
 Low Qi Wei et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7324 – 7329

7324

ABSTRACT

Closed Circuit Television (CCTV) as a Video Surveillance
System has been around for a long time but existing solutions
are very costly and are not concerned with identity
verification. This paper proposes a low cost surveillance
system using deep learning for intruder detection in a remote
app operating on moderate computational resources.
Extensive research show that existing video surveillance
system is only as good when it is monitored by a human being
as they do not offer intruder detection capabilities. The
motivation of this project is to mitigates the weaknesses of
existing solutions by incorporates learning-based face
recognition techniques to enables real-time intruder detection
on a cost-friendly device. In addition, this solution includes a
real time smart app for users to monitor their premise
remotely. The trained face recognition model provides a
method for users to train a face recognition model on
Raspberry Pi and ultimately, the ability to discriminate
identity in real-time. The developed solution is capable of
recognizing identity at high accuracy and the final cost is
cheaper compared with other offerings that uses similar
techniques. The developed solution achieved an average
accuracy of 90.11%, that is not far behind from techniques
that require the use of expensive Graphical Processing Units.
The smart app developed will allow users to monitor their
premise remotely in real-time. The proposed solution is
ensured to have the end product highly scalable. Experiment
results demonstrate the feasibility of the solution.

Key words: Face Recognition; Deep Learning; Intruder
Detection; Surveillance System.

1. INTRODUCTION
In recent years, we have witnessed the extraordinarily large
deployment of Closed-Circuit Television (CCTV) in all

places around the globe as a surveillance system to deter
crime. The primary goal of CCTV as a Video Surveillance
System (VSS) is to fight crime and act as an evidence
collector. However, researchers found that the cameras
deployed may be more effective as a detection tool than as a
deterrent [1]. It has been a popular debate topic on the
effectiveness of CCTV when it comes to crime fighting. This
is especially true when it comes to the domain of premise
security.

Based on the 2017 Mid-Year Crime Index report compiled by
Numbeo [2], Malaysia currently ranks at number 2 with a
vital crime index of 68.56 in Southeast Asia for highest crime
rate with residential break-ins is one of the most contributing
factors. This is a serious matter because crime apparently has
a negative impact on the economic growth of a country [3].
Residential break-ins have occurred, and single-family homes
are the most frequent targets [2]. Crime rate did not plummet
with a significant rate even with electronic access control
system in place [4]. Existing surveillance solutions need
constant monitoring from the residential owners. It makes no
difference if the surveillance system is left unmonitored
because victims certainly will not be aware of the planned
burglary. Thus, what we require is a surveillance system that
is capable of identifying intruder intelligently and effectively.

The problem with the conventional approach is that existing
video surveillance solutions are not as effective as how they
portrayed to the public. Most video surveillance solutions only
used as a tool to collect evidence and do not equipped with the
ability to identity target of interest. Not only that, most video
surveillance solutions come with a hefty price. This is largely
due to the preinstalled array of sensors, commonly including
night vision and infrared sensor. It is not justifiable for an
ineffective solution to cost that large amount of money. To
sum up, the conventional CCTVs are not capable of
identifying intruder and dispatch alert, and most video
surveillance solutions are very expensive.

DeepEye: A Surveillance System Using Deep Learning for

Intruder Detection in SmartHome Remote App
Low Qi Wei1, Zeratul Izzah Mohd Yusoh2, Halizah Basiron3, Chin Kon Yee4

1,4 Revenue Monster Sdn. Bhd.,
B-2-30, 2nd Floor, Block Bougainvillea,

10 Boulevard, PJU 6A, Petaling Jaya, Selangor.
1 rex@revenuemonster.mycom, 4 ky@revenuemonster.my

 2,3 Centre for Advanced Computing Technology
Faculty of Information and Communication Technology

Universiti Teknikal Malaysia Melaka (UTeM)
Melaka, Malaysia

2 zeratul@utem.edu.my, 3 halizah@utem.edu.my

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse63952020.pdf

https://doi.org/10.30534/ijatcse/2020/63952020

 Low Qi Wei et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7324 – 7329

7325

As for the technique used, face recognition technique is now
being massively employed in the domain of entertainment,
information security and many other domains including
CCTV [25]. To accommodate the increasing needs of face
recognition application, numerous techniques have been
invented, from the classical Fisherfaces method to the
advanced convolutional models. The holistic matching
methods and geometric features methods are efficient and
robust but are not as accurate as the learning-based
Convolutional Neural Network (CNN) models [5]. However,
the learning-based methods generally require a substantial
amount of computing power which is normally inaccessible
by the mass public.

