
 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2883


ABSTRACT

This research presents a methodology for trusting the
provenance of a data on the web. The implication is that the
data does not change after publication and the source of the
data is stable. There are different data that should not be
changed over time, such as published information in books
and similar documents as well as news or events reported on
the web. If the data changed after publication on the web, the
web pages that reference the unstable data will lose points of
interest or link to different resources. With the current move
to linked data and the semantic web, this becoming a greater
obstacle to be solved. This research presents a methodology
for establishing trusted information using an encoded
reference of the data embedded in its URI, which creates a
stable reference of the data and a method for ensuring its
provenance stability. The holy Quran data has been used as a
data set in this study. The results showed that the
methodology is highly applicable and has no overhead cost
over the loading time. The novel solution can be applied
directly to any data portals or web content management
systems.

Key words: Data provenance, Holy Quran, Web Application,
Trusty URI, Cryptographic digest, Web of Data, Information
Search, and Retrieval.

1. INTRODUCTION

Currently, the web is the largest main source of information.
Other valuable sources of information, such as libraries and
information banks, have most or part of their information on
the web. The information on the web can be change over time.
However, there is no mechanism for tracing such changes in
general. Some websites may have a mechanism to trace
updates, such as showing versions of the web page or web
page history. Some web information should not change over

time such as scientific nanopublications, news, and related
media articles, literature, history and religious information.
The web is used to access such information using a Uniform
Resource Locator (URL), which is a web page Uniform
Resource Identifier (URI) for defining resources on the
Internet [1, 2]. There are differences between regular
publishing and digital publishing. For regular publishing, the
information is printed in books or newspapers in a limited
number of prints. However, digital information is unlimited
in a number of available copies, and has no cost compared
with regular printed information. Additionally, digital
information can be secured in different ways. Digital
information has many more benefits over regular information
distribution to a variety of readers anywhere. In fact, in
history, the web is not comparable. However, it has raised
different challenges as well. For any available information,
there is an author, publishers and readers. For digital
information, there are more parties, such as more publishers
and readers. In fact, the website replicate information as a
practice on today's web.

For publishing, there are more differences between digital
and regular methods. When a regular publication is chosen by
the author, the publisher is determined first and then the
publication process begins. Also, the information can be
published in both ways, regular and digital, which is currently
common these as of the writing of this article.

Additionally, digital publishing has a unique feature: the
amount of information to be published. While regular
publishing is usually for larger amounts of information, such
as books, or as small as one column in a newspaper, it can be
one word in digital publishing. Cost is not comparable since
digital publishing costs nothing compared to regular
publishing. Usually, digital publishing is open for everyone,
with and without authority, depending on the publisher, such
as social media, blogs or other news websites.

Toward Efficient Web Publishing with Provenance of

Information Using Trusty URIs: Applied the Proposed Model
with The Quran

Khalid S. Aloufi1, AbdulRahman A. Alsewari2,3
1Computer Science Department, College of Computer Science and Engineering (CCSE) Taibah University,

Madinah, Saudi Arab, Koufi@taibahu.edu.sa
2Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pahang,

Malaysia
3IBM Centre of Excellence, Universiti Malaysia Pahang, Pahang, Malaysia, alsewari@ieee.org

ISSN 2278-3091
Volume 9, No.3, May - June 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse61932020.pdf

https://doi.org/10.30534/ijatcse/2020/61932020

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2884

For digital publishing, when an author has information to
publish, the author selects a trustworthy publisher to host the
information. The audience is usually expected to go to such
trusted hosts to find data about a topic. For example, a website
allows users to publish their data and then can upload an
expanded version of the data. The user-author can be in
contact with his audience through this known website.
In digital publishing, the information published by an author
can be as small as one word and as large as an unlimited
number of words. Additionally, machines can publish data,
especially with the integration of the IoT in daily life.

Digital information can also be text as well as video or audio.
In digital publishing over the web, every piece of information
is considered a resource; metadata are used to describe the
data, and every piece of information can be referred to using
the web’s URI system. The web is making data publishing
very flexible and affordable for humans and machines as well.
This research provides a methodology for obtaining trust in
data publishing over the web. One of the methodologies uses
trusty URIs, which are mainly applied to nanopublications;
however, the methodology can be developed for other web
resources.

