
Nooraida Samsudin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 460 - 464

460

ABSTRACT

Compute the complexity of algorithm is such way to describe
it efficiency. Algorithm complexity computes the total time
taken by an algorithm. It computes the time of the algorithm
to run as the length of the input in the function. This paper
describes the efficiency of algorithm complexity of Euler
Arithmetic. The efficiency is determines by analyzing the run
time of the algorithm using Big O. It only compared the
complexity of the algorithm using notation of O(1) and O(n).
Then, the result is analyzed using best case and worst case. As
the result, the algorithm can be solving using both O(1) and
O(n). However worst case gives better complexity for
thisalgorithm even in small or higher step size compare to best
scenario. This is because time taken on the size of the data N
decreases as the value of N increases in O(n).

Key words :complexity, algorithm, analysis, Big O,
efficiency

1. INTRODUCTION

Euler Arithmetic is an improvement of the Euler method.
Euler Arithmetic improves the performance of the algorithm's
complexity compared to the Euler method. Algorithms
commonly used for solving problems or mechanism via
computers. Algorithm efficiency is a property of an algorithm
which relates to the number of computational resources is
being used. Most of the algorithms try to achieve the better
performance globally [1]. Calculating the efficiency of the
algorithm is including time complexity, space complexity,
administrative cost and faster implementation [2]. In this
study, the complexity of the algorithm is focus on time
efficiency. Time efficeincy will take the time complexity of
an algorithm to computes the amount of time taken by
an algorithm to run as a function of the length of the input [3].
It being tested using Big O notation method to obtain the
efficiency of the algorithm developed.

Big O notation is one of the effective methods for studying the
time efficiency of algorithms [4]. This paper analyzed the
complexity of the algorithm based on the Big O notations,

O(1) and O(n). Calculations are performed by running an
algorithm based on algorithms using both O(n) and O(1). Run
time calculations for both algorithms using O(n) and O(1) are
recorded. Then, the efficiency of the algorithm is analyzed
based on the worst case and best case by measuring the step
sizeaN use in the testing.

2. LITERATURE REVIEW

Big O notation consists of scientific capacities and gradual
analysis. It is important to represent algorithmic complexity
of of each solution. There are two types of metrics to analyze
the algorithm complexity. Complexity based on the
algorithmic efficiency and the other one is the complexity on
the structure of the algorithm [5].

Big O notation used to identify the function base on their
growth rates [6]. It can operate the identical O notation
for unique functions with the identical surge rate. Recently,
algorithm analysis describes the usage of computational
resources that regularly used. The length of input function in
Big O notation usually refers to the three aspects. There are
the worst cases, average case and best case. These scenarios
help algorithm developers to predict the behavior of their
algorithms [7]. They also can resolve which of multiple
algorithms to use.

\Algorithm complexity evaluates the obtaining of the count of
operations, performed by a given algorithm as a size of input
data in the function [8]. To make it as simple as it
can, complexity is a rough approximation of the number of
steps necessary to execute an algorithm. This paper aim is to
calculate the complexity of Euler Arithmetic using Big O and
analyzed using worst case and best case scenario. This is to
compare the better way to perform the algorithm of Euler
Arithmetic in increasing the efficiency.

Calculation of the algorithm is referring to standard measure
of algorithm efficiency for calculating algorithm complexity
[9] as in Table 1. The best way to understand O in general is to
generate a program code. Figure 1,2,3 and 4 shows the
example program code to describe the varies of O notation
[10].

Calculation on Euler Arithmetic Complexity using

Big O Notation
Nooraida Samsudin1, Nurhafizah Moziyana Mohd Yusop2,

Anis Shahida Niza binti Mokhtar2, Mohd Fahmy bin Amran2, Iliana Mohd Ali1
1 University College TATI, Malaysia, nooraida@tatiuc.edu.my, iliana@tatiuc.edu.my

2Universiti Pertahanan Nasional Malaysia, Malaysia, nmoziana@upnm.edu.my, anis@upnm.edu.my,
fahmy@upnm.edu.my

 ISSN 2278-3091
Volume 9, No.1.4, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse6591.42020.pdf

https://doi.org/10.30534/ijatcse/2020/6591.42020
4

Nooraida Samsudin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 460 - 464

461

Table 1: Standard Measure Of Algorithm Efficiency
Efficiency Notation O

Logarithm O(log n)

Linear O(n)

Logarithm Linear O(n(log n))

Quadratik O(n2)

Polynomial O(nk)

Exponen O(en)

Factorial O(n!)