We present the design and implementation of A Surveillance
System using Deep Learning for Intruder Detection in a
Remote App (DeepEye), a proactive approach to deter
intruder with the assistance of state-of-the-art face
recognition algorithm.

The objective is to develop a low cost interconnected deep
learning enabled surveillance suite to deter crime in
residential area with the use of state of the arts algorithm. All
DeepEye requires to operate is a low-cost computer, for
example Arduino or Raspberry Pi and a webcam with a
reasonable number of pixels connecting to the Internet. In this
project, a Raspberry Pi 3 model B with an 8MP camera
module will be used. Real-time video streams will be captured
and be processed with Google Cloud Platform (GCP)
components.

Then, the video feeds will be analyzed with a deep neural
network that is being hosted on GCP. Users will be notified
immediately with a remote app, if suspicious events are
detected. Then, users will be able to initiate action to deter
crime by utilizing connected IoT devices with the app. In
short, DeepEye is trying to enhance premise security by
enabling intelligence in conventional CCTV with a carefully
crafted project pipeline and the state-of-the-art technology at
a minimal cost.

Existing solutions [6-10] for this problem are either too
expensive or ineffective. Also, it is found that some of the
existing solutions did incorporate motion detector module but
none of the solutions has the capability of identity
verification. With the tuned deep neural network, it is
possible to achieve near real-time face recognition in a
cost-friendly machine with capped capability.

The rest of the paper is organized this way - the complete
system architecture will be discussed in Section 2Error!
Reference source not found.. There will be two subsections
dedicated to discuss major components used in DeepEye. In
Section 3, we will discuss the results of the experiment.
Finally, we will conclude and briefly discuss future work in
Section 4.

2. SYSTEM ARCHITECTURE

The project comprises of two main components: 1) the Deep
Learning Face Recognition System, and 2) the DeepEye
mobile companion app - SmartHome. Both components are
fully utilizing the services offered in Google Cloud Platform
(GCP) for development and deployment processes. In
addition, there is also a minimal number of hardware used in
this proposed solution. The detail explanation of the two main
components, GCP utilization as well as the hardware used are
described in Section 2. Figure 1 illustrates the overall
architecture of the project.

Figure 1: DeepEye System’s Architecture

2.1 DeepEye Face Recognition System

A. Background Study
Several criteria were taken into consideration before building
a real-time face recognition system. One of the vital objectives
of DeepEye is to enable real-time face recognition with deep
neural network. Since intruder detection is the main goal in
this project, the ability to discriminate whether new faces are
known or unknown is imperative. Previous geometric-based
face recognition techniques: eigenface analysis [11], template
matching [12], graph matching, fiducial point based
approach [13], and others [14] are considerably efficient but
their prediction accuracy is rather low compared to
learning-based techniques. Learning-based approaches are
proven to be much more accurate but very often require a
massive amount of computing power. In the remaining
section, we compare the differences between OpenFace’s
NN4, Facebook’s DeepFace [15] and Google’s FaceNet [16].
Both DeepFace and FaceNet are prominent deep learning face
recognition model and have achieved a rather remarkable
accuracy on the Labeled Faces in the Wild (LFW) benchmark
[17]. The high accuracy of both techniques are largely due to
the use of large private dataset and their proprietary face
alignment and representation techniques.

To aligned to the objective dedicated in this project, we have
decided to implement a deep learning approach in building
DeepEye. A good deep learning model does not only rely on a
fine network architecture, but also heavily depends on the
training data [26]. We adopted a modified neural network
model, NN4 from OpenFace that is based on the prominent
GoogLeNet architecture [18]. The differences between the

 Low Qi Wei et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7324 – 7329

7326

NN4 model and the two models are depicted in Table 1. It is
worth noting that NN4 is trained with a publicly available
dataset with much lesser images. The size of the parameters is
directly proportional to computing power, which ultimately
leads to lower implementation cost. This heuristic enables
DeepEye to run on computer with minimal specification, for
instance, Raspberry Pi.

