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ABSTRACT 
 
Closed Circuit Television (CCTV) as a Video Surveillance 
System has been around for a long time but existing solutions 
are very costly and are not concerned with identity 
verification. This paper proposes a low cost surveillance 
system using deep learning for intruder detection in a remote 
app operating on moderate computational resources. 
Extensive research show that existing video surveillance 
system is only as good when it is monitored by a human being 
as they do not offer intruder detection capabilities. The 
motivation of this project is to mitigates the weaknesses of 
existing solutions by incorporates learning-based face 
recognition techniques to enables real-time intruder detection 
on a cost-friendly device. In addition, this solution includes a 
real time smart app for users to monitor their premise 
remotely. The trained face recognition model provides a 
method for users to train a face recognition model on 
Raspberry Pi and ultimately, the ability to discriminate 
identity in real-time. The developed solution is capable of 
recognizing identity at high accuracy and the final cost is 
cheaper compared with other offerings that uses similar 
techniques. The developed solution achieved an average 
accuracy of 90.11%, that is not far behind from techniques 
that require the use of expensive Graphical Processing Units. 
The smart app developed will allow users to monitor their 
premise remotely in real-time. The proposed solution is 
ensured to have the end product highly scalable. Experiment 
results demonstrate the feasibility of the solution.  
 
Key words: Face Recognition; Deep Learning; Intruder 
Detection; Surveillance System.  
 
1. INTRODUCTION 
In recent years, we have witnessed the extraordinarily large 
deployment of Closed-Circuit Television (CCTV) in all 

 
 

places around the globe as a surveillance system to deter 
crime. The primary goal of CCTV as a Video Surveillance 
System (VSS) is to fight crime and act as an evidence 
collector. However, researchers found that the cameras 
deployed may be more effective as a detection tool than as a 
deterrent [1]. It has been a popular debate topic on the 
effectiveness of CCTV when it comes to crime fighting. This 
is especially true when it comes to the domain of premise 
security.  
 
Based on the 2017 Mid-Year Crime Index report compiled by 
Numbeo [2], Malaysia currently ranks at number 2 with a 
vital crime index of 68.56 in Southeast Asia for highest crime 
rate with residential break-ins is one of the most contributing 
factors. This is a serious matter because crime apparently has 
a negative impact on the economic growth of a country [3]. 
Residential break-ins have occurred, and single-family homes 
are the most frequent targets [2]. Crime rate did not plummet 
with a significant rate even with electronic access control 
system in place [4]. Existing surveillance solutions need 
constant monitoring from the residential owners. It makes no 
difference if the surveillance system is left unmonitored 
because victims certainly will not be aware of the planned 
burglary. Thus, what we require is a surveillance system that 
is capable of identifying intruder intelligently and effectively. 
 
The problem with the conventional approach is that existing 
video surveillance solutions are not as effective as how they 
portrayed to the public. Most video surveillance solutions only 
used as a tool to collect evidence and do not equipped with the 
ability to identity target of interest. Not only that, most video 
surveillance solutions come with a hefty price. This is largely 
due to the preinstalled array of sensors, commonly including 
night vision and infrared sensor. It is not justifiable for an 
ineffective solution to cost that large amount of money. To 
sum up, the conventional CCTVs are not capable of 
identifying intruder and dispatch alert, and most video 
surveillance solutions are very expensive. 
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As for the technique used, face recognition technique is now 
being massively employed in the domain of entertainment, 
information security and many other domains including 
CCTV [25]. To accommodate the increasing needs of face 
recognition application, numerous techniques have been 
invented, from the classical Fisherfaces method to the 
advanced convolutional models. The holistic matching 
methods and geometric features methods are efficient and 
robust but are not as accurate as the learning-based 
Convolutional Neural Network (CNN) models [5]. However, 
the learning-based methods generally require a substantial 
amount of computing power which is normally inaccessible 
by the mass public.  
 
We present the design and implementation of A Surveillance 
System using Deep Learning for Intruder Detection in a 
Remote App (DeepEye), a proactive approach to deter 
intruder with the assistance of state-of-the-art face 
recognition algorithm. 
 
