from a benchmark that contain
examples of the errors identified by our work. These mini
programs are then tested by our tool. The experimental
results show that our tool is capable of finding deadlocks
and race conditions.

Key words: Parallel computing, message passing interface,
static analysis, deadlocks, race conditions detection.

1. INTRODUCTION

The message passing interface (MPI) has become one of the
more commonly used models for application development in
high performance computing (HPC). MPI implementation in
HPC is error prone, and testing tools can greatly increase
MPI programmers’ productivity. However, MPI programs
can be checked using either a static approach (i.e., during
compile time) or a dynamic approach (i.e., during runtime).
Static approach can in fact considerably save computing
resources during the runtime since no additional overhead is
induced during the program execution. However, it is a

challenge to obtain all the required information for the
checking algorithm only during compile time. For instance,
the process rank cannot be obtained easily in some cases. On
the other hand, dynamic MPI analysis approaches can easily
provide all the required information since this data is already
available whenever processes communicate with each other
peers. However, injecting the checking algorithm during the
execution of the MPI programs affects the performance of
the running code. In fact, checking algorithms need to be
executed almost during every communication between two
or more processes. Despite such an efficiency drawback, the
majority of available MPI checkers are based on this
dynamic checking method. This paper presents an approach
of designing and implementing an MPI checking technique
that combines static and dynamic approaches. Our static
checking approach is based on the Clang/LLVM [1]
framework, which intercepts the syntax tree during the
program compilation. We also propose an efficient approach
to trace MPI calls while they are translated by clang by
employing the call stack idea to match MPI calls while
checking the program statically. Moreover, we support
detecting basic race conditions that can result from
inappropriate structure of the MPI code. To overcome the
shortcomings of the static approach, we have also
implemented a dynamic approach for detecting deadlock and
race conditions. To reduce the computational overhead due
to the checking procedure, we have combined the two
approaches to implement a hybrid scheme for detecting
deadlock and race conditions in MPI programs. The
remainder of the paper is organized as follows: Section II
presents a detailed description of the types of MPI errors.
Section III presents the system architecture design. Section
IV presents a description of the static and dynamic analysis.
As well as representative parts of the implementation of our
tool. Then, section V presents the performance assessment
results, and section VI concludes the paper.

2.MPI DYNAMIC USAGE ERRORS

It is clear, that all debugging problems of sequential codes
are inherited by parallel programs. Communication and
synchronization of parallel task can be source of additional
errors. parallel programs do not always have reproducible

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse65952020.pdf

https://doi.org/10.30534/ijatcse/2020/65952020

 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7338

behavior and can be completely different from run to run.
So, debugging of a parallel program cannot rely on cycling
running the code with the comparison of results. The use of
MPI is a potential source of additional hard-to-detect errors.
There are lot of possible errors related to usage of MPI like
deadlocks, race condition erroneous buffer and type
mismatches.

Deadlocks typically happen in MPI programs when there is a
sender or receiver call not found a match [2]. There are two
types of deadlock: actual deadlock that should occur and
potential deadlock that occurs in some cases.

The following are the categories of deadlock situations that
occur when using point-to-point MPI routines:

(a) deadlock due to send receive mismatch [3]: the number
of send and receive calls is not the same. Figure 1 illustrates
a case of actual deadlock, in this example, processes 0 sends
message to process 1 and process 1 receives that message.
After that process 1 sends message to process 0 but no
corresponding call in process 0, leading to a deadlock.

Figure 1:Deadlock due to send receive mismatch

(b) Send -send deadlock [4]: if two processes issue send
calls to each other before receiving calls that may leading to
deadlock in two cases: if the size of MPI runtime buffer is
insufficient or if standard send is implemented as a non-
buffer send, but if it implemented in buffered mode and the
size of MPI runtime buffer is sufficient this call will not
deadlock. Figure 2 illustrates a case of potential deadlock .in
this example, both processes of rank 0 and 1 issue send calls
to each other, Deadlock may not occur if the call to
MPI_send copies the message to a buffer and execution
continues, and may it occurs if the size of message buffer
bigger than amount of buffering the MPI routine provides.
Arising of deadlock in such case depends on implementation
of sending procedure (causes a potential deadlock).