Table 1: Comparison Between Face Recognition Algorithms

Criteria /
Algorithm NN4 FaceNet DeepFace

Dataset CASIA-WebFace
and FaceScrub Private dataset Private dataset

Parameters 500k 100M-200M 4.4M
Representation

technique
Triplet-loss

function
Triplet-loss

function 3D Alignment

*Accuracy 0.9292 0.0134 0.9963 0.009 0.9735 0.0025
*Accuracy units are rounded to 4 digits; Accuracy are obtained through
benchmark tests on the LFW dataset.

B. Data Collection
To train a deep learning model that is able to correctly
discriminate premise owners and intruders, we provide an
option to collect faces through the mobile companion app,
SmartHome. All collected frames will be dispatched to GCP
and DeepEye face recognition model will be trained
automatically. Figure 2 illustrates the flow of the overall
training process of the images and the technical
implementation will be discussed in sub-section B.

Figure 2: Model training overflow

C. Face Detection and Alignment
DeepEye first preprocess real-time images by utilizing several
open source machine learning and OpenCV toolkits. To
improve face detection under different sets of lighting
conditions, colors in images are enhanced and equalized with
a procedure known as Contrast Limited Adaptive Histogram
Equalization (CLAHE). Facial features are much noticeable
and faces are aligned more accurately, after applying
CLAHE. After that, dlib’s frontal face detector is used to
detect faces in an image [19]. Determining the correct and
precise region of a face will save up huge loads of processing
resources when analyzing faces in later stages.

Faces may be appeared from all angles, direction and poses. It
could be beneficial if faces are aligned to as if the person in the
image is looking directly at the camera before determining the
identity of the person. The face detection is the starting point
for all face analysis tasks, and face alignment can be
considered as crucial intermediary step for many face
analyses type including biometric recognition and mental
state understanding [20]. We use the facial landmarks

detector provided by dlib to determine all 68 facial
landmarks. The model provided by library was trained using
the data from the iBUG 300-W dataset and it positions 68
points on frontal faces, similar to the baseline [24]. Figure 3a
shows the visualization of all 68 landmarks being graphically
drawn in an OpenCV frame. And Figure 3b shows the face
alignment on an angle using the affine transformation
method.

Figure 3a: Facial Landmarks Figure 3b: Face Appearing in

Various Angle

D. Deep Neural Network Face Recognition Model
When all faces in the temporary directory are aligned, the
faces of all users will be passed into the deep convolutional
neural network for model training. Often, face recognition
applications seek for a desirable low-dimensional
representation that generalizes well to new faces that the
neural network wasn’t trained on [21]. The preprocessed
training images are too high-dimensional and thus it is very
difficult to generate good prediction results during the
classification phase. The NN4 neural network model is used
as a feature extractor to produce low-dimensional
representation that characterizes a person’s face. The model
learns to cluster face representation of the same person during
training phase in a unit hypersphere with a triplet loss
function. The embedding is represented by and it
embeds an image into a d-dimensional Euclidean space.
The (similarity) distance between 2 faces can be computed
with Equation (1).

 (1)

E. Classification
A classification model is trained with Linear Support Vector
Machine. All facial embedding’s with their corresponding
labels are saved into a file programmatically during face
representation. The labels will then be encoded with values
between 0 and n_classes – 1 and transformed into respective
label index before fitting into a classifier, as depicted in
Equation (2). A pickle model file will be saved for face
prediction.

 (2)

 Low Qi Wei et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7324 – 7329

7327

F. Real-time Prediction
With the trained classifier, it is now possible to discriminate
identify in real-time in Raspberry pi. It exhibits the same
architecture as the Model Training architecture. One notable
distinction is the generated embedding from Deep CNN will
be passed to the trained classifier instead. Thereon, the class
with the highest probability is going to be the true identity of
the predicted faces.