The objective is to develop a low cost interconnected deep 
learning enabled surveillance suite to deter crime in 
residential area with the use of state of the arts algorithm. All 
DeepEye requires to operate is a low-cost computer, for 
example Arduino or Raspberry Pi and a webcam with a 
reasonable number of pixels connecting to the Internet. In this 
project, a Raspberry Pi 3 model B with an 8MP camera 
module will be used. Real-time video streams will be captured 
and be processed with Google Cloud Platform (GCP) 
components.  
 
Then, the video feeds will be analyzed with a deep neural 
network that is being hosted on GCP. Users will be notified 
immediately with a remote app, if suspicious events are 
detected. Then, users will be able to initiate action to deter 
crime by utilizing connected IoT devices with the app. In 
short, DeepEye is trying to enhance premise security by 
enabling intelligence in conventional CCTV with a carefully 
crafted project pipeline and the state-of-the-art technology at 
a minimal cost. 
 
Existing solutions [6-10] for this problem are either too 
expensive or ineffective. Also, it is found that some of the 
existing solutions did incorporate motion detector module but 
none of the solutions has the capability of identity 
verification. With the tuned deep neural network, it is 
possible to achieve near real-time face recognition in a 
cost-friendly machine with capped capability. 
 
The rest of the paper is organized this way - the complete 
system architecture will be discussed in Section 2Error! 
Reference source not found.. There will be two subsections 
dedicated to discuss major components used in DeepEye. In 
Section 3, we will discuss the results of the experiment. 
Finally, we will conclude and briefly discuss future work in 
Section 4. 

2. SYSTEM ARCHITECTURE 
 
The project comprises of two main components: 1) the Deep 
Learning Face Recognition System, and 2) the DeepEye 
mobile companion app - SmartHome. Both components are 
fully utilizing the services offered in Google Cloud Platform 
(GCP) for development and deployment processes. In 
addition, there is also a minimal number of hardware used in 
this proposed solution. The detail explanation of the two main 
components, GCP utilization as well as the hardware used are 
described in Section 2. Figure 1 illustrates the overall 
architecture of the project. 
 
 

 
Figure 1: DeepEye System’s Architecture 

 
2.1 DeepEye Face Recognition System 
 

A. Background Study 
Several criteria were taken into consideration before building 
a real-time face recognition system. One of the vital objectives 
of DeepEye is to enable real-time face recognition with deep 
neural network. Since intruder detection is the main goal in 
this project, the ability to discriminate whether new faces are 
known or unknown is imperative. Previous geometric-based 
face recognition techniques: eigenface analysis [11], template 
matching [12], graph matching, fiducial point based 
approach [13], and others [14] are considerably efficient but 
their prediction accuracy is rather low compared to 
learning-based techniques. Learning-based approaches are 
proven to be much more accurate but very often require a 
massive amount of computing power. In the remaining 
section, we compare the differences between OpenFace’s 
NN4, Facebook’s DeepFace [15] and Google’s FaceNet [16]. 
Both DeepFace and FaceNet are prominent deep learning face 
recognition model and have achieved a rather remarkable 
accuracy on the Labeled Faces in the Wild (LFW) benchmark 
[17]. The high accuracy of both techniques are largely due to 
the use of large private dataset and their proprietary face 
alignment and representation techniques. 
 
To aligned to the objective dedicated in this project, we have 
decided to implement a deep learning approach in building 
DeepEye. A good deep learning model does not only rely on a 
fine network architecture, but also heavily depends on the 
training data [26]. We adopted a modified neural network 
model, NN4 from OpenFace that is based on the prominent 
GoogLeNet architecture [18]. The differences between the 
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NN4 model and the two models are depicted in Table 1. It is 
worth noting that NN4 is trained with a publicly available 
dataset with much lesser images. The size of the parameters is 
directly proportional to computing power, which ultimately 
leads to lower implementation cost. This heuristic enables 
DeepEye to run on computer with minimal specification, for 
instance, Raspberry Pi. 
 
