
P.Veera Sekhar et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 469 – 475

469


ABSTRACT

This present paper proposes to discuss the structured testing
methodology for software testing. It is referred to basis path
testing. Depend on the cyclomatic complexity measure formal
testing utilizes the control flow structure of software set up
path exposure criteria. Extension of the primary structured
testing technique for integration testing and object-oriented
systems are also accessible. A number of connected software
complexity metrics are described. We present a survey of
software effort estimation and Software size estimation,
which is vital characteristics, has been designated for the
determination of limiting the examiner standards. In SPM
field, management is always needed for the organization
knowledge purpose. According to our topic, we had
analytically studied two best useful techniques that are
software effort estimation and software size estimation

Key words : Cyclomatic complexity, Software testing,
Software project management, Software effort estimation

1. INTRODUCTION

In literature there are number of techniques that are available
for the software developers to predict the effort and cost
estimation of the project which is an important task for them.
These estimation techniques are well-known techniques in
order to sort out the precise estimate for determination and
progress of essential software organization. Here present
software metrics give valuable information about project
character and also provide qualified criteria for measuring
several software products. Depending on the original
estimation, the survey paper is made for a high-quality
requirement for equalization of estimates.

In [1] authors came up with a architecture as the structure of
parts, and their dependencies, and the standards and aides that
control the plan and development in time. As expressed by
[2]software design is as a dynamic auxiliary depiction of the
product framework as far as its primary segments and the
connections among them. Concentrates on quantitative
appraisal of programming models are picking up significance
because of their job in surveying the nature of design
enhancements [3]. IEEE 1471 standard characterizes
programming engineering as the crucial association of a
framework typified in its segments, their connections to one
another and to nature and the standards managing its plan and
advancement [4]. From this definition, the segment and the
connector are strengthened as the focal ideas of programming
design. A segment can be as basic as an article, a class, or a
technique, and as intricate as a bundle of classes or
procedures. Connectors can be as straightforward as system
calls or as detailed as customer server conventions, connects
between appropriated databases, or middleware.
Programming upkeep is arranged into versatile, remedial,
preventive and perfective[5]. Most associations are worried
about the expenses of programming upkeep, for it has been
expanding consistently and numerous organizations spend
roughly 65% of their product spending plan on support [6].
The procedure of hazard evaluation is valuable in
distinguishing complex modules that require point by point
investigation, assessing possibly irksome modules. As
indicated by the NASA-STD-8719.13A hazard is a
component of the foreseen recurrence of event of an undesired
occasion, the potential seriousness of coming about results,
and the vulnerabilities related with the recurrence and
severity. [6].
Accentuation on programming engineering is being put on
structure designs, accordingly the conventional act of
impromptu programming development is gradually moving
towards design situated advancement. The engineering takes
into account different free and inexactly coupled segment
usage components. Risk assessment evaluation and
investigation for programming models is roused by the way
that various administrators and sellers may decide to

An Efficient Effort Estimation of a Java Program using
 Cyclomatic Complexity

P.Veera Sekhar1, Vamsidhar Enireddy2, K.Bhargav Ram3, D.V.SaiSubba Reddy4

1Department of Computer Science and Engineering, KoneruLakshmaiah Educational Foundation, Vaddeswaram,
Guntur, India, veerasekharpatibandla@gmail.com

2 Assoc.Professor, Department of Computer Science and Engineering, KoneruLakshmaiah Educational
Foundation, Vaddeswaram, Guntur, India, enireddy.vamsidhar@gmail.com

3Department of Computer Science and Engineering, KoneruLakshmaiah Educational Foundation, Vaddeswaram,
Guntur, India, kbhargavramchowdary@gmail.com

4 Department of Computer Science and Engineering, KoneruLakshmaiah Educational Foundation, Vaddeswaram,
Guntur, India, dsaireddyd@yahoo.com

 ISSN 2278-3091
Volume 9, No.1, January – February 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse64912020.pdf

https://doi.org/10.30534/ijatcse/2020/64912020

P.Veera Sekhar et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 469 – 475

470

convey/create various instruments to accomplish a similar
end, and there should be various components to take care of
issues at better places in an arranged situation. Moreover,
usage bugs or arrangement mistakes might render an
execution insufficient. Bigger modules are more change
inclined. A bigger module has greater usefulness, in this
manner there is more noteworthy probability that some
usefulness in the module should be adjusted or improved.
Modules taking an interest in configuration designs are less
change inclined. Examples are structured so changes are made
by means of subclasses or by including new member classes
instead of altering effectively present classes. Examples
advance simple of progress; henceforth classes partaking in
examples ought to require less changes.