When the client wants to read a web page about a topic, a
search engine is usually used to find related web pages. The
client selects one web page. At this point, the hosting web
server processes the client request and returns a response to
the client.

To search for a trusted resource, however, the user wants to
make sure the information is original, trusted and verifiable,
which current search engines have no mechanism for.
Additionally, using a validating authority, the client can
validate a resource.
Therefore, the following system is presented for the
publication of trusted resources for validation by clients of
interest.

2. RELATED WORK

Different research has been conducted on the Quran, which
helps build advanced Quran applications. Additionally, the
methodologies learned in these references can be applied to
many different applications related to text resources as well as
Arabic resources in general.

There has been considerable interest and research effort for
building trusted methodologies for resources on the Internet,
whereas some of the research has been mainly for Quran text.
Aimad Hakkoum and Said Raghay built a question-answering
system based on the Quran with consistent meaning of verses
[3, 4]. They created a web interface of the developed ontology
in the OWL web ontology language and the simple protocol

and RDF query language (SPARQL) [5-7]. Ahmed
SharafEldin and Shaimaa Salah Abbas developed a
methodology for extracting knowledge from the Quran by
developing an ontology of the Quran concept that can be used
for any other application [8]. The Quranic Speech Database
for Arabic Speakers (QSDAS) has been developed to help
natural language processing applications in Arabic [9]. Raja
Yusof and others have developed an efficient Arabic word
stemmer tested on the 30th part of the Quran. Different
Arabic word patterns are known to be extracted from the same
roots [10]. Karima Meftouh and others developed a
methodology using a statistical method for analyzing Arabic
text from newspapers [11]. Ben Fraj Trabelsi and others have
developed a method for parsing Arabic sentences based on a
machine learning approach with a high success rate of
accuracy [12]. Hend Al-Khalifa and Amani A. Al-Ajlan
developed a system for Arabic readability using machine
learning techniques [13]. Alghamdi, Mansour and Muzaffar,
Zeeshan developed a methodology for diacritization of Arabic
words based on quad-gram probabilities [14]. Alghamdi,
Mansour and Alotaibi, Yousef developed a recognition
system for Arabic using hidden Markov models (HMMs)
[15]. They used the Saudi Accented Arabic Voice Bank
(SAAVB) as an Arabic speech corpus. Droua-Hamdani and
others developed an Arabic speech recognition system [16].
One of the studies analyzed Arabic text to extract questions
from the text [17]. Segmenting Arabic text based on lexical
analysis is essential for information extraction and
summarizing [9, 18]. Al-yahya and others developed an
ontology for the Quran based on the time nouns of verses [19].
Aqil Azmi and Nawaf bin Badia developed an e-narrator
system for analyzing Hadith content [20].

Such approaches and studies can open a wide variety of
applications over different Arabic structured resources, such
as the Hadith and Quran. Some of the studies have considered
enhancing the security of Quran text in terms of validation,
such as the study performed by Mostafa G. [21]. Hassan
Abubakar and Suhaidi Hassan presented a methodology for
using blockchains to provide digital trust in text from the
Quran [22]. The proposed system used enhanced blockchain
technology with different processes and components. For
instance, the system contains Whisper as a network protocol,
Swarm as a distributed storage, the Ethereum Virtual
Machine (EVM)-Ethereum as a decentralized virtual
machine and the Mist Browser as the system browser. A.
Boukabou and M. Khelifa presented a methodology for
securely transmitting Quran text [23]. They used chaotic
oscillations as a method for encoding text during
transmission.

M. Khan, Z. Siddiqui and O Tayan presented a digital
certification methodology for Quran text. The user can easily
verify the Quranic text online [24]. Additionally, the same

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2885

author noted that users are not satisfied with the validity of
Quran text in applications [25]. Additionally, they mentioned
that the security and validation of Quran text are either
performed by watermarking techniques or following the
encoding of the text using different methodologies.

E. Nada, A. Ahmed and M. Abd-Allah presented an online
e-learning system for the Quran [26]. Additionally, they
presented a questionnaire about online learning for the
Quran. The study shows that most users are interested in
learning the Quran online, which leads to the requirement of
having secure and trusted online sources for the Quran text.
F. Kurniawan, M. Khalil, M. Khan, and Y. Alginahi
presented a methodology for authenticating Quran images
[27]. The novel methodology presented can detect any change
in the Quran image and the location of the change using
fragile watermarking.