Table 1: Comparison Between Face Recognition Algorithms 

Criteria / 
Algorithm NN4 FaceNet DeepFace 

Dataset CASIA-WebFace 
and FaceScrub Private dataset Private dataset 

Parameters 500k 100M-200M 4.4M 
Representation 

technique 
Triplet-loss 

function 
Triplet-loss 

function 3D Alignment 

*Accuracy 0.9292  0.0134 0.9963  0.009 0.9735  0.0025 
*Accuracy units are rounded to 4 digits; Accuracy are obtained through 
benchmark tests on the LFW dataset. 
 

B. Data Collection 
To train a deep learning model that is able to correctly 
discriminate premise owners and intruders, we provide an 
option to collect faces through the mobile companion app, 
SmartHome. All collected frames will be dispatched to GCP 
and DeepEye face recognition model will be trained 
automatically. Figure 2 illustrates the flow of the overall 
training process of the images and the technical 
implementation will be discussed in sub-section B. 
 

 
Figure 2: Model training overflow 

 

C. Face Detection and Alignment 
DeepEye first preprocess real-time images by utilizing several 
open source machine learning and OpenCV toolkits. To 
improve face detection under different sets of lighting 
conditions, colors in images are enhanced and equalized with 
a procedure known as Contrast Limited Adaptive Histogram 
Equalization (CLAHE). Facial features are much noticeable 
and faces are aligned more accurately, after applying 
CLAHE. After that, dlib’s frontal face detector is used to 
detect faces in an image [19].  Determining the correct and 
precise region of a face will save up huge loads of processing 
resources when analyzing faces in later stages.  
 
Faces may be appeared from all angles, direction and poses. It 
could be beneficial if faces are aligned to as if the person in the 
image is looking directly at the camera before determining the 
identity of the person. The face detection is the starting point 
for all face analysis tasks, and face alignment can be 
considered as crucial intermediary step for many face 
analyses type including biometric recognition and mental 
state understanding [20]. We use the facial landmarks 

detector provided by dlib to determine all 68 facial 
landmarks. The model provided by library was trained using 
the data from the iBUG 300-W dataset and it positions 68 
points on frontal faces, similar to the baseline [24]. Figure 3a 
shows the visualization of all 68 landmarks being graphically 
drawn in an OpenCV frame. And Figure 3b shows the face 
alignment on an angle using the affine transformation 
method. 
 

  
Figure 3a: Facial Landmarks Figure 3b: Face Appearing in 

Various Angle 

D. Deep Neural Network Face Recognition Model  
When all faces in the temporary directory are aligned, the 
faces of all users will be passed into the deep convolutional 
neural network for model training. Often, face recognition 
applications seek for a desirable low-dimensional 
representation that generalizes well to new faces that the 
neural network wasn’t trained on [21]. The preprocessed 
training images are too high-dimensional and thus it is very 
difficult to generate good prediction results during the 
classification phase. The NN4 neural network model is used 
as a feature extractor to produce low-dimensional 
representation that characterizes a person’s face. The model 
learns to cluster face representation of the same person during 
training phase in a unit hypersphere with a triplet loss 
function. The embedding is represented by  and it 
embeds an image  into a d-dimensional Euclidean space. 
The  (similarity) distance between 2 faces can be computed 
with Equation (1).  
 

  
  

        (1) 
 

E. Classification 
A classification model is trained with Linear Support Vector 
Machine. All facial embedding’s with their corresponding 
labels are saved into a file programmatically during face 
representation. The labels will then be encoded with values 
between 0 and n_classes – 1 and transformed into respective 
label index before fitting into a classifier, as depicted in 
Equation (2). A pickle model file will be saved for face 
prediction. 
 

  
  

      (2) 
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F. Real-time Prediction 
With the trained classifier, it is now possible to discriminate 
identify in real-time in Raspberry pi. It exhibits the same 
architecture as the Model Training architecture. One notable 
distinction is the generated embedding from Deep CNN will 
be passed to the trained classifier instead. Thereon, the class 
with the highest probability is going to be the true identity of 
the predicted faces.  
 