2.2 SmartHome remote App
Home automation has been around for a quite some time now
and with the emergence of smartphones, Wi-Fi and IoT
(Internet of Things) have made the technology more
convenient and affordable for all Mobile app frameworks
[22]. The SmartHome app allows users to monitor live events
of home and control connected IoT devices from anywhere.
When an intruder or suspicious event is detected, a remote
notification will be dispatched to the app and the users can
take immediate action with connected IoT devices. In this
section, we will briefly discuss components consists in
SmartHome.

A. React Native
The app is built for both iOS and Android users. The
cross-platform mobile framework other that native
development that is chosen is React Native. React Native is an
excellence in terms of performance because it provides a way
to bridge native modules to JavaScript without sacrificing
performance. Unlike other cross-platform mobile
frameworks, React Native abstracts away the excessive
WebView and directly interact to the native mobile engine
[20]. In some cases, React Native outperforms native
framework and provides better user experience.

B. IoT-enabled Devices
In this project, we use 2 units of TP-Link LB100 Smart Wi-Fi
LED Bulb as a Proof-of-Concept (POC). Studies have shown
that improved visibility in a scene will likely reduce the
possibility of crime and criminals are mentally scared of
lights [23]. Premise owners will feel more secure when they
have control over their houses even if they are not physically
in the premise. The use of IoT-enabled devices in DeepEye is
to scare off intruders if suspicious events are detected by
DeepEye Face Recognition System. The users will be able to
remotely control the devices to prevent further losses by
posting a POST request to an Express server hosted in Google
App Engine, which will be discussed briefly in Section 2.3.
The Express server is designed to work with all compatible
IoT-enabled devices.

2.3 Google Cloud Platform

In this section, we will discuss the use of each GCP
components in our project. Google Cloud Platform (GCP)

provides a series of easy-to-use components that allow not
only developers, but entrepreneurs to unlock full potential of
their businesses by leveraging the power of cloud. Security
has always and will always be a concerning topic and under
no circumstances a menial task. Also, it is a top priority to
ensure high service uptime and a well-thought load balancing
strategy. After reviewing all major cloud providers, we decide
to use GCP based on several observations:

i. Private global fiber network
ii. Live migration of Virtual Machines (VMs)

iii. State of the art security
iv. Able to handle massive traffics
v. Dedicated components for machine learning jobs

Currently, DeepEye is configured to live in asia-south1 as we
are targeting regional users at the moment. First and
foremost, real-time video streams from the Raspberry Pi
camera will uploaded to Google Cloud Storage (GCS) as
blobs when motion or suspicious events is detected. Video
blobs stored in GCS can be retrieved later as evidence. The
upload process will return a callback and Google Cloud
Function will be used to pipe the request to Dataproc where
DeepEye face recognition model lives. This is where analysis
will be done. Live events will be parsed and stored in Cloud
SQL. If an event is found suspicious, a remote notification
will be dispatch to the SmartHome app and notify premise
owner.

Concurrently, SmartHome app users will be able to subscribe
and view video streams from the port forwarded endpoint if
they wish to see live events happening at their home. An
express server is install on a Google App Engine (GAE)
instance to process IoT device requests from the SmartHome
app. This server is designed to process user’s request to
control integrated IoT devices. The flexible app engine
environment is capable of scaling automatically up to a
maximum number of 20 instances if traffics overloaded.
Throughout the time of development, we experienced zero
downtime from Google. Next, Firebase is used as a storage for
the mobile app. Firebase’s NoSQL database provides a fast
query request which is really suitable for the nature of mobile
app. An additional Cloud Storage Bucket and an GAE
instance is designed to collect and process the training images
from users, which will then be used to train DeepEye’s deep
learning face recognition model.

In short, Google Cloud Platform has proven to be valuable set
of tools to DeepEye as GCP automatically handles loads and
takes care of security. With GCP, DeepEye is able to run and
expand its infrastructure on cloud with ease.