Y. Alginahi, M. Kabir and O. Tayan developed an approach
for using watermarking to detect Arabic text documents [28].
The methodology proposed is based on watermarking
Kashida techniques to protect the authenticity and originality
of the document.

In the paper titled "Islamic Knowledge Ontology Creation",
the authors, S. Saad, N. Salim and H. Zainal, generated
structured knowledge from the Quran using a methodology by
building an ontology from Quran text and obtaining
knowledge from it [29]. The methodology used is a simulation
based on the combination of natural language processing
techniques (NLP), text mining techniques and information
extraction (IE). The integration of such studies with
validation can be used to authenticate text from knowledge
extraction. B. Abuhaija, A. Awadelkarim, N. Shilbayeh, and
M. Alwakeel applied a secure model mainly applied on web
sites with Islamic content [30]. The model guarantees trusted
content when all parties join in the model. They presented the
formal specification and the detection process of the
watermark in a document enhanced by discrete wavelet
transform (DWT) and contourlet transform (CT). The model
provides secure content with trusted checks and validity that
can be applied on websites under management since the web
is open to the public and difficult to manage with human
checks due to the large amount of information on the Internet
today.

M. Majdalawieh, F. Marir and I. Tiemsani presented a study
on modeling business processes for specific finance and
management purposes based on the guidelines mentioned in
the Quran and the Hadith [31]. The paper presented an
algorithm for gathering information about specific topics and
actions to present Islamic solutions for businesses. Such
studies show how important the validity of the resources is.
One of the methods used to verify content is by using trusty

uniform resource identifiers (URIs), represented by Kuhn
[32-34]. This method is detailed in the next section, which
will be used to develop a model for providing a methodology
to provide a trusted resource of the Quran over a decentralized
system.

Different web resources are represented in nanopublication
formats, which makes it useful to have trusted sources using
validating methodologies such as trusty URIs. A database of
gene-disease associations (DisGeNET) has a gene dataset
represented as nanopublication [35].

3. TRUSTY URIS

In this section, trusty URI, which is an authentication method
for web resources, is detailed. For example, when a web page
is created, it is assigned a URL web address. When the
dynamic web page content changes, its URI is usually the
same. Generally, information is presented in different
document structures, such as nanopublications, regular
resource description framework (RDF) graphs, web page
scripts or any digital artifact at the byte level, such as text or
image files. However, in some cases, the web page content
should not change, such as the case of scientific publications,
news reports, static information sources, published books,
articles or facts.

This content should be updated in another web page so
interested users can locate the new version of the information
and go back to an earlier version of the information if there
was any, which builds information trust.

Additionally, web resources are linked with other resources
on the web. When these resources are verified and trusted,
they are used to validate other linked resources, creating a
network of trusted content, as will be shown. To add trust to a
web resource, trusty URI is used.

In trusty URI, the URI contains an added cryptographic digest
hash value in Base64 notation representing the resource
content. The hash value is a short sequence of bytes or bits
computed for the resource. Any change in the resource results
in a totally new hash value. As of the state-of-the-art,
although infinite different inputs can result in the same hash
value, it is impossible to obtain the resource from the hash
value.

Therefore, when the resource content changes, the hash value
no longer represents the resource. Someone can easily change
the content and update the hash value as well. However, when
the content is distributed over different information sources,
such as search engines or web archives, it is possible to check
the validity of the resource content, and any change will be
noticed. Furthermore, the content URI is known and cannot

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2886

change since it is supposed to be linked from other different
resources on the web. While the methodology increases the
overhead process of generating trusted information, it is
compatible with the web standards of open and distributed
information resources.

As a result, trusty URI makes web resources verifiable,
immutable, and permanent [32]. As mentioned earlier, the
resource is verifiable because the hash value can be used to
check the validity of the resource.

