
Mouad Banane et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 734 – 741

734

ABSTRACT

Abstract

In recent years, the growing volume of RDF data requires

scalable, efficient, and more robust systems. To meet this need

we find NoSQL databases which are distributed, scalable and

powerful systems for large data management. In this paper we

present an RDF data store scalable and efficient for large RDF

data management based on MongoDB, which is a distributed

and document-oriented NoSQL database, MongoDB is the

most used NoSQL database in the world [1]. We propose a

storage schema that stores RDF triples (subject, predicate,

object) in JSON documents to ensure an RDF triple index

structure based on JSON-LD. For querying data we transform

SPARQL queries to MongoDB language queries through the

use of meta-models. The results of the experiments obtained

indicate that our approach works well compared to a large

volume of RDF data, and show that our system outperforms

existing distributed RDF data stores based on NoSQL.

Key words : RDF, MongoDB, SPARQL, Big Data, Semantic

Web.

1. INTRODUCTION

In the last decades, the volume of web data stored and

processed is increasing day after day with a remarkable speed.

The management and processing of this large amount of web

data is considered a challenge that exceeds the capabilities of

traditional data management systems. RDF[2] is a data format

developed and proposed by the World Wide Web Consortium

(W3C). It is intended to describe the data in a formal way,

especially the metadata which is the concept of the Semantic

Web.

Many research efforts have been devoted to the

development of distributed and scalable RDF data

management systems. On the other hand, we find the existence

of a technology called NoSQL offering distributed, scalable

and more robust database management systems dedicated

specifically to the management of Big Data phenomenon.

Using these NoSQL management systems like MongoDB, we

can develop a scalable and more robust system that can handle

a large amount of RDF data.

We present in this paper an RDF data store based on

MongoDB[3] which is a document-oriented NoSQL database,

the architecture of this approach contains two steps the first is

the storage of RDF data in MongoDB using the Linked Data

format JSON-LD[4]. The second step is to use the two

meta-models SPARQL and MongoDB and realize the

transformation between these two meta-models for the

translation of a SPARQL query into MongoDB. The main

contributions of this paper can be summarized as follows:

 Present a MongoDB RDF storage using JSON-LD.

 Present a SPARQL to MongoDB QL query translation

based on the meta-model.

The remainder of this paper is structured as follow: Section II

exposes some existing related works that propose an RDF

management system based on NoSQL. Section III describing

the RDF technology, MongoDB system, as well as describing

the query language of each one SPARQL and MongoDB

query language and present the model driving engineering

approach. Section IV presents our main contribution and we

show the result of experiments. Finally, in section V we

conclude this work and we suggest some future researches

directions in this topic.

2. RELATED WORK

There have been several approaches to building a scalable

RDF store. Khadilkar et al. [5] describe Jena-HBase a

distributed RDF data store based on HBase, and use the Jena

framework to query RDF data. Papailiou and al. propose

H2RDF [6] it is distributed RDF triple store based on

HBase[7], for the index structure of this approach it indexes

the following three triple patterns: SPO, POS, OSP (O for

object, S for subject and P for predicate) and at the query level

H2RDF uses the MapReduce framework. Banane and al [8]

present in this work an overview and a study for the

management of massive RDF data according to the four

models of NoSQL technology oriented graph, document

oriented, key/value oriented and column oriented. A solution

based on the Cassandra [9] database is CumulusRDF [10] this

triplestore RDF has an index structure of four triple patterns

and for querying this approach uses Sesame. Based on the

Accumulo[11] column-based NoSQL system the triplestore

Rya [12] is a scalable RDF triplestore capable of handling a

very large volume of data. Rya's index structure is: SPO, POS,

OSP to manage this data Rya uses the OpenRDF Sesame[14]

framework. in [21] the authors present an approach of

transforming complex SPARQL queries into a Hive query

language program using the principle of meta-models.