2.2 SmartHome remote App 
Home automation has been around for a quite some time now 
and with the emergence of smartphones, Wi-Fi and IoT 
(Internet of Things) have made the technology more 
convenient and affordable for all Mobile app frameworks 
[22]. The SmartHome app allows users to monitor live events 
of home and control connected IoT devices from anywhere. 
When an intruder or suspicious event is detected, a remote 
notification will be dispatched to the app and the users can 
take immediate action with connected IoT devices. In this 
section, we will briefly discuss components consists in 
SmartHome. 
 

A. React Native 
The app is built for both iOS and Android users. The 
cross-platform mobile framework other that native 
development that is chosen is React Native. React Native is an 
excellence in terms of performance because it provides a way 
to bridge native modules to JavaScript without sacrificing 
performance. Unlike other cross-platform mobile 
frameworks, React Native abstracts away the excessive 
WebView and directly interact to the native mobile engine 
[20]. In some cases, React Native outperforms native 
framework and provides better user experience. 
 

B. IoT-enabled Devices 
In this project, we use 2 units of TP-Link LB100 Smart Wi-Fi 
LED Bulb as a Proof-of-Concept (POC). Studies have shown 
that improved visibility in a scene will likely reduce the 
possibility of crime and criminals are mentally scared of 
lights [23]. Premise owners will feel more secure when they 
have control over their houses even if they are not physically 
in the premise. The use of IoT-enabled devices in DeepEye is 
to scare off intruders if suspicious events are detected by 
DeepEye Face Recognition System. The users will be able to 
remotely control the devices to prevent further losses by 
posting a POST request to an Express server hosted in Google 
App Engine, which will be discussed briefly in Section 2.3. 
The Express server is designed to work with all compatible 
IoT-enabled devices. 
 
2.3 Google Cloud Platform 
 
In this section, we will discuss the use of each GCP 
components in our project. Google Cloud Platform (GCP) 

provides a series of easy-to-use components that allow not 
only developers, but entrepreneurs to unlock full potential of 
their businesses by leveraging the power of cloud. Security 
has always and will always be a concerning topic and under 
no circumstances a menial task. Also, it is a top priority to 
ensure high service uptime and a well-thought load balancing 
strategy. After reviewing all major cloud providers, we decide 
to use GCP based on several observations:  

i. Private global fiber network 
ii. Live migration of Virtual Machines (VMs) 

iii. State of the art security 
iv. Able to handle massive traffics  
v. Dedicated components for machine learning jobs 

 
Currently, DeepEye is configured to live in asia-south1 as we 
are targeting regional users at the moment. First and 
foremost, real-time video streams from the Raspberry Pi 
camera will uploaded to Google Cloud Storage (GCS) as 
blobs when motion or suspicious events is detected. Video 
blobs stored in GCS can be retrieved later as evidence. The 
upload process will return a callback and Google Cloud 
Function will be used to pipe the request to Dataproc where 
DeepEye face recognition model lives. This is where analysis 
will be done. Live events will be parsed and stored in Cloud 
SQL. If an event is found suspicious, a remote notification 
will be dispatch to the SmartHome app and notify premise 
owner.  
 
Concurrently, SmartHome app users will be able to subscribe 
and view video streams from the port forwarded endpoint if 
they wish to see live events happening at their home. An 
express server is install on a Google App Engine (GAE) 
instance to process IoT device requests from the SmartHome 
app. This server is designed to process user’s request to 
control integrated IoT devices. The flexible app engine 
environment is capable of scaling automatically up to a 
maximum number of 20 instances if traffics overloaded. 
Throughout the time of development, we experienced zero 
downtime from Google. Next, Firebase is used as a storage for 
the mobile app. Firebase’s NoSQL database provides a fast 
query request which is really suitable for the nature of mobile 
app. An additional Cloud Storage Bucket and an GAE 
instance is designed to collect and process the training images 
from users, which will then be used to train DeepEye’s deep 
learning face recognition model. 
 
In short, Google Cloud Platform has proven to be valuable set 
of tools to DeepEye as GCP automatically handles loads and 
takes care of security. With GCP, DeepEye is able to run and 
expand its infrastructure on cloud with ease. 
 