2.1 O(1)
 In O(1) notation, the algorithm normally will execute in the
same time (or space) regardless of the size of the input data
set. Figure 1 shows the example of the coding for O(1).

Figure 1: Program code for O(1)

2.2 O(n)
 The performance of the algorithm in O(n) notation is it will
grow linearly and in direct proportion to the size of the input
data set. The example below demonstrates the relation
between worst-case scenario performances towards Big O.In
this notation, during any iteration of the (for) loop the
matching string in the function would return fast. However,
Big O notation will always assume the upper limit is the
maximum number of iteration during execution of the
algorithm. Figure 2 shows the example of the program code
for O(n).

Figure 2: Program code for O(n)

A. 2.3 O(n2)
 Performance of O(n2) notation in algorithm is directly
proportional to the square of the size of the input data set. This
algorithm typically involves nested iterations over the data
set. Deeper nested iterations will result in O(n3), O(n4) and so
on. Figure 3 shows the example of the program code for O
(n2).

Figure 3: Program code for O (n2)

B. 2.4 O(2n)
For the algorithm whose growth doubles it normally

refer to O(2n) notation. The each addition is increasing depend
on the input of the data set. O (2n) function represent
exponential in growth curve, which is starting off very
shallow, then increasing drastically. Recursive calculation of
Fibonacci numbers is an example of an O (2n) function. Figure
4 shows the example of the program code for O (2n).

Figure 4: Program code for O (2n)

The efficiency of the algorithm either it is good or bad is
referring to the three possible cases complexity [11].
Worst-case complexity is the best efficiency because in any
step size N, the function will be iterate by the maximum of the
step size [12]. Thus, at each column the loop invades the
maximum point. Best-case complexity is a straight forward
analysis which the function does not have the iteration.
Finally, the average-case complexity of the algorithm is the
function describes the mean of the number of steps taken at
any size of N.

3. RESEARCH METHOD

The research uses order notation primary to compare the
algorithms efficiency. Analysis of the algorithm efficiency
has been done using Big O. In this paper, the algorithm for the
Euler Arithmetic using O(1) and O(n) is produce to compare
the complexity. Figure 5 show the flowchart for the
calculation. Calculation is done by running time based on
each row in the algorithm [13]. The result is obtain by
comparing the algorithm of Euler Arithmetic using O(n) and
O(1).

Nooraida Samsudin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 460 - 464

462

Figure 5: Flowchart to calculate Big O for the algorithm

Code for the algorithm in this paper is described in
Figure 6 and 7 below. Figure 6 shows the code for
thealgorithm using O(1). Meanwhile code for algorithm using
O(n) is shows in Figure 7. This research follows the following
steps [14] to complete the analysis of the running time of an
algorithm:

i. Wholly implement the algorithm

ii. Figure out the time needed for each baseline
operation

iii. Describe unnamed quantities which can be used to
define the execution frequency of the basic
operations

iv. Flourish a sensible model for the input to the
program

v. Inspect the unnamed quantities and assumed as
modelled input.

vi. Compute the total running time.

The efficiency of the algorithm is analyzed based on
the worst case and best case. The best way to understand O in
general is to generate a program code as shows in Figure 6 and
7 below. This study provides only two examples of program
codes, namely O(1) and O(n) because only two of these
notations are applicable to the generated algorithm.