RDFMongo: A MongoDB Distributed and Scalable RDF management system

based on Meta-model

Mouad Banane
1
, Abdessamad Belangour

2

1
Hassan II University, Morocco, mouad.banane-etu@etu.univh2c.ma

2
Hassan II University, Morocco, belangour@gmail.com

 ISSN 2278-3091

Volume 8, No.3, May - June 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse62832019.pdf

https://doi.org/10.30534/ijatcse/2019/62832019

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse62832019.pdf
https://doi.org/10.30534/ijatcse/2019/62832019

Mouad Banane et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 734 – 741

735

3. PRELIMINARIES

In this section, we present a brief overview of the technologies

used in this paper such as RDF, MongoDB, and Model Driven

Engineering.

3.1 RDF

RDF the Resource Description Framework is a standard

formalism adopted by the W3C for the representation of

knowledge on the Web. It provides interoperability between

applications that exchange information on the Web and makes

it understandable to machines. RDF increases the ease of

automatic processing of Web resources. It can be used to

annotate documents written in non-structured languages or as

an interface for documents written in languages with

equivalent semantics. The syntax of RDF is based on XML.

XML provides syntax for encoding data while that RDF

provides a mechanism describing their meaning. One of the

goals of RDF is to make it possible to specify the semantics of

data based on XML in a standardized and interoperable way.

An RDF document is a set of triples of the form <resource,

property, value> with:

- A resource is an entity accessible on the Internet via a URI,

it can be an HTML or XML document, an image, a web page,

part of a web page . . .,

- A property defines a binary relation between a resource

and a value, thus making it possible to associate semantic

information with a resource,

- A value is a resource or a literal value (string of

characters).

An RDF declaration specifies the value of a property of a

resource. It can be described as a property (resource, value).

The elements of these triples can be URIs, literals or variables.

This set of triples can be represented in a natural way by a

multi-graph oriented label where the elements appearing as

resources or values are the vertices and each triple is

represented by an arc whose origin is its resource and the

destination its value. The following figure 1 shows an example

of the RDF graph triples.

Figure 1: RDF Graph example

3.2 MongoDB

Recently, The rise of big data has followed the evolution of

storage and data processing systems with the advent of cloud

computing and data science [21,23]. MongoDB is a

cross-platform document-oriented database management

system. Classed as a NoSQL database, MongoDB avoids the

traditional relational database structure in favor of JSON

documents with dynamic schemas, making it easier and faster

to integrate data into certain types of applications. MongoDB

is free and open-source software, MongoDB stores its data in

the same format as a JSON document. To be more exact, it's

the binary version of the JSON called BSON. That is, a kind of

giant dictionary of keys and values. These data can then be

exploited by javascript, directly integrated into MongoDB, but

can also be exploited by other languages. A JSON document is

simply a set of keys and values whose notation is as follows:

{

"first_name": "Omar",

"last_name": "Kamal",

"job":"teacher",

"age": 40

}

In this example, first_name is the key, Omar is the value.

Table 1: SQL terminology and concepts and the corresponding

MongoDB terminology

SQL terminology MongoDB terminology

database database

table collection

row document , BSON document

column field

index index

table joins $lookup

3.3 Model driven engineering

Model Driven Engineering (MDE)[14] has emerged as a

result of a long history of software engineering. It has

considerably contributed to the mastery of the complexity of

the distributed IS and the rise in abstraction thanks to the

models. In the MDE era, the model has become the unifying

concept and is at the center of the IS modeling process. The

principle of the MDE is the rise in abstraction thanks to the

models and allows the software engineers to evade the

technical details of the implementation to focus initially on

business models independent of all platforms of executions.

3.3.1 The models

The central concept of the MDA is the notion of a model.

Whatever the scientific discipline considered, a model is an

abstraction of a system built for a specific purpose. It is said

that the model represents the system (programs, computer

applications, etc.). A model is an abstraction in that it contains

a restricted set of information about the system it represents. It

is built for a specific purpose and the information it contains is

chosen to be relevant to the user that will be made of the

Mouad Banane et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 734 – 741

736

model. A model is often presented in the form of a

combination of diagrams and texts. The text can be written

with a modelling language or with a natural language.

In order to make a model usable (productive), it is necessary

to specify the language in which it is expressed. In addition,

this language must be clearly defined so that the models are

handled by the machines. We use for this a meta-model. A

meta-model is a model that defines the expression language of

a model that is the modeling language [15]. The concept of a

meta-model makes it possible to define the characteristics

common to a set of models. A meta-model represents a formal

specification of an abstraction (abstract syntax), generally

consensual and normative of a modeling language.