Figure 2:Send-Send Deadlock

(c) Receive -receive deadlock [4]: if two processes issue
receive calls that only complete and return to overflow if a
matching sends calls issued, which is never happened as a
result all processes wait for each other send calls in a cycle,

and for that can’t continue execution (causes an actual
deadlock). Figure 3 illustrates a case of actual deadlock .in
this example, both processes of rank 0 and 1 issues receive
operations before send operations since no send operation is
available. Both processes will wait each other. so, the
program will block in a finite waiting state.

Figure 3:Recv-Recv Deadlock

The following points describe the categories of deadlock
situations that occur when using collective routines:

(a) Deadlock due to mismatched collective operations: All
members of the communicator may not call the same
collective routines in the same order. The MPI standard
requires “A correct, portable program must invoke collective
communications so that deadlock will not occur, whether
collective communications are synchronizing or not.”
[2].Figure 4 illustrates this situation of potential Deadlock
when one of processes executes distinct collective. For a
correct MPI program, all processes must execute an identical
type of collectives with consistent arguments in the same
order; If the operation is synchronizing then a deadlock will
occur. Collective operations must be executed in the same
order at all members of the communication group

Figure 4:Deadlock due to mismatched collective operation

(b) Deadlock due to incorrectly ordering of collective and
point to point routines. MPI standard requires “The relative
order of execution of collective operations and pointto- point
operations should be such, so that even if the collective
operations and the point-to-point operations are
synchronizing, no deadlock will occur” [2]. Figure 5
illustrate this situation, one of processes executes distinct
call, Process0 first executes a broadcast, followed by a
blocking send call. process1 first executes a blocking receive
call that matches the send call in process0, followed by
broadcast call that matches the broadcast of process zero.
This program may deadlock. The broadcast call on process 0
may block until process1 executes the matching broadcast
call, so that the send is not executed. Process one will block
on the receive call while waiting for the send call.

 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7339

Figure 4: Deadlock due to Incorrectly ordering of collective and

point-to-point routines

A message race [4],[5] occurs if two or more send calls send
messages over communication channels to process have
wildcard receive (MPI-ANYSOURCE) simultaneously in
transit without guaranteeing the order of their arrivals. In an
example in Figure 6 all operation may run correctly if the
send call of process 0 matches the wildcard receive from
process 2, but if the send of process 1 matches the wildcard
receive of process 2 instead that will lead to deadlock since
no receive call available for the receive from process 0, that
depending of run time choices of implementation.

Figure 5: An example of message race

Using of wild card receives (such as MPI-ANY-SOURCE)
not always lead to message race. There are some cases that
there are no message races even though using of (MPI-
ANY-SOURCE). In Figure 7(A) P0 and P1 send messages
to P2 with different tags, every receive call in P2 called with
(MPI-ANY-SOURCE) but with different tag, first receive
call will receive message sent by P0 with tag=1 and second
receive call will receive message sent by P1 with tag=2. In
this example, even though receive calls are called with MPI
any source, two messages being sent by P0 and P1 will be
received deterministically because of the different tags. In
Figure 7(B), P0 and P1 send messages to P2 with different
tags. In this example, two messages will be received
deterministically because first receive in P2 will just receive
message from P0 and second receive which is called with
MPI any source and MPI any tag will receive message sent
by P1. In Figure 7(C), P0 send messages to P1. Every
receive call in P2 called with (MPI-ANY-SOURCE) but
with different tag, two receive calls will receive the
messages sent by P0 respectively.

Figure 6: No Message races with MPI ANY SOURCE

In Figure 8 we present a simple example of an MPI code. Its
focuses on point-to-point communication calls; send to and
receive from calls. This example will be referred to in
subsequent sections, when describing the steps of the static
analysis part of our system.