Figure 6: Algorithm develop using O(n)

Figure 7: Algorithm develop using O(1)

4. RESULT AND ANALYSIS

 Calculation on running time for the algorithm using O(1)
and O(n) is shown in Table 2 and Table 3 below. Analysis on
total running time is being analyzed in this section to
determine types of O notation. Total run time for O(n) is O(n)
+ 16 while total run time for O(1) is 17. According to the
notation O, comparing the O(n) and O(1) shows that O(n) has
the largest value. After calculating the run time, this research
has the largest value which is O(n). It have been showed in
Table 2 that the total running time is O(n) + 16 comparing to
Table 3 the total running time gives value 17. It shows O(n)
emphasizes the speed of time growth when algorithms are
given different data inputs.

START

Implement the algorithm

Calculate running time of
algorithm

Identify Big O scenario

END

Nooraida Samsudin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 460 - 464

463

Table 2:. Calulation using O(n)

Line Running Time (rt)
2 4
3 3
5 1
7 O(n)

7.1 1
7.2 1
7.3 1
8 1
9 1
10 3

Total Running Time 4+3+1+O(n) + 1+1+1+1+1+3=O(n) + 16

Table 3: Calulation using O(1)

Line Running Time (rt)
2 4
3 3
5 1
7 1

7.1 1
7.2 1
7.3 1
8 1
9 1
10 3

Total Running Time 4+3+1+1+ 1+1+1+1+1+3= 17

 The analysis performed the algorithm can be solved
using big O notation, O(1) where the algorithm is run without
the loop (for) as in line 7 of the algorithm in Figure 6. The use
of O(1) is seen as a best case because the algorithm does not
have to loop (for) and there is no value transmission in the
sort. It give the shortest running time for any input of size
N.The use of O(1) indicates that the run time is constant and
does not depend on the problem of size N. In the worst case
scenario, the use of O(n) is seen as significant to the algorithm
as it determine the maximum amount of time that an algorithm
requires to solve problems. This is based on the use of loop
(for) like line 7 in the algorithm. The use of O(n) shows that
the run time increases linearly with increasing data size.
Based on the comparison of these worst-case and best-case
scenarios, the algorithm can be solved using both O(n) and
O(1) notations. However, the use of O(n) is more efficient in
this study.

 To prove that O(n) is efficient in this study, Table 4
shows how the run time for an algorithm differs for different
types of complexity over the number of N data sizes [15].
Types of complexity is reflect to amount of data [16]. For this
study, the data size of N is 10,100 and 1000. The size of this
data N refers to the step size used during this study which is
0.1, 0.01 and 0.001. For different types of complexity, only
O(1) and O(n) are compared. The efficiency analysis refers to
the time taken by solving the algorithm [17]. Refer to table
below, for O(1) the time taken is constant across all data sizes.
However, when viewed in O(n), the time taken on the size of
the data N decreases as the value of N increases.

Table 4: Running Time for Types of Complexity Towards
Amount of Data N

Complexity N = 10 N = 100 N = 1,000

O(1)

1x10-7 seconds 1x10-7 seconds 1x10-7 seconds

O(log2N)

3.3x10-7 seconds 6.6x10-7 seconds 10x10-7 seconds

O(N)

1x10-7seconds 1x10-6 seconds 1x10-5 seconds

O(Nlog2N)

3.3x10-7 seconds 6.6x10-6 seconds 10x10-5 seconds

O(N2)

1x10-6 seconds 1x10-4 seconds 1x10-2 seconds

O(N3)

1x10-5 seconds 1x10-2 seconds 10 seconds

O(2N)

1x10-5 seconds 4x1021 seconds ∞

5. CONCLUSION

This paper presents the complexity time of Euler
Arithmetic algorithm uses Big O notations. Euler Arithmetic
algorithm manage to use both O(1) and O(n) in analyze the
efficiency. As a result, the algorithm can be solved using both
O(1) and O(n). Therefore, worst case gives better complexity
for this algorithm in this research. This is because the function
specified by the ultimate number of size N steps taken. Total
running time of the algorithm using O(n)decreases as the
value of N increases. Solving this algorithm using O(1)
contribute to the best case. This is because it gives the shortest
running time for any input of size N. O(1) demonstrate that
the time taken is constant across all data sizes. As a
conclusion, O(n) is most suitable to solve Euler Arithmetic
complexity time rather than O(1).