Consequently, the resource is immutable since any change in
the resource will change the hash value. The URI is
permanent as well because it can be retrieved from other
linked web resources, search engines or distributed web
archives. Figure 1 shows the three features. The hash value is
used to verify the resource, the resource is immutable with the
original hash and the resource is permanent since it has
copies somewhere on the web. The client requests a resource
URI that contains a hash value. Then, the server responds
with the requested resource. After that, the client can verify
the resource at a trusted server. These are the general steps for
retrieving trusted content over the web, which are used in the
proposed model of a trusty web resource publication system.

Figure 1: Magnetization

3.1 Verifiable
For the verifiable step, the author uses the publisher system to
upload or generate content, where the publisher's task is to
publish the resource with generated trusty URI based on the
information provided by the author. Additionally, the
resource should include the publication dates and links to a
minimum trusted URI. If the resource was the first from the
author, then the system of the publisher links it to the main
publisher page. This creates a chain of resources, which could
help validate a complete tree of resources. Therefore, the
resource now has a trusty URI that can be used to verify the
resource.

3.2 Immutable

The immutable step, when a client wants to retrieve a
resource, a trusty search engine returns the trusty resources.

The trusty search engine task retrieves only trusted resources.
The crawler of such search engines stores only trusted web
pages after validation from step one. Additionally, distributed
servers of trusted content or resources can be used to respond
to reader requests of trusted resources only.

3.3 Permanent

The permanent step, the user retrieves resources from a
trusted source. Either the user or the source can perform the
task; if the user validates the resource, then the user must
search for the resource and validate it against the hash value
found in the URI. If the source, such as a search engine,
performs the task, then the user is free from the task unless is
it performed optionally.

3.4 Trusty Resources

To have a trusty resource, there are different components that
need to work together in one system. Otherwise, the user has
different options for performing the task, as described in a
later section. Initially, the author has a resource to share using
a publisher system, which publishes resources with a trusty
URI. A distributed network of servers is used to host the new
content to share the same copy of the newly generated
resource. Then, a client requests a resource from a server. The
user can then determine whether the resource is considered a
valid trusted resource using a validating entity, which can be
achieved by contacting an entity from one of the servers from
the distributed network of servers. The information created as
a digital artifact is represented as a resource published on the
web with a web address as an original artifact and represented
by its URI. It should have a publication date as well as a link to
another already trusted resource. As mentioned earlier, the
resource is trusted if it has the three features verifiable,
immutable and permanent resource. Verifiable means the
resource has a URI with a hash value. Immutable resources
can be validated by the URI. Permanent resource copies are
distributed over the Internet. Each of the characteristics
requires a sequence of tasks to be accomplished.

3.5 Searching for Trusted Resources

Initially, the user is looking for a trusted resource (A). The
user uses a search engine (S). The user finds a resource that
claims to be a trusted resource (A). (A) is hosted by the source
or host (H). (H) allows its resources, such as (A), to have links
to other trusted resources only. Therefore, any URI from (A)
is trusted. If the trusted resource (A) is found in trusted source
(H), a trusted search engine (S), then the job is completed for
(A). The search engine (S) only returns a trusted resource (A)
from trusted hosts, such as (H), which is verifiable, immutable
and permanent. Otherwise, if the user finds a resource from
an untrusted source (S) or (H), the user has to validate the

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2887

resource (A) with a trusted source (S) or (H). As a result, to
complete the task of trusting a resource, the trusted source (S)
is an essential part of the system. Through the trusted source
(S), the user can trust the host (H) and the resources (A, B, C,
...). As mentioned earlier, the resource is trusted if it is
verifiable, immutable and a permanent resource. Therefore,
when the user finds trusted resource (A) that has another
trusty URI of another trusted resource (B, C, ...), the user can
trust any of the trusted links of (B, C, ...). The user now knows
the clicked link should lead to a trusted URI of the resource
(B, C, ...). The user knows that the (B) URI is valid since
resource (A) is valid. However, the user does not know if the
content of the resource (B) is verifiable, immutable and a
permanent resource. Therefore, the user must validate the
linked resource (B). If (B) is requested from a trusted host
(H1), the user can consider (B) as a trusted resource. When
resource (B) is hosted in another untrusted host (H2), then the
user must verify (B) in a trusted server using the distributed
network of servers.