Figure 7:MPI code Example

3.SYSTEM ARCHITECTURE

The system generally takes the Abstract Syntax Tree (AST)
as its input and generates a report of its analysis. AST is
used to collect information from the code and detect MPI
communication patterns in the code. All collected
information are stored in two main data structures
MPIRankCase and MPICall. The MPICall class store the
information related to a single MPI call (send/receive)
including the number and values of each argument. On the
other hand, MPIRankCase represents a list of processes, it
also keeps a record of all MPI calls that are related to each
process. The word ‘rank’ has the same meaning of ‘process’
and from this point onward they will be used
interchangeably. Figure 9 presents the system architecture of
our error detection system. It consists of 3 modules: The
Stacks builder, the Static analyzer and the dynamic analyzer.
The Stacks builder creates a call stack for each rank (every
rank in program refers to process) in the program. The Static
analyzer is responsible for matching each send call with its
corresponding receive call in the whole program, since in
MPI to fulfil a communication between two ranks, the
sender rank should issue a send to call and the receiver rank
should issue a receive from call. It can signal out errors
when the matching process flow faces problems. The static
analyzer either terminates the analysis and reporting the
existence of actual deadlocks or race condition or completes
the analysis of the whole program. The dynamic analyzer
takes as input the executable file and the report generated by
the static analyzer. The report points out the type of potential
error – whether it is a deadlock or race condition – and the
ID of the problematic rank. The error is considered as
potential since there is not enough information during static
analysis to confirm its existence. During the execution of the
program, the dynamic analyzer captures actual call
information, i.e. a call that has been issued by a rank - and
makes necessary checks to detect errors. It is noteworthy to
explain that only certain types of incoming calls that are
analyzed, which are send, receive and finalize. The finalize
call signifies that a process has ended. This information is
used during the application of the time-out mechanism.

 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7340

Figure 8:System Architecture

4.STATIC AND DYNAMIC ANALYSIS

In this section, we first describe the general process of
analysing the code during compile time. Then, we present
detailed description of the design decisions related to static
analysis made in certain parts of the process. Figure 10
shows a schematic description of the steps of the process.

Figure 9:Main steps in static checking phase of MPI programs

The steps of the process are as follows:

1- The call information within all ranks are collected in the
rank and call constructs to generate the AST-extracted
representation of the MPI code.

2- For each rank in the MPI program a stack is built and all
calls issued by the specific rank are pushed in the stack. The
calls are organized in the stack in an order that ensures that
the top of the stack will be the call that will be the first to be
executed. Figure 11 shows the stack representation of the
code example described in Figure 7.

 Figure 10: Stack representation of the MPI code example of

Figure 7

3- Creating the expected MPI communication pattern for
each call, by matching each send call with its corresponding
receive call and each receive call with its corresponding send
call. This should be completed for the whole program to
consider it as a correct piece of code. Any error in the flow
of this matching will indicate a deadlock error. In this step,
certain checks are also done to detect race conditions.

4- Whenever an error is found the analysis process will stop
and a report describing the type of error and the problematic
rank is presented to the user. If the deadlock errors found are

actual then the dynamic analyzer will not be triggered,
where as potential errors found, whether it be a deadlock or
a race condition, then the same report along with the
executable file of the MPI program will be fed to the
dynamic analyzer, and then the dynamic analysis will start.

Before commencing the process of checking the MPI code,
we have to collect all MPI calls in the source code.
Fortunately, there are many tools that can parse the C++
code and provide us with a syntax tree that can be further
processed by our algorithm. Clang is a well-known tool that
can achieve this goal. It is a frontend compiler that exposes
the generated commencing information by the backend
compiler to the application programmers such that they can
make use of the generated parsing to check C++ code or
even to adjust legacy C++ code by automatically replacing
certain constructs. This feature is indeed very useful
compared to the manual amend of the code. For the purpose
of our application, we have adopted the clang infrastructure
to collect MPI calls.

During the process of extracting and collecting the MPI
calls, we follow a similar approach in [6] by classifying call
statements into different categories depending on the
statement type. The MPI statements can be classified into:
declarative statement versus executive statements, blocking
versus non-blocking, point-to-point versus collective calls,
or send versus receive calls. It should be noted that this list is
not exclusive, i.e., a call can belong to more than one
category. For instance, an MPI_Send can belong to the
executive, blocking, and point-to-point communication
group at the same time. Declarative MPI statements are used
only to specify some parameters to the MPI programs. They
do not involve any sort of communication when they are
called. For example, the MPI_Comm_rank and
MPI_Comm_size statements are used to populate a variable
with the current process rank as well as the total number of
processes, respectively, that take place on the application.
This type of calls is imperative to the checking procedure,
and they have to be collected during the parsing stage as the
information collected by such calls will be required during
the checking phase to help inferring the process rank. In
contrast, the executive calls perform communication
between two or more processes when they are called. It is
also important to distinguish such calls from the declarative
calls such that the checking algorithm is not applied to a call
that belongs to the former group. Furthermore, MPI calls can
be classified into blocking and non-blocking calls. During
the collection phase, we also mark the call type so that we
can make use of such information during the checking
process. The call type is determined by comparing the call
text to the list of calls in this group. A map can be filled with
the calls that belong to one type. This map is then searched
using the call on hand. As a further classification of the MPI
calls, we examine if the call is a collective or a point-to-
point call. Point-to-point calls communicate directly to a
single node process while collective calls communicate with