A model is linked to its meta-model by a relation of

conformity. A model is said to conform to a meta-model if all

elements of the model are defined by the meta-model. This

notion of conformance is essential to model engineering, but it

is not new: a text conforms to a grammar, a JAVA program

conforms to the Java language, and an XML document

conforms to its DTD / XML Schema.

3.3.2 Meta-meta-model

In the same way that it is necessary to have a meta-model to

interpret a model, to be able to interpret a meta-model it is

necessary to have a description of the language in which it is

written: a model for the meta-models. It is natural that this

particular model is designated by the term meta-meta-model.

By its position in the hierarchy of use, the choice of the

meta-meta-model is very important, because it will depend on

all the meta-models and models defined thereafter.

In order to avoid the problem of defining meta-meta-models

(and thus avoid having to define a meta-meta-meta-model), the

idea generally adopted is to design the meta-meta-models. so

that they are self-descriptive, that is, self-defining. The MDA

approach defines the MOF as the only meta-meta-model for

the definition of different meta-models.

Figure 2 presents the different relationships that exist

between models, meta-models, and meta-meta-models. We

distinguish in this figure 2 the three levels of modelling M1,

M2 and M3 respectively corresponding to the model,

meta-model and meta-meta-model. The M0 level is real world

ie represents the system for example, a JAVA code of an

application, the level M1 is the model of this system for

example, a UML model of this application, this model UML

must be compliant with the UML standard ie. the M2 level and

all the meta-models have a single meta-meta-model which the

MOF is the last level M3 since it describes itself ie. MOF is the

meta-model of MOF.

Figure 2: Relationships between models, meta-models, and

meta-meta-models

The central concept of the MDA is the notion of a model.

Whatever the scientific discipline considered, a model is an

abstraction of a system built for a specific purpose. It is said

that the model represents the system (programs, computer

applications, etc.). A model is an abstraction in that it contains

a restricted set of information about the system it represents. It

is built for a specific purpose and the information it contains is

chosen to be relevant to the user that will be made of the

model. A model is often presented in the form of a

combination of diagrams and texts. The text can be written

with a modelling language or with a natural language.

4. SYSTEM ARCHITECTURE

In this section, we describe the architecture of our system,

Figure 3 presents an overview of this architecture that is based

on MongoDB: the NoSQL[22] and document-oriented data

management system, the choice of MongoDB is for several

reasons, first since 2015 , according to db-engines [1],

MongoDB is the first in the ranking of the most popular

NoSQL database management systems. Then the majority of

approaches that offer NOSQL-based RDF data management

use column-oriented NoSQL systems such as HBase.

Figure 3: RDF Graph example

4.1 Storage Approach

Storing the RDF triples in a document-oriented database is a

very difficult operation, since the triple RDF contains 3

elements and the JSON format is of a key/value pair structure.

 To store the RDF data in the MongoDB database, you need

Mouad Banane et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 734 – 741

737

to convert the triple RDF T that contains the elements (Subject

S, Predicate P, Object O), for this reason, we transform the

RDF data into JSON-LD format through JSON-LD RDF

API[16]. JSON-LD JavaScript Object Notation for Linked

Data is a method for encoding linked data using JSON. The

goal is to provide a simple way for developers to turn existing

data into JSON to JSON-LD. This allows you to serialize data

in the same way as with traditional JSON. JSON-LD is a

recommendation of the World Wide Web Consortium and,

therefore, is considered a standard.

4.2 Querying Approach

For querying RDF data, we will use a SPARQL query

translator in MongoDB queries. For this we have two choices

the first is the use of xR2RML as in [17], this approach

consists of the following steps illustrated in Figure 4. First the

transformation of the SPARQL query into an abstract query

through the xR2RML mapping, then our abstract SPARQL

query will be translated into an abstract MongoDB query that

will be passed through a set of optimization techniques in

order to finally have our MongoDB query.

Figure 4: SPARQL to MongoDB mapping using xR2RML

The second technique of this translation is based on the

meta-models approach, firstly we realize a SPARQL

meta-model and a MongoDB meta-model, then we propose

the transformation between these two meta-models, to realize

this transformation we used the Atlas transformation language

(ATL)[18]. The meta-model SPARQL language is illustrated

in Figure 5. In the following, we describe the components of a

SPARQL query necessary for the realization of this

meta-model.