Alternatively, any trusted host can provide a trusted service
and be part of the distributed network of servers. The first host
(H1) of resource (A) can be used to confirm that host (H2) is a
trusted host; therefore, any linked URI is trusted, and hence,
(B) is a trusted resource. This feature can be added, and the
trusted source that provided the resource (A) URI can help in
validating any linked resource, such as resource (B).
Otherwise, resource (B) is not trusted.

Additionally, if the source (S) returns only trusted URIs, then
the uncertainty of this step is solved. Therefore, source (S)
only allows trusty URIs in the resource, making it easier for
the reader to follow up a trusted resource only by clicking
trusted URIs. This eliminates the issue mentioned in the step
of validating a source. This mechanism helps navigate from a
trusted source to a trusted source, making the step easier for
the user and hiding the complexity. It is easier to build such
trusted content.

3.6 Restricted Publication Time

The trusted resource should be published only once. When
published it should not change or update. When there is an
update, it should be published as a new resource. Therefore,
when the user navigates to the resource (A) and finds a new
link to other resources (B, C, D, ...), the user has no means for
determining whether these URIs are valid. However, when
the source (S) only returns trusted resources with trusty URIs
to other resources (B, C, D, ...), the user knows that (A) is a
trusted resource and that any of the linked resources (B, C, D,
...) is trusted as well. However, (S) does not know if the
resource has changed. One solution to this issue is validating
the resource either by a plugin at the client or by a distributed
network of servers. In the first option, by using a plugin in the
client browser, the user knows that the URL is a trusty URI;
otherwise, the search engine will not return the resource. The

user knows that the resource could have been changed later
and the URL to other resources added and not checked by the
search engine because the search engine does not update its
record every second. Therefore, the solution to this issue is a
plugin at the client browser to double-check the source trust.
Therefore, the user knows that the resource is obtained with a
trusty URI and can check the resource and confirm that the
resource is verifiable, immutable and permanent resource.
The second option, as an alternative to using a plugin, is that
the client can validate the resource using a validating server
from a network of distributed servers that help the client and
search engines check resources.

3.7 Trusting sources and hosts

The user either trusts the source, which supposed to be a
search engine, (S1) and the source host (H1), which is
supposed to be a web server. Also, the user may trust (S1) but
does not trust (H2), does not trust (S2) but trust (H1) or, as a
last possible situation, does not trust both (S2) and (H2).
Figure 2 shows the four conditions. The first case is when the
user does trust the search engine (S1) and the source host
(H1), the situation is considered ideal because the user, in this
situation, can trust the retrieved resource (A) and its
internally linked resources, such as (B) as shown in Figure 2
in red lines. The user trusts the resource (B) because it is
retrieved from a trusted host (H1) and linked from the
resource (A), which is retrieved from the trusted host (H1). In
the second case, when the user trust the source (S1) but does
not the host (H2), the user can accept the retrieved resource
(C) and its linked URIs but will need more overhead
processing to trust the resources (C) as shown in Figure 2 in
the blue line. The user knows that the URI of the resource (C)
is correct. However, as mentioned the user does not trust (H2).
Therefore, the user does not trust the resource content and,
therefore, need to check the resource (C). The user will have
to check that the content of the resource (C) matches its URI
as shown in Figure 2 in the dashed blue line. Alternatively,
the user needs a trusted source (S1) and trusted host (H1) to
verify (C) as shown in Figure 2 in the blue line. If (C) becomes
trusted, then all its content is trusted, and the process
continues as a first case or the second case. In the third case,
when the user does not trust the source (S2) but does trust the
host (H1), then the user can trust the retrieved resources (D)
from the host (H1) as shown in Figure 2 in the green line.
After (D) become trusted, then all its content is trusted, and
the process continues as mentioned in the first case or the
second case. When the user does not trust both the source (S2)
and the host (H2), which is the case of today’s web contents.
The user requires to need to move to case one, which requires
a trusted (S1) and a trusted host (H1) to verify the resource (E)
as shown in Figure 2 in the orange line. Otherwise, the user
will not trust the resource (E). After (E) becomes trusted, then
all its content is trusted, and the process continues as
mentioned in the first case or the second case.