 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7341

more than one processes when the call is issued. It is
important to note that the check can be implemented by
storing all the calls that belong to a certain class in a
standard container (e.g., map, vector, or a list), and then, we
search this list each time we have a call whose type needs to
be determined. Besides, this list of checks can be extended
by adding further checks. Once the call category has been
determined, it can be stored into the corresponding call
structure. We assume that each call has a special structure
that encapsulates all the required information by a certain
call. To store the different categories of calls, one solution is
to add a Boolean field representing which category this call
belongs to. After all of the required information has been
collected, we move to the actual check of the MPI code. In
fact, it is not an easy process to perform the check statically
since a lot of information is missing. Here, we classify the
required information into two categories: identification of
the MPI process ranks and deciding the calling order of the
MPI calls. As there is no runtime information available,
there is no direct way to easily obtain the process ranks.
Therefore, we have to use an algorithm that can extract as
much of such information as possible so that it can assist our
MPI checkers when the rank information is required.
Similarly, the call order of the MPI functions is not available
during compile time. Unfortunately, this information is
imperative to the operation of the deadlock detection
algorithm since deadlock might be caused by a direct call of
two MPI processes. Generally, when an MPI program is
written, it is usually subdivided into a number of MPI cases
in the form of (if ...else) statements. Each conditional
statement that includes a rank inside its condition can be
considered as an MPI case, according to the discussion given
at [6]. Therefore, we can make use of this information by
collecting each MPI case while collecting the MPI calls.
Moreover, each MPI call is associated with an MPI case
such that we can extract all the number of calls that belong
to the same MPI case. Eventually, each MPI case will
represent an MPI process. Of course, there are some cases
when the MPI case might refer to range of processes (e.g.,
when the if condition consists of less than or greater than
logical operator). Ideally, the MPI case can represent one
process when the condition operator inside the if statement
employs the equal conditional operator. If we have identified
all or most of the process via their corresponding MPI case.
In this case, we insert all the MPI calls belonging to the
same process into its corresponding stack. However, they are
inserted in the reverse order of their calls. So, the top will be
the first to be executed. When we start the checking
procedure, we try to match the top element from a stack with
another one from any of the other stacks. However, while we
are trying to match the stack top with another call, the
matched call might be not at the top of the stack. In this case,
we might need to search the whole stack for the matched
call. If the matched call is not located at the top of stack,
then we have to recursively match all calls that proceed or
goal one.

Similar to deadlock detection using the static approach, we
can also detect race conditions by searching the stacks for
the necessary conditions that can lead to races between one
or more MPI send calls. The main condition that might lead
to races between MPI calls is the use of
MPI_ANY_SOURCE constant as well as MPI_ANY_TAG.
In this case, the receive call is prepared to receive from any
send call. However, the usage of such constants inside MPI
code does not imply that a race exists. Therefore, additional
search of the calling semantics of the MPI function is
required to arrive at a final conclusion. The general idea for
detecting a race condition using our stack-based approach is
to match the MPI calls in a similar manner as in the case of
deadlock detection. However, instead of just matching the
MPI calls, we will also try to detect if there is a race between
two calls. While we are matching the call, we repeatedly
check the tops of all stacks and not only one stack, as in the
case of deadlock detection. If there is more than one
matched call in the stack tops that match the one in
consideration, then we signal that a race has occurred. If all
the stacks are empty and we did not detect any race
condition, this will mean that there is no race condition in
the MPI program under investigation. During the visiting of
the stacks, we make use of the previous procedures
described for detecting deadlock. Moreover, it is mandatory
for the race checking procedure to evaluate the rank of all
the MPI senders so that it can discover the race.

In general, it is not possible to obtain the required values for
the ranks of MPI calls, since at this point the compiler may
be dealing with just symbols during the compilation phase.
Figure 12 presents the situation where x and y are
thedestinations of the send call.