2. WRITING AUDIT

To address the changing scenario it is important to foresee the
maintenance effort cost the Architecture-Level Prediction
about programming support (ALPSM) comes into play as the
objectives derived from it helps us to build the things
discussed above[7]. The principle commitment of this
strategy comprise of the design level where this expectation is
performed. ALPSM characterizes an upkeep profile, similar
to a lot of progress situation errands. A situation portrays an
activity, or succession of activities that may happen as
identified with the framework. Subsequently a difference in
situation depicts a specific upkeep errands. Utilizing the
upkeep profile, the engineering is assessed utilizing the
situation depicts a specific support exertion for a product
framework can be evaluated. The technique has various
information sources the prerequisites determinations, the
structure of the design, ability from programming engineers
and conceivably chronicled support information. This strategy
examinations viability by taking a gander at the effect of
situations. It utilizes the size of changes as an indicator for the
exertion expected to embrace the framework to a situation.
The ALPSM doesn't to address chance appraisal [8], thus the
need to improve the strategy in order to fuse the hazard
evaluation perspective during programming systems for
upkeeps.

Technique for Software Maintenance Risk Assessment at the
Architecture Level (MSMRAAL) The ALPSM talked about
in segment above doesn't give components to address the
dangers that are related with the support changes [8].That
framework to programming upkeep threat evaluation In the
auxiliary building level contains the Emulating steps. 1.
Distinguish Classes from the help tasks, beginning with those
circumstances. Model the conditions areutilising UML
determinations: 2. Coordinate situations: to everything about
help assignments, an illustrative set from thecases will make
portrayed. 3. Guide those circumstances under the auxiliary
structure: for each circumstance decides those portions that
would Also impact whatever degree they will an opportunity
to be changed, this realizes the range of the impact of the
affirmation of the circumstance. 4. Guide those taking interest
classes of the cases Similarly as acquainted with UML

conclusions model(s) should An appropriated setup plan that
best matches those model. 5. Threat appraisal: make that those
impact of a change situation; assess the risk on the swell
effects of the movements (upkeep) to an opportunity to be
chosen for A section for gratefulness with the coordinating
portions in order to anticipate those general peril that could be
sticked ought to Throughout those help of a structure.

3. IMPLEMENTATION

Cyclomatic Complexity nature, sees project capriciousness
related to the quantity of control courses through an
undertaking module, deduced an item intricacy measure
beginning with outline standard using that meaning of the
cyclomatic number which compares of the sum about directly
self-sufficient approaches to a task. It might be normal on be
free for lingo structure. This measure gives a flat out sum that
can make diverged from that capriciousness for different
tasks. 's cyclomatic intricacy might be a ramifications of a
framework module's control-stream multifaceted nature Also
need being seen to an opportunity as a trustworthy pointer for
flightiness Previously, enormous item undertakings
.Recognizing the number about control courses through the
program, A 10-line venture for 10 task declarations might be
less requesting with seeing all the over a 10-line framework
with 10 on the off chance that declarations. MCC might be
portrayed for each module with an opportunity to be M=E − n
+ X, the spot m is those Cyclomatic multifaceted nature
(MCC) metric, e might be the quantity of edges, n will be the
number from the nodes or decision centers (restrictive
explanations), and X will be those number of ways out (return
articulations) in the outline of the limit exclusively. Control
stream diagrams (CFC) portray that method of reasoning
structure for item modules. The hubs address computational
announcements or articulations, and the edges address trade
about control between hubs. Each useful execution method for
a programming module needs an contrasting way beginning
and those section of the retreat hub of the module's control
stream diagram. The focal points of the CFC metric is that it
could be used Likewise An upkeep and individual fulfillment
metric, it accommodates the overall unpredictability of
transform design.
The utilisation about designs toward structural level favours
those decrease from the repetitive dependability displaying
the worth of effort and the comprehend capability of the
unwavering quality model And permits the creator with the
motivation behind around deficiency tolerance.Thisallows
foreseeing the impacts of the specific structural choices with
respect to those unwavering quality of the framework.

A programming model to those test might have been planned
done such an approach to empowering the client to enter a.
Java document. Those programming model will be executed
In the nearby subnet level utilising two diverse instruments
Outline design and the secluded methodologies.