4.2.1 SPARQL Meta-model

An Ask, Select, Construct and Describe request are

SPARQL queries, and the Select query contains the Select

clause and the Where clause, or the Select clause contains only

one or more Variable as long as the Where clause consists of a

GraphPattern that can be either an OptionalGraphPattern, a

FilterPattern, a UnionGraphPattern or a TripleSameSubject

that is composed of a subject, predicate, and an object. The

following figure 5 illustrates our proposed SPARQL

meta-model.

Figure 5: Proposed SPARQL meta-model

4.2.2 MongoDB Meta-model

A MongoDB query can be an insertion query: Insert, modify

query Update, Delete query or a selection query: find, this find

query contains two elements: query and projection, and each

of these two elements is composed of one or more operators,

so the projection also contains one or more fields. The figure 6

shows the proposed meta-model for a MongoDB language

find query.

Figure 6: Proposed MongoDB meta-model

The figure 7 illustrates our approach in the levels model of

model driven engineering, our system that transforms the

SPARQL queries to MongoDB queries takes models using

SPARQL and MongoDB models, these SPARQL and

MongoDB query models conform respectively to the

meta-models of SPARQL and MongoDB and these two

meta-models are also conform to the MOF meta-model.

Mouad Banane et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 734 – 741

738

Figure 7: SPARQL to MongoDB in MDE architecture

4.3 Transformation

Given a source model in the language is SPARQL, and a

target model in the language is MongoDB, it is in this step to

develop a mapping of the concepts of SPARQL to those of

MongoDB (eg a SELECT clause corresponds to a find()

clause of MongoDB). Therefore, the techniques of

meta-modeling presented above are used to establish a

comprehensive and generic basis of rules.

The transformation rules are established between the source

meta-model and the target meta-model, that is to say between

the set of concepts of the source model and that of the target

model. The transformation process takes as input a model

conforming to the source meta-model and outputs another

model conforming to the target meta-model.

To define a model transformation, we can use a non-formal

language, an action language to represent the transformation

algorithm, or a well-defined model mapping language.

Conscious of the need for a well defined and standardized

language for the expression of the rules of model

transformations, to realize this transformation we can use

specific languages like QVT[19] and ATL (ATLAS

Transformation Language). Object Management Group

(OMG) offers QVT for the standardization of the

transformation process. This standard requires that model

transformations be precisely defined in terms of the

relationship between a source meta-model and a target

meta-model and that both meta-models are all MOF [9]

compliant. In our case, we used the ATL language.

Once specified and expressed, the rules require a runtime

engine to run. This engine takes as input the source model and

meta-model, the target meta-model, as well as the

transformation model (the transformation rules written in the

ATL transformation language, based on the correspondences

between the two source and target meta-models.) and its

meta-model (representing the ATL transformation language

grammar) and outputs the target model. The transformation

engine can proceed either by interpretation or by compilation.

A SPARQL search query can contain more than the clause

SELECT the following clauses: WHERE, FILITER, ORDER

BY and LIMIT and for MongoDB we find the clauses find,

Sort, Limit. Table 1 illustrates the SPARQL language clauses

with their corresponding clauses in MongoDB's query

language.

Table 2: Corresponding syntax of SPARQL and MongoDB

SPARQL MongoDB query

SELECT db.collection.find

WHERE WHERE

FILTER FILTER

ORDER BY Sort

LIMIT LIMIT

Table 3: Example of queries conversion from SPARQL to

MongoDB

Query SPARQL Syntax MongoDB

Syntax

Retrieve the list of

persons

SELECT * FROM

person

db.person.find()

Get first name and

age of all persons.