Figure 11:An example using (receive –from –any) with symbol
values

To conclude that there is a race or not, we need to know the
numeric value of x and y. If this value is evaluated to be 1,
then there will be a race. If not, there is no race in these
calls. If we are lucky, we can find the set of calls written as
shown in Figure 13. In this figure, the destination rank of the
send calls in processes 0 and 2 are obvious, and we can
extract them directly as they are evaluated to constants.

Figure 12:An example using (receive –from –any) with obvious

values

However, in Figure 14, which is similar to the previous one,
the destination ranks are given in terms of the process

 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7342

ranking. In this example, the destination rank is given in
terms of the process rank itself. Although here rank is a
variable, we can detect that there will be a race condition if
we can know the relative ordering of each process. For
instance, the destination of the send call in process 0 can be
determined if we know the value of the rank variable (so the
destination will be 1 in this case, since the process rank is 0).
Similarly, the destination of the send call in process 2 can be
determined (the destination will be also 1, since the process
rank is 2).

Figure 13:An example using (receive –from –any) depending on

Rank values

Therefore, a race can be detected in this simple MPI
program. Similar heuristics can also be used to assist in
discovering and evaluating the destination of the send call.
However, if we fail to apply one of these heuristics to the
send call under consideration, our checker will not arrive to
a conclusion as towhether this MPI code involves a race
condition.

After we have provided our solution to the problem of
checking MPI programs statically, we move to the dynamic
approach where the checking is performed during runtime.
In this case, we have all the required information to perform
the check. Therefore, this approach would be more powerful
than the static one. However, it has the disadvantage of
introducing computational overhead each time the program
is executed. From static analysis, the dynamic part will
receive the following: (a) Type of error: deadlock or race
condition, (b) Problematic process. The Static phase outlines
all execution paths that may lead to potential deadlock. The
dynamic phase checks only the execution processes with
potential deadlock by using the timeout mechanism. The
user defines a limit time to these processes to wait in an MPI
call. If this time exceeds the limit time defined by the user
on that process, a deadlock warning is issued. Our proposed
approach of detecting the race dynamically involves creating
a central entity that will be responsible for collecting the
data from the application processes in order to analyze it.
This entity is very important since detecting the race
dynamically will involve analyzing information that is not
available on a single process. Although this might introduce
a new communication bottleneck for the application process,
it may be acceptable because the single entity can be
extended to include different copies that communicate to
each other. The number of copies will depend on the user
preference, and they can be dynamically created and
destroyed depending on the application requirement. As
mentioned earlier, message race means we have two send
calls that have a race condition with one receive call
(receivefrom- any). Obviously, only one of the two calls will
be matched, and the other may be deadlocked. The order of
which of them will be matched first is nondeterministic, and
this is the problem with detecting the race conditions.

Therefore, the idea of detecting race conditions is based on
how the race takes place. In particular, when a receive call is
matched with any send call, we save the last receive call that
has been matched. When a new send call comes, we first try
to match it with the last matched receive call. If we can
match it, then a race condition is detected. Otherwise the
matching procedure will continue. This idea can be
implemented inside the server by creating a call object that
stores the last matched call. This object will be created
inside each process that resides inside the server. Each time
a receive call is matched, we record such a call as the last
matched call. When a new send call arrives, it will be
checked for a match with the last matched call. If the new
send call can also be matched, then there will be a race. The
main proposal here is that if one receive call is matched,
there should be no other send calls that can be matched with
this receive call. If this condition cannot be fulfilled, it
means a race exists in this MPI call. Figure 15 presents an
example of detecting a race condition. Process 1 sends to
process 3, and the last matching receive will be the first call
in process 3. Process 1 will then issue the next MPI call,
which will be matched with the receive call in process 2 (the
first MPI_Recv(MPI_ANY_SOURCE)). This receive call
will be matched and marked as the last matched receive call
in this process. Now suppose that process 3 will issue the
next send call (MPI_Send (1)), which will be matched with
the receive call in process 1. The last matched receive call in
process 1 will be MPI_Recv (3).