P.Veera Sekhar et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 469 – 475

471

4. METHODOLOGY

Provided for those expanding cost for software development,
McCabe viewed as that a ‘arithmetical method that will give
acceptable solution. An quantitative premise to
modularization will recognize programming modules that will
get a chance to be troublesome to test alternately maintain’
might have been obliged. The utilization of A-lines of code
(LOC) metric might have been dismissed since McCabe
Might perceive no clear relationship in the middle of period
Also module multifaceted nature. As an alternative, he
proposed that there are a numerical ways to control all the way
through a module might make a better indicator, especially as
this showed up with make determinedly identified with testing
exertion. And, a great deal of the worth of effort around
'structured programming' in the initial 1970s concentrated
ahead system control stream structures. Unfortunately, that
number for ways through at whatever program with An
retrograde limb will be possibly limitless. Fortunately, that
issue could make determined by the provision about chart
hypothesis. The control stream from claiming whatever
procedural bit for a program can be delineated Concerning
illustration An guided graph, by speaking to every executable
articulation (or aggregation of proclamations the place the
stream for control may be sequential) Similarly as a node, and
the flow from claiming authority Concerning illustration those
edges the middle of them. That cyclomatic complex nature of
a chart will be suitable because giving those chart is
determinedly connected, and it demonstrates the amount from
claiming essential ways (i. E. Linearly free circuits) held
inside a graph, which, the point when utilised within
combination, might produce the more significant part-time
permits ways through those charts alternately project.
That cyclomatic complexity v of a project chart g may be.
V(G) is given as e-n+1................................... (1)
Here e will be those number for edges, and n will be those
number of nodes. A determinedly associated chart is
particularly case for which provided for At whatever two
nodes r and s the present paths from r and s to r. Fig. 1
indicates a sample inference about cyclomatic intricacy
starting with a basic project.Also its related control chart.
Note that that system chart is settled on determinedly
associated by were as for an edge interfacing those wind node
of the start node. That methodology for including an extra
edge of the system chart could be bypassed by adding you quit
offering on that one of the cyclomatic intricacies figuring. The
count might make summed up to system graphs that hold
numerous you leave offering on that one alternately more
component, subject of the confinement that every part contain
only one and a node for its exit. To a graph Swith a set of
connected components, the cyclomatic complexity will be.
V(S) is given as e-nt2 C........................... (2)
Here C denotes the components that are connected to each
other and to represent a program graph containing the multi
components e is used here, also it denotes the containment of
the subroutines and these are shown in the figure. McCabe

observers the reduction of calculation to a simple count for
conditions plus one which is argued as a pure compound for
example
IF x, 1 and Y might have been An daintily guised nested IF,
afterwards every state if help module complexity, as opposed
just numbering predicates. Similarly, an instance
proclamation may be seen as a various though proclamation
(i.e., It contributes n - I will v(S), the place n may be the
number from claiming cases). [10] An useful requisition of
the metric in utilizing it to gatherings give an upper point of
confinement will module complexity, Past which a module
ought further bolstering a chance to be subdivided under
simpler components, an esteem of v(S) 5,10 might have been
suggested, Despite he acknowledged that over sure situations,
notably massive situation structures, the breaking point could
make loose.
Theoretical considerations and those numbering decide for
diverse control proclamations bring been that subject from
claiming exactly discussion. Myershas contended that An
unpredictability interim will be An additional viable measure
about multifaceted nature over a straightforward cyclomatic
number. Those interim need a more comfortable certain for
choice proclamation check also called as Predicate count plus
particular case Also an upper bound of singular condition
number Also specificsituation. Myers utilized the taking after
three illustrations on backing as much modified form of the
cyclomatic complexity metric

Figure 1: System Control Stream Structures

If p= 0 then......

Else.........;

V(S) =2

Myers=(2:2)

If p=0 and q>1 then.....

Else......;

V(S) = 3

Myers=(2:3)

P.Veera Sekhar et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 469 – 475

472

If p=0 then......

If q>1 then......

Else.....

Else.....;

V(S)=3

Myers=(3:3)

Figure 2: Numbering Predicates

As much contention may be that it is naturally clear that the
third illustration may be a greater amount perplexing over
those second, a qualification not committed by that
cyclomatic amount. The perfect underlying as much An dealt
with Similarly as single choice b dealt with as separate
choices adjustment seems with a chance to be that there will
be an additional possibility to inserting extra else clauses
under a system for A larger amount of whether proclamations.
They need aid not counted Toward the McCabe
metric.Likewise will be showed by the taking after two
system fragments, both of which have cyclomatic
complexities from claiming 2: compound state dealt with
Similarly as a single choice Also Similarly as if X< 1 after that
else. (v(G) = 2 v(G) = 2 Since Myers’ intricacy interim
doesn't straightforwardly check else proclamations it may be
doubtful if it speaks to substantially of a change In that for
McCabe’s metric. However, those feedback about cyclomatic
unpredictability remains, in that it falls flat will recognize the
middle of selections with without else limbs. Starting with the
point of view by cyclomatic complexity, this will be
significant; however, since the number of essential ways stays
unalterably testing trouble might not expand. Subsequently,
that disappointment about cyclomatic unpredictability with
number else limbs is best .On the metric will be exceptional
on catch intricacy of appreciation. Need to be proposed that
since they were less demanding to see all the over the equal
nested IFS, they if help person of the module unpredictability.
Considerably of the challenge stems starting with that truth
that McCabe might have been initially speculation As far as