SELECT

?first_name, ? age

FROM person

db.person.find(

 { },

 {

first_name: 1,

age: 1, _id: 0 }

)

Get information

from persons with

as first name

OMAR and they are

45 years old

SELECT *

FROM person

WHERE?first_name

= "OMAR"

AND ?age = 45

db.person.find({

first_name:

"OMAR", age:

45 }

)

Retrieve

information from

persons with an age

greater strictly than

20 and less than or

equal to 45

SELECT *

FROM person

WHERE ?age > 20

AND ?age <= 45

db.person.find(

 { age: { $gt:

20, $lte: 45 } }

)

5. EVALUATION

In this section, we describe the configuration and the

experimental setup, then we present the performance

evaluation of our MongoDB based RDF store, as well as the

comparison with other existing approaches that are also based

on NoSQL technologies.

5.1 Configuration & Experiments Setup

For the implementation and testing our system is based on

MongoDB is specially version 4.0, with Intel 2.4G processor

for the hard disk can hold up to 4TB and a memory of 8GB.

5.2 Performance evaluation

For the evaluation of the system, we use the Lehigh

University Benchmark (LUBM) [20] which is the most

benchmark used to test the performance of RDF data

management systems. We use three instances of this

benchmark which are LUBM1, LUBM2 and LUBM5. The

Mouad Banane et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 734 – 741

739

following table shows our three datasets with their number of

universities, their number of triples and their size.

Table 4: LUBM datasets informations

Dataset Number of

Universities

Number of

Triples

Size

LUBM1 1000 138M 11,4 GB

LUBM2 2000 276M 22,77 GB

LUBM5 5000 689M 56,8 GB

5.3 Comparison with other existing systems

We present in Table 5 the results of this experiment using

the LUBM benchmark queries on the Jena-HBase, Rya and

our MongoDB based systems, the results are presented on the

three instances of the LUBM Benchmark.

Dataset LUBM1 LUBM2 LUBM5

 System

Queries

Jena-HBase Rya MongoDB Jena-HBase Rya MongoDB Jena-HBase Rya MongoDB

Q1 61 48 44 228 145 147 414 440 398

Q2 182 5127 120 2322 1378

3

2000 14565 2361

1

14705

Q3 220 42 63 2549 55 52 5543 61 74

Q4 508 780 524 2498 825 793 5616 764 729

Q5 619 2946 602 4645 3039 3106 11513 3216 4015

Q6 483 254 237 4367 1518 1580 11161 3538 3389

Q7 479 603 463 2639 607 712 7031 636 605

Q8 767 1002

6

1225 3006 1038

4

2763 5939 1085

1

5549

Q9 635 3403 756 7752 2567

7

8541 19972 4602

6

17852

Q10 99 21 34 1053 137 184 2338 139 172

Q11 49 65 42 51 72 50 62 85 59

Q12 63 484 68 79 465 83 124 471 134

Q13 201 115 132 2391 117 128 5175 516 480

Q14 189 217 170 2938 1397 1305 7872 3834 3607

Table 5: Experiments using LUBM queries on

Jena-HBase, Rya, and our MongoDB based system

Mouad Banane et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 734 – 741

740

Figure 8: execution time for Q1 LUMB Benchmark

Figure 9: execution time for Q11 LUMB Benchmark

Figure 10: execution time for Q11 LUMB Benchmark

6. CONCLUSION

The growing volume of RDF data requires efficient

management of this huge data, we have proposed in this paper

a scalable and very powerful RDF store implemented on a

document-oriented NoSQL database named MongoDB. The

results of the experiments obtained show the effectiveness of

our approach compared to existing systems. This approach

based primarily on two steps first is for storage that consists of

transforming the RDF triples into a JSON document using the

JSON-LD format, and for the second ie. Querying is to

transform a given SPARQL query into a MongoDB query

using the meta-model approach.

REFERENCES

1. DB-Engines Ranking - popularity ranking of database

management systems. [Online].

https://db-engines.com/en/ranking. [Consulted on: 09-04

-2019].

2. The Resource Description Framework (RDF) and its

Vocabulary Description Language RDFS

3. K. Chodorow, MongoDB: The Definitive Guide:

Powerful and Scalable Data Storage -.