2.4 Hardware
DeepEye is deeply integrated with GCP and all it needs to
operate is a http endpoint that streams video. In our project,
we use a unit of Raspberry Pi 3 Model B, an 8MP camera
module with a Linux streaming server, UV4L. Local video
streams are recorded at 30 frames per second with a bit rate of

 Low Qi Wei et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7324 – 7329

7328

2000k to make sure frames collected are good enough to
process. Our tests showed that the streaming server is able to
operate with less than 3% CPU resources. Video streams are
encoded and port forwarded to both GCP and SmartHome
app.

3. RESULT AND DISCUSSION

This section will discuss an experiment that has been
conducted to evaluate the performance of DeepEye. The
experiment was held in a house in Malaysia, and all 6
residents agreed to take part in this experiment. In this
experiment, 4 residents are to be the “the owner” while the
rest are to be the “the intruder”. As for the instruments, a unit
of Raspberry Pi 3 Model B with an 8MP camera module is
deployed at the living room for 7 consecutive days. To train a
DeepEye face recognition model, 3 seconds video for every
owner are obtained through the SmartHome app and
processed with the project pipeline defined in Section
2Error! Reference source not found.. A sample of this is as
Figure 4. To validate the result, we manually cross referenced
the frames of video streaming from the events detected. The
result is tabulated in Table 2.

Figure 4: A sample of face recognition video footage

An average accuracy of 0.9011 is achieved throughout the
experiment. Although the accuracy is high, there are several
occurrences where intruders are incorrectly identified as
known “the owner”. This is largely due to the fact that
DeepEye is deployed in a constrained environment and
images captured are not still. Even with heavily image
processing algorithm in place, there are possibilities where
the deep learning model misclassifies an unknown face as a
known face. This is due to the nature of real-time video
streaming where motion frames’ clarity is not as good as still
images, and face features might get distorted when light
flashes. Hence, the deep neural network might easily get
tricked.

Table 2: Experiment Results
Day Face Detected TP FP TN FN *Accuracy

1 54 32 2 13 7 0.8333
2 80 44 1 30 5 0.9250
3 78 48 3 21 6 0.8846
4 120 82 1 33 5 0.9504
5 64 46 2 12 4 0.9066
6 36 28 0 6 2 0.9444
7 44 20 2 18 4 0.8636
*Accuracy units are rounded to 4 digits; TP = Resident correctly identified as

intruder; FP = Intruder incorrectly identified as resident; TN = Intruder correctly
identified as intruder; FN = Resident incorrectly identified as intruder;

We also studied the performance of Google App Engine
instances in our project and we found that generally, it takes
around 3 to 4 seconds to complete a job on GCP and
dispatches a notification to SmartHome app. Overall, the
GCP pipeline does a great job processing user requests and we
experienced no downtime during throughout the experiment.
There is a period where latency spikes to 7 seconds and we
suspect it is due to internal network congestion with GCP.

4. CONCLUSION AND FUTURE WORKS
To conclude, DeepEye with SmartHome mobile companion

app has proven to be effective in detecting intruders. State of
the art deep learning face algorithm is employed to ensure
high accuracy. However, prediction accuracy might vary in
different places due to the fuzzy set of lighting and
constrained environment. Deep integration with GCP allows
load balancing with ease and system development gets
tremendously faster. As for future work, we plan to reshape
the algorithm to an incremental learning approach where the
deep neural networks learn to discriminate intruders from
house residents even when faces appear from all possible
angles and directions. In addition, we reckon that it is possible
to evolve DeepEye completely into Platform as a Service
(PaaS) business model. Existing CCTVs and any video
capturing devices can be an input for DeepEye and users can
enjoy the ability to detect intruders with the SmartHome app.
For example, DeepEye is able to convert a conventional
premise CCTV into a full-fledged intruder detection system
without incurring excessive hardware costs.

ACKNOWLEDGEMENT

We acknowledge financial assistance and the support from
Universiti Teknikal Malaysia Melaka.

REFERENCES
1. Jennider, L. (2009, March 3). Study Questions

Whether Cameras Cut Crime. Retrieved from
https://cityroom.blogs.nytimes.com/2009/03/03/study-q
uestions-whether-cameras-cut-crime/

2. Malaysia 2017 Crime & Safety Report. Retrieved
October 13, 2017, from

 Low Qi Wei et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7324 – 7329

7329

3. Gaibulloev, K., & Sandler, T. Growth consequences of
terrorism in Western Europe. Kyklos, 2008, 61(3),
411-424.

4. Isnard, A., & Council, T. C. Can surveillance cameras
be successful in preventing crime and controlling
anti-social behaviors. In The character, impact and
prevention of crime in Regional Australia Conference,
Australian Institute of Criminology, Townsville, 2001,
pp. 2-3.