Figure 14:An example of race condition

The order of the matching between of the send calls
belonging to different processes is not important because
each process request will be queued in the destination
process when they are received. For instance, suppose that
the second receive call in process 2 (Recv
_ANY_SOURCE)) has arrived at the server before any send
call. It will be then queued in the receive queue maintained
by the process 2 data structure in the server side. When a
new send call arrives to process 2, it will be matched with
the last matched receive call first and then matched with one
of the receive calls in the queue. Thecurrent situation is
shown in Figure 16. This figure shows that each process will
maintain the last matched receive call. Consider that process
3 issued its last send request (MPI_Send (2)). When this
request arrives to the server, it will route it the process data
structure representing process 2. When this send call arrives
at process 2, it will be matched first with the last matched
receive call in process 2 (MPI_Recv(MPI_ANY_SOURCE)
;). In this case, it will be matched, and therefore, a race will
be detected. If the send call of process 3 was not matched
with the last receive call in process 3, no race would be
detected.

 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7343

Figure 15:Last matched receive

The order of the matching between of the send calls
belonging to different processes is not important because
each process request will be queued in the destination
process when they are received. For instance, suppose that
the second receive call in process 2 (Recv
_ANY_SOURCE)) has arrived at the server before any send
call. It will be then queued in the receive queue maintained
by the process 2 data structure in the server side. When a
new send call arrives to process 2, it will be matched with
the last matched receive call first and then matched with one
of the receive calls in the queue.

5 OVERALL ASSESSMENT.

In this section, we present a brief discussion of the
implementation of our framework for dynamic race
detection. The MPI race server is the central component of
our framework. It is responsible for each MPI call issued by
any of the application processes. Once a call has been
received, it is handled by one of the analysis modules that
resides inside the server. When an MPI call is received by an
analysis module, a complete record about this call is stored.
This information is useful when the analysis module starts
working. Many entries related to the process can be located
via this information (e.g., the call process, the call data type,
etc.).

The instrumentation library links between the application
code and the remote server. It provides a way to collect the
required information and send it automatically to the server.
Inside the library, we designate our own wrapper to the MPI
calls. Inside our wrapper, we collect the necessary
information before issuing the MPI call. We call the
requested MPI function on behalf of the application itself.
The application code represents the user application that
needs to be checked by our framework. It is called by the
user, and it communicates with the server via the
instrumentation library. The number of processes is mainly
controlled by the user when the application command is
issued. There is no limit on the number of processes that can
be created by the application when it is started. Using our
tool to analyze the programs in the Umpire benchmarks [7],
we have successfully analyzed a lot of programs, i.e., either
no deadlock detected or detecting a deadlock as expected.

Table 1 and Figure 17 summarize the outcome of the
performed experiments. The first column presents the
Umpire benchmarks, the second column provides the
execution time with static phase information and the third
column provides the execution time without static phase
information. We execute all benchmarks in this experiment
with 8 processes. From the presented data in this table it can
be shown the time overhead decrease about 60% when we
use static phase information. Table 2 and Figure 18 show

that the time overhead in different number of processes.
From this table, we can observe that, for all the selected
benchmarks, the execution time does not increase
exponentially with respect to the number of processes. It
justifies that our tool avoids the exponential increasing of
execution.

Table 1:Time overhead in run time with and without static phase

Figure 16:The experimental results with and without Static phase

Figure 17:The experimental results under different numbers of

processes

In the sequential programs, static analysis has been
successful at analyzing programs. However, analyzing MPI
programs is difficult for many reasons: no runtime
information (as in the dynamic case) is available like the
number of MPI processes and MPI provides several
nondeterministic calls (such as MPI _ ANY _ SOURCE and
MPI MPI_ANY_ TAG). Some testing approaches treat MPI
programs as sequential codes, making it possible to
determine simple usage errors (such as type and expression
errors). However, these approaches cannot represent the
programs’ communication topology. Another testing
approaches (such as MPIChecker [6]) that extends
traditional dataflow analyses to MPI programs, extracting

 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7344

the program's communication topology and trying to match
the send and receive calls that may communicate at runtime.
If they found partners, they are marked. At the end, the
algorithm returns the set of unmarked MPI Calls which are
considered not matched. So, they just detect one type of
deadlock (Deadlock duo send receive mismatch) but our
Static approach extends the program representation used in
the LLVM and clang compilers, to enable the extraction of
fine-grained information about exchanging messages, during
static analysis. Our approach represents the execution of
multiple processes using stacks idea, keeping track of any
send and receive calls and predict many types of deadlock
error and race condition. And we can detect many types of
deadlock in Static phase (Deadlock duo send receive
mismatch, Head-to-Head deadlock and collective deadlock).
Unlike existing static analysis our tool can detect race
condition in Static phase. Existing dynamic analysis tools
(like Umpire, MARMOT and MUST) suffers from time
overhead at runtime, but our dynamic analysis checks only
execution processes with potential errors instead of checking
all processes, for that the overhead in this phase is limited.