Fortran, while most of these challenges emerge from different
languages, exactly from claiming them a greater amount
recent, for example, such that ADA. T here particular case
need should fight for issues for example, such that
recognizing the middle of ‘IF y = 1 or y = 3’ And ‘IF y = 0 or
disaster will be imminent x/y>l’. Those mapping from code
will a project chart are vague. Another range about debate
may be that v = 1 will stay valid to a straight arrangement
about at whatever period. Since those metric is uncaring
should multifaceted nature contributed from straight
successions of statements, a few specialists have suggested
adjustments of the straightforward utilization of cyclomatic
intricacy. Hansen need suggesting a 2-tuple about cyclomatic
multifaceted nature Also operand check (defined to make
arithmetical operators, work and subroutine calls,
assignments, information and yield proclamations and exhibit
subscription). Unfortunately, as dough puncher Also Zweben
purpose out, this methodology does fair starting with that
issue for ‘comparing apples and oranges’. It will be not
reasonable how should rank in place about intricacy the
2-tuples (iJ) Furthermore (1,k) the place i>l and k>j. Stutter
prescribes an elective approach should this specific issue in
the type of a cyclomatic stream unpredictability metric.
Stream about information may be recognized and to stream of
control. Unpredictability for the most part, expansion with an
expand long of a straight arrangement of proclamations since
a greater amount of information references will about
invariably make committed.A further protest of the
cyclomatic intricacy metric maybe its self-destructive
considerations and conduct towards the structuring about the
product. An amount from claiming scientists argue that those
cyclomatic multifaceted nature could expansion when
applying by acknowledged strategies will enhance project
structure. The metric may be uncaring of the utilisation of
unstructured strategies, for example, such that bouncing over
and out of the circle. Advancement of the unstructured
contention will be those protest that the metric overlooks the
setting alternately nature's domain of choice. Every last bit
choices bring a normal weight, in any case about profundity
for nesting alternately association for other choices. Those
intricacies of choice can't be recognised to isolation, yet all the
must consider different choices inside its growth. This need
brought about variants from claiming cyclomatic
unpredictability which considers nesting profundity. Hence, a
change must make aggravated of the numbering decides.
Challenge for testing is an additional perspective from
claiming product unpredictability Also particular case with
which McCabe might have been fundamentally worried.
These different interpretations from claiming cyclomatic
multifaceted nature need huge meanings upon the acceptance
and requisition of the metric.

As per CC metric then we will form one control flow graph:

P.Veera Sekhar et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 469 – 475

473

Figure 3:Control Flow Graph

5. OUTPUT

5.1 Interface Requesting For Input:
6. import java.io.FileInputStream;
7. import java.io.IOException;
8. import java.util.Scanner;
9. import javax.swing.JOptionPane;
10. import org.apache.commons.cli.*;
11. public class TRGeneration {
12.
13. private static Graph graph;
14. private static TestRequirements tr;
15.
16. public static void main(String[] args) {
17.
18. //ex.Test1();
19. //ex.Test2();
20. //ex.Test3();
21. //ex.Test4();
22. //ex.Test5(); // Need to work on
23.
24. tr = new TestRequirements();
25. graph = new Graph();
26.
27. /*if (args.length < 1){
28. System.err.println("You must supply an input

file");
29. System.exit(1);
30. }*/
31.
32. Options options = new Options();
33. options.addOption("d", false, "Print debug

output"); // does not have a value
34. options.addOption("o", true, "PNG output

path"); // does not have a value
35.
36. CommandLineParser parser = new

BasicParser();

37. CommandLine cmd = null;
38. try{
39. cmd = parser.parse(options, args);
40. } catch (ParseException e) {
41. System.err.println("Caught ParseException: "

+ e.getMessage());
42. }
43.
44. //readSource(args[args.length-1]);
45.

 readSource(JOptionPane.showInputDialog("Input
file path with java Extention:::"));