5. Labeled Faces in the Wild Results. Retrieved from
http://vis-www.cs.umass.edu/lfw/results.html

6. Yoshop(TM) Home Security Dvr Dome Cctv Security
Camera with Tf Card Night Vision: Amazon.ca:
Electronics. Retrieved from
https://www.amazon.ca/Yoshop-Security-Camera-Night
-Vision/dp/B01I8Y2XOA

7. Security Video Surveillance Solutions Retrieved from
http://www.sensorlink.com.my/video-surveillance/

8. Belco Security Sdn Bhd. Retrieved from
https://belcosecurity.com/

9. Ei System Solution Sdn Bhd. Retrieved from
http://www.ei-sys.com/cctv.php

10. NuTACT SmartCCTV. Retrieved from
http://www.nutact.com/index.html

11. Chellapa P., Wilson C., and Sirohey S., Human and
Machine Recognition of Faces: A Survey, Proceedings
of IEEE, vol. 83, no. 5, pages 705-740, 1995.

12. Brunelli R., and Poggio T. Face Recognition: Features
versus Templates, IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 15, no. 10, pages 1042-1052,
1993.

13. McKenna S.J., Gong S., et al. Tracking Facial Feature
Points with Gabor Wavelets and Shape Models,
Lecture Notes in Computer Science, Springer Verlag,
1997.

14. Samal D. and Starovoitov V. Approaches and methods
to face recognition. A survey, Institute of Engineering
Cybernetics, Preprint #8, Minsk, 54 pages, 1998

15. Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato,
Lior Wolf. DeepFace: Closing the Gap to
Human-Level Performance in Face Verification.
Computer Vision and Pattern Recognition (CVPR),
2014.

16. Florian Schroff, Dmitry Kalenichenko, and James
Philbin. FaceNet: A Unified Embedding for Face
Recognition and Clustering. Computer Vision and
Pattern Recognition (CVPR), 2015.

17. G. B. Huang, M. Ramesh, T. Berg, and E.
Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained
environments. Technical Report 07-49, University of
Massachusetts, Amherst, October 2007

18. C. Szegedy, W. Liu, Y. Jia et al., Going deeper with
convolutions, arXiv preprint arXiv: 1409.4842, 2014.

19. D.E. King. Dlib-ml: A Machine Learning Toolkit.
Journal of Machine Learning Research, vol. 10, pp.
1755-1758, 2009.

20. Jin, X., & Tan, X. Face alignment in-the-wild: A
survey. Computer Vision and Image Understanding,
2017, 162, 1-22.

21. Amos, B., Ludwiczuk, B., & Satyanarayanan, M.
Openface: A general-purpose face recognition library
with mobile applications. 2016, CMU School of
Computer Science.

22. Wireless Home Automation using IoT. Retrieved
January 10, 2017, from
https://www.elprocus.com/wireless-home-automation-us
ing-internet-of-things/

23. Atkins, S., Husain, S., & Storey, A. The influence of
street lighting on crime and fear of crime. London,
UK: Home Office, 1991

24. Day, M.. Exploiting facial landmarks for emotion
recognition in the wild. arXiv preprint
arXiv:1603.09129

25. M. Africa AD, Borja G., Chua A., Ong D., Roque M.,
Application of Computer Systems in Facial
Recognition Efficiency, International Journal of
Advanced Trends in Computer Science and Engineering,
Vol. 8 (4), pp 1168-1173, Aug 2019

26. Sukhada Chokkadi, Sannidhan MS, Sudeepa KB, Abhir
Bhandary, A Study on various state of the art of the
Art Face Recognition System using Deep Learning
Techniques, International Journal of Advanced Trends
in Computer Science and Engineering, Vol. 8 (4), pp
1590-1600, Aug 2019