Table 2:Time overhead in different number of processes

There are several approaches for detecting message races
such as MARMOT[8], MAD [9], and MPVisualizer [10].

However, those approaches are not suitable for debugging
MPI programs because they do not provide information to
locate and debug message races. Also, some of them detect
message races just by identifying the use of wild card
receives (like MPI_ANY_SOURCE and MPI_ANY _TAG)
as sources of race conditions. Using of wild card not always
lead to message race. Therefore, programmers can be
overwhelmed by the incorrect information or be incapable of
finding where the races occurred in a huge source code. Our
tool by using Stack idea in Static Phase and last matched
receive idea in Dynamic Phase can detect race condition that
may happened between calls without depending on
identifying the use of wild card receives, as the only source
of race condition. Existing hybrid analysis tools (which are
few) as [11] does not coverall MPI communication routines,
our tool can detect deadlock and race condition in point-to-
point and collective MPI routines.

6.CONCLUSIONS

In this paper, we presented our approach of designing and
implementing an MPI checking technique that employs
static as well as dynamic approaches. Our static checking
approach is based on the Clang/LLVM framework [1] which
intercept the syntax tree during the program compilation. We
also propose an efficient approach to trace MPI calls while
they are translated by clang by employing the call stack idea
to match MPI calls while checking the program statically.
Moreover, we support detecting basic race conditions that
can result from inappropriate structure of the MPI code. To
overcome the shortcoming of the static approach we have
also implemented a dynamic approach for detecting
deadlock and race conditions. To reduce the computational
overhead due to the checking procedure we have combined
the two approaches for implementing a hybrid scheme for
detecting race conditions in MPI programs. The
experimental results show that our tool efficiently verifies
several benchmarks and detect deadlock and race condition.

Acknowledgement

We would like to express our gratitude and appreciation to
Prof. FathyEassa the head of our research group in the
department of Computer Science at KAU. He always
provides us with promising research directions and
continuous guidance.

REFERENCES

1. Clang. http://clang.LLVM.org/docs/index.html

2. W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
portable parallel programming with the message-
passing interface, vol. 1. MIT press, 1999.

3. M. Schulz and B. R. De Supinski, “A flexible and
dynamic infrastructure for MPI tool
interoperability,” in Parallel Processing, 2006. ICPP
2006, International Conference on, 2006.

 Rana Abdul Razaq Alnemari et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7337 – 7345

7345

4. D. R. Shires and L. Pollock, “Program flow graph
construction for static analysis of explicitly parallel
message-passing programs,” Army Research Lab
Aberdeen Proving Ground MD, 2000.

5. A. P. Cláudio, J. D. Cunha, and M. B. Carmo,
“MPVisualizer : a General Tool to Debug Message
Passing Parallel Applications,”.

6. A. Droste, M. Kuhn, and T. Ludwig, “MPI-checker:
static analysis for MPI,” in Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in
HPC, 2015, p. 3.

7. J. S. Vetter and B. R. De Supinski, “Dynamic Software
Testing of MPI Applications with Umpire,”
ACM/IEEE SC 2000 Conf., pp. 12–15, 2000.

8. Krammer, Bettina, MARMOT: An MPI analysis and
checking tool. In: Advances in Parallel Computing.
North-Holland, 2004.

9. D. Kranzlmüller, C. Schaubschläger, and J. Volkert, “A
brief overview of theMAD debugging activities,”
arXivPrepr. cs/0012012, 2000.

10. A. P. Cláudio, J. D. Cunha, and M. B. Carmo,
“MPVisualizer: A general toolto debug message
passing parallel applications,” in International
Conferenceon High-Performance Computing and
Networking, 1999.

11. E. Saillard, P. Carribault, and D. Barthou, “Combining
static and dynamic validation of MPI collective
communications,” in Proceedings of the 20th European
MPI Users’ Group Meeting, pp. 117–122 2013.