4. JSON-LD - JSON for Linking Data . [Online].

Avalable on: https://json-ld.org/. [Consulted on:

28-07-2018]

5. V. Khadilkar, M. Kantarcioglu, B. Thuraisingham, et P.

Castagna, Jena-HBase: A Distributed, Scalable and

Efficient RDF Triple Store , p. 4

6. N. Papailiou, I. Konstantinou, D. Tsoumakos, et N.

Koziris, H2RDF: adaptive query processing on RDF

data in the cloud. , 2012, p. 397.

tps://doi.org/10.1145/2187980.2188058

7. HBase in Action , Manning Publications. Book

8. M. Banane, A. Belangour, et L. E. Houssine, Storing

RDF Data into Big Data NoSQL Databases, in Lecture

Notes in Real-Time Intelligent Systems, 2017, p. 69‑ 78.

https://doi.org/10.1007/978-3-319-91337-7_7

9. Learning Apache Cassandra : build an efficient, scalable,

fault-tolerant, and highly-available data layer into your

application using Cassandra. Book

10. Ladwig et A. Harth, CumulusRDF: Linked Data

Management on Nested Key-Value Stores , The 7th

International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS 2011). Vol. 30. 2011.

11. Apache Accumulo. [Online]:

https://accumulo.apache.org/. [Consulted on:

31-01-2019].

12. R.Punnoose, A. Crainiceanu, et D. Rapp, Rya: a scalable

RDF triple store for the clouds , Proceedings of the 1st

International Workshop on Cloud Intelligence. ACM,

2012.

https://doi.org/10.1145/2347673.2347677

13. J. Broekstra, A. Kampman, et F. van Harmelen, Sesame:

An Architecture for Storing and Querying RDF Data

and Schema Information, International semantic web

conference. Springer, Berlin, Heidelberg p. 16.

14. M.Banane, A.Belangour, New Approach based on

Model Driven Engineering for Processing Complex

SPARQL Queries on Hive International Journal of

Advanced Computer Science and Applications(IJACSA),

10(4), 2019.

https://doi.org/10.14569/IJACSA.2019.0100474

15. About the Meta Object Facility Specification Version

2.4.2 . [Online].

https://www.omg.org/spec/MOF/2.4.2/About-MOF/.

[Consulted : 09-11-2018].

16. JSON-LD RDF API. [Online] :

https://json-ld.org/spec/latest/json-ld-rdf/.

17. F. Michel, L. Djimenou, C. F. Zucker, et J. Montagnat,

xR2RML: Non-Relational Databases to RDF

Mapping Language , p. 35

https://doi.org/10.1145/2187980.2188058
https://doi.org/10.1007/978-3-319-91337-7_7
https://doi.org/10.1145/2347673.2347677
https://doi.org/10.14569/IJACSA.2019.0100474

Mouad Banane et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(3), May - June 2019, 734 – 741

741

18. F. Jouault et I. Kurtev, Transforming Models with ATL

, in Satellite Events at the MoDELS 2005 Conference, vol.

3844, J.-M. Bruel, Éd. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2016, p. 128‑ 138..

https://doi.org/10.1007/11663430_14

19. I. Kurtev, State of the Art of QVT: A Model

Transformation Language Standard , in Applications

of Graph Transformations with Industrial Relevance, vol.

5088.

20. Guo, Yuanbo, Zhengxiang Pan, and Jeff Heflin. LUBM:

A benchmark for OWL knowledge base systems. Web

Semantics: Science, Services and Agents on the World

Wide Web 3.2-3: 158-182.

https://doi.org/10.1016/j.websem.2005.06.005

21. Ahamad, D., Akhtar, M., & Hameed, S. A. (2019). A

Review and Analysis of Big Data and MapReduce

International Journal of Advanced Trends in Computer

Science and Engineering, 8(1), 2–4.

https://doi.org/10.30534/ijatcse/2019/01812019

22. Erraissi Allae, et Abdessamad Belangour. Data Sources

and Ingestion Big Data Layers: Meta-Modeling of

Key Concepts and Features. International Journal of

Engineering, s. d., 7.

23. B.Manoj, K.V.K.Sasikanth, M.V.Subbarao Prakash, V. J.

(2018). Analysis of Data Science with the use of Big

Data. International Journal of Advanced Trends in

Computer Science and Engineering, 7(6), 5–8.

https://doi.org/10.30534/ijatcse/2018/02762018

https://doi.org/10.1007/11663430_14
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.30534/ijatcse/2019/01812019
https://doi.org/10.30534/ijatcse/2018/02762018