ACKNOWLEDGEMENT

 The authors gratefully acknowledge the Faculty of
Science and Technology Defense, Universiti Pertahanan
Nasional Malaysia. The author Nooraida Samsudin also
would like to thank TATI University College for the Short
Term Grant (STG 1/2018).

REFERENCES
1. D. Dhanalakshmi and A.S. Vijendran. Adaptive Data

Structure Based Oversampling Algorithm for
Ordinal Classification, Indonesian Journal of
Electrical Engineering and Computer Science, vol. 12,
pp. 1063-1070, 2018.

Nooraida Samsudin et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.4), 2020, 460 - 464

464

2. I. Chivers and J.Sleightholme. An Introduction to
Algorithms and the Big O Notation. In: Introduction
to Programming with Fortran,Springer, Cham, 2015.

3. C.P. Milliken.Advanced Topics II: Complexity. In:
 Python Projects for Beginners, Apress, 2020.
4. D.S. Ruhela. Comparative Study of Complexity of

Algorithms For Ordinary Differential Equations I,
International Journal of Advanced Research in
Computer Science & Technology, vol. 2, pp. 329-334,
2014.

5. N. Singh and R.G. Tiwari.Basics of Algorithm
Selection: A Review,International Journal of Computer
Science Trends and Technology, vol. 3, pp. 139-142,
2015.

6. J. Burnim, S. Juvekar and K. Sen.WISE: Automated
test generation for worst-case complexity,
International Conference on Software Engineering, pp.
463-473, 2009.

7. Y. Han and M. Thorup.Integer Sorting in O(n √(log
log n) Time and Linear Space,Proceedings of the 43rd
Symposium on Foundations of Computer Science, pp.
135-144, 2002.

8. S.O. Kuznetsov and S. A. Obiedkov. Comparing
performance of algorithms for generating concept
lattices, Journal of Experimental & Theoretical
Artificial Intelligence, vol. 14, pp.189-216, 2010.
https://doi.org/10.5325/gestaltreview.14.2.0189

9. S. Bae.Big-O Notation. In: JavaScript Data
 Structures and Algorithms,Apress, 2019.
10. S. Gayathri Devi, K. Selvam and S. P. Rajagopalan.An

Abstract to Calculate Big O Factors of Time and
Space Complexity of Machine Code, International

Conference on Sustainable Energy and Intelligent
System, pp. 20-22, 2011.

11. R.Sedgewick and P. Flajolet.An Introduction to the
Analysis of Algorithms, 2nd edition, Amazon, 2015.

12. L. Plaskotaa, G. W.Wasilkowskib and H.
Woźniakowskiac.A New Algorithm and Worst Case
Complexity for Feynman–Kac Path Integration,Journal
of Computational Physics, vol. 164, pp. 335-353, 2000.
13. N.Bahiah et al.Struktur Data & Algoritma
menggunakan C++,Universiti Teknologi Malaysia, 2005.
14. S.K. Gill, V.P. Singh, P. Sharma, D. Kumar.A

Comparative Study of Various Sorting
Algorithms,International Journal of Advanced Studies
of Scientific Research, vol. 2, 2019.

15. P. Danziger, Big O Notation, 2009. Retrieved from
http://www.scs.ryerson.ca/~mth110/Handouts/PD/bigO.pdf.
16. M.Hardick, TCP with Machine Learning – Advanced

and Opportunities, International Journal of Advanced
Trends in Computer Science and Engineering,vol.8,
pp.3526-3534, 2019.
https://doi.org/10.30534/ijatcse/2019/132862019

17. L.N Yasnitsky, Algorithm for Searching and
Analyzing Abnormal Observations of Statistical
Information Based on The Arnold – Kolmogorov –
Hecht-Nielsen Theorem,International Journal of
Advanced Trends in Computer Science and Engineering,
vol. 9, pp. 1814-1819, 2020.
https://doi.org/10.30534/ijatcse/2020/139922020