2.4 Hardware 
DeepEye is deeply integrated with GCP and all it needs to 
operate is a http endpoint that streams video. In our project, 
we use a unit of Raspberry Pi 3 Model B, an 8MP camera 
module with a Linux streaming server, UV4L. Local video 
streams are recorded at 30 frames per second with a bit rate of 
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2000k to make sure frames collected are good enough to 
process. Our tests showed that the streaming server is able to 
operate with less than 3% CPU resources. Video streams are 
encoded and port forwarded to both GCP and SmartHome 
app.  
 
3.  RESULT AND DISCUSSION 
 
This section will discuss an experiment that has been 
conducted to evaluate the performance of DeepEye. The 
experiment was held in a house in Malaysia, and all 6 
residents agreed to take part in this experiment. In this 
experiment, 4 residents are to be the “the owner” while the 
rest are to be the “the intruder”. As for the instruments, a unit 
of Raspberry Pi 3 Model B with an 8MP camera module is 
deployed at the living room for 7 consecutive days. To train a 
DeepEye face recognition model, 3 seconds video for every 
owner are obtained through the SmartHome app and 
processed with the project pipeline defined in Section 
2Error! Reference source not found.. A sample of this is as 
Figure 4. To validate the result, we manually cross referenced 
the frames of video streaming from the events detected. The 
result is tabulated in Table 2.  
 

 
Figure 4: A sample of face recognition video footage 

 
An average accuracy of 0.9011 is achieved throughout the 
experiment. Although the accuracy is high, there are several 
occurrences where intruders are incorrectly identified as 
known “the owner”. This is largely due to the fact that 
DeepEye is deployed in a constrained environment and 
images captured are not still. Even with heavily image 
processing algorithm in place, there are possibilities where 
the deep learning model misclassifies an unknown face as a 
known face. This is due to the nature of real-time video 
streaming where motion frames’ clarity is not as good as still 
images, and face features might get distorted when light 
flashes. Hence, the deep neural network might easily get 
tricked. 
 
 
 

Table 2: Experiment Results 
Day Face Detected TP FP TN FN *Accuracy 

1 54 32 2 13 7 0.8333 
2 80 44 1 30 5 0.9250 
3 78 48 3 21 6 0.8846 
4 120 82 1 33 5 0.9504 
5 64 46 2 12 4 0.9066 
6 36 28 0 6 2 0.9444 
7 44 20 2 18 4 0.8636 
*Accuracy units are rounded to 4 digits; TP = Resident correctly identified as 

intruder; FP = Intruder incorrectly identified as resident; TN = Intruder correctly 
identified as intruder; FN = Resident incorrectly identified as intruder; 
 
We also studied the performance of Google App Engine 
instances in our project and we found that generally, it takes 
around 3 to 4 seconds to complete a job on GCP and 
dispatches a notification to SmartHome app. Overall, the 
GCP pipeline does a great job processing user requests and we 
experienced no downtime during throughout the experiment. 
There is a period where latency spikes to 7 seconds and we 
suspect it is due to internal network congestion with GCP. 

4. CONCLUSION AND FUTURE WORKS 
To conclude, DeepEye with SmartHome mobile companion 

app has proven to be effective in detecting intruders. State of 
the art deep learning face algorithm is employed to ensure 
high accuracy. However, prediction accuracy might vary in 
different places due to the fuzzy set of lighting and 
constrained environment. Deep integration with GCP allows 
load balancing with ease and system development gets 
tremendously faster. As for future work, we plan to reshape 
the algorithm to an incremental learning approach where the 
deep neural networks learn to discriminate intruders from 
house residents even when faces appear from all possible 
angles and directions. In addition, we reckon that it is possible 
to evolve DeepEye completely into Platform as a Service 
(PaaS) business model. Existing CCTVs and any video 
capturing devices can be an input for DeepEye and users can 
enjoy the ability to detect intruders with the SmartHome app. 
For example, DeepEye is able to convert a conventional 
premise CCTV into a full-fledged intruder detection system 
without incurring excessive hardware costs. 
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