46.
47. if (cmd.hasOption("d")) graph.setDebug(true);
48.
49. String pngpath = "d://out.png";
50. if (cmd.hasOption("o")) pngpath =

cmd.getOptionValue("o");
51.
52. graph.build();
53. graph.writePng(pngpath);
54.
55. tr.ReadGraph(graph);
56.
57. System.out.println("Test Requirements:\n");
58.
59. tr.PrintNodeCoverage();
60. tr.PrintEdgeCoverage();
61. tr.PrintEdgePairCoverage();
62. tr.PrintPrimePathCoverage();
63. /*******************/
64. new BackgroundImageJFrame();
65. /***************************/
66. CyclomaticComplexity cc = new

CyclomaticComplexity();
67. cc.showCyclomaticComplexity(cc.check());
68. }
69.
70. private static void readSource(String path){
71. System.out.println(path);
72.
73. FileInputStream fstream = null;
74.
75. try{
76. fstream = new FileInputStream("D://"+path);
77. }
78. catch (IOException e){
79. System.err.println("Unable opening file

"+path+".\n"+e.getMessage());
80. System.exit(1);
81. }
82.
83. Scanner s = new Scanner(fstream);
84. while (s.hasNextLine()){
85. graph.AddSrcLine(s.nextLine());
86. }
87. s.close();
88. try{
89. fstream.close();
90. }

P.Veera Sekhar et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 469 – 475

474

91. catch (IOException e){
92. System.err.println("Error closing file

"+path+".\n"+e.getMessage());
93. }
94.
95. }

5.2 Interface Requesting For Java File As Input:

Figure 4: Interface for reading data

5.3 CFG Graph

Figure 5: Control Flow Graph of the Input

5.4 Output Displaying The Nodes,Edges By Using The
CFG Graph:

Figure 6 : Showing the Node and Edge using the CFG graph

5.5 Interface Requesting For The Same File As Input For
Calculating Complexity:

Figure 7: Interface for calculating complexity

5.6 Interface Displays The Cyclometric Complexity:

Figure 8: Showing Cyclometric Complexity

P.Veera Sekhar et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 469 – 475

475

6. CONCLUSION

The methodology proposed on this exploration for
maintenance effort evaluation assessment on the architectural
stage should be confirmed further on distinctive software
designs to choose its convenience. Future examinations ought
to prescribe the measurements that ought to be remembered
for this technique to improve their simplicity of pertinence.

REFERENCES
1. Garlan, D. Software architecture.In Proceedings of the

Conference on the Future of Software Engineering (
2000)(pp. 91-101). ACM.
https://doi.org/10.1145/336512.336537

2. Bass, L., Clements, P., &Kazman, R. Software
architecture in practice. Addison-Wesley Professional
(2003).

3. Sant’Anna, C., Figueiredo, E., Garcia, A., &Lucena, C. .
On the Modularity Assessment of Software
Architectures: Do my architectural concerns count. In
Proc. International Workshop on Aspects in Architecture
Descriptions (2007) (AARCH. 07), AOSD (Vol. 7).

4. Emery, D., & Hilliard, R. Updating architecture
frameworks and other topics. In Software Architecture,
WICSA . Seventh Working IEEE/IFIP Conference on
(2008) (pp. 303-306). IEEE.
https://doi.org/10.1109/WICSA.2008.32

5. Sommerville, I. Construction by configuration;
Challenges for software engineering research and
practice.In Software Engineering . ASWEC. 19th
Australian Conference on (2008) (pp. 3-12). IEEE.
https://doi.org/10.1109/ASWEC.2008.4483184

6. Abdelmoez, W. M., Goseva-Popstojanova, K., &
Ammar, H. H. (Methodology for maintainability-based
risk assessment. In Reliability and Maintainability
Symposium, RAMS'06. Annual (2006) (pp. 337-342).
IEEE.

7. Bengtsson, P., & Bosch, J.Architecture level prediction
of software maintenance. In Software Maintenance and
Reengineering. Proceedings of the Third European
Conference on (1999) (pp. 139- 147). IEEE.

8. R. Tombe, S. Kimani and G. Okeyo. Method for
Software Maintenance Risk Assessment at the
Architecture Level. JIM Journal. Ronald Tombe et al.,
International Journal of Computer Science and Mobile
Computing, Vol.3 Issue.11, pg. 89-101 © (2014),
IJCSMC All Rights Reserved.

9. Ward W., Software defect prevention using McCabe’s
complexity metric. Hewlett Packard Journal, 40(2):
(1989) 64–69.

10. McCabe T. J. and Bulter C.W. A complexity measure.
IEEE Transactions on Software Engineering, 2(4):
(1976) 308-320 .
https://doi.org/10.1109/TSE.1976.233837