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2888

Figure 2: Trusted source and host

4. PROPOSED SYSTEM

There are different methodologies to build a trusty URI
system to check the trust of a resource as shown in the earlier
section. Different entities will be using the trusty URIs
system, the author, the reader, the publisher and the trusty
server, which could be a distributed trusty server network.
Figure 3 shows the systematic functions of a trusty system to
have a trusty URI and trusty resources. The trusty system
composed of Trusty URI, Trusty Resources and Trusty
Sources. Trusty URI is the URI with a hash value that
represents its resource content. Trusty Resource is the web
resource, such as html webpage, RDF resource or
web-service. If these three components are available, then we
have trusty web content. In case we must add a validator when
there is one missing component of the trusty system, the
system has a small overhead over a regular system, which is
the cost paid for having a validator only, which means the
proposed system is following current web standards and built
according to the regular information retrieval models on the
web today. As mentioned earlier, it is very useful for specific
kinds of content. The figure shows the solution with the
required components and the associated processes. Following
the actions shown in the figure, the author has content to
publish as trusted content for readers. Therefore, the author
uses a publisher system that has a content management
system (CMS) with a trusty unit. The job of the trusty unit is to
generate the hash value of the resource and include it in the
URI.

Figure 3: Trusty URI Function over entities

Additionally, an HTML web page can have trusty URIs as
well as regular URIs. For example, for the HTML resource, as
shown in Figure 4, the trusty resource URI is shown at the top.
Like HTML, linked data are referenced over the web and can
be trusted or validated depending on the source. Figure 4
shows an embedded trusty URI for another page.
Self-referencing, as in the case of some web resources, is not
assumed in this work since it increases the complexity of the
validation process. Self-referencing can be applied as
mentioned in the literature since some data standards have
internal referencing such as nanopublication. As shown in the
figure, SE1 and SE2 are known trusted search engines that
reference content from trusty resources only. After the reader
identifies a trusty source using trusty search engines, the
reader can be confident that the resources retrieved are from
trusty sources. When using regular search engines, the reader
is responsible for checking the resource.

Figure 4: Example of a trusty HTML resource

 Example_Page_Title

https://www.example.com/803dee27b5a9ddf866112e
ac2f8a 34e5bd83ca08015ec4acaaffeba25a378352

<!DOCTYPE HTML>
<HTML>
<BODY>
<H1>MY TRUSTY RESOURCE</H1>
<P>MY TRUSTY RESOURCE.</P>
<P TITLE="TRUSTY RESOURCE">
<A
HREF="HTTPS://WWW.EXAMPLE.COM/22B81FD12C136D4CF67A3
7DE941908D8
3EAF8E97571C4983F9308D30D52AD8F9">THIS IS A LINK TO A
TRUSTY RESOURCE
</P>
</BODY>
</HTML>

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2889

Generally, retrieving a resource from a trusty source means
that the trusty resource has a trusty URL as well. In case of
having a trusty URI without trusting the content, there is the
option of using a validator as mentioned in section 3 to check
the URI; otherwise, if the reader is reading the content from a
trusty publisher, then this step is not required. Additionally, if
the trusty resource is retrieved from a trusty source, then the
URIs associated implicitly inside the trusty resource are trusty
URIs. Following a trusty URI from a trusty resource, there are
two possibilities. The first is that the resource is retrieved
from the trusty source. In this case, the user has no
requirement to validate the content. In the second case, the
user retrieves content from a source not known as a trusty
resource, such as the case when navigating the web from one
website to another. Then, the user has the option to validate it
using a validator. As seen from the different scenarios, the
trusted source is the main step. That is assumed because when
a user finds a resource on the web, the only way to know if it is
trusted is to find it from a trusty source. In the other scenario,
when finding a trusty URI but it is not known whether the
source is trusty, then using the validator will make the
determination.

5. RESULTS AND DISCUSSION

The Quran is one of the holy books. The Quran contains the
Sura, and each Sura contains the Ayah (verses). The Quran
contains 114 Sura, 14,870 distinct words, 78,245 words in
total, 6,236 Ayah, 3,178 distinct roots and 78,245 roots [36].
The Quran is one of the resources that is permanent and
immutable. The Quran verses are used in web pages as part of
an article or only a sequence of Ayah. In addition to the
different methodologies used to verify the contents of
different web content mentioned earlier, Quran verses can be
verified using the methodology presented in this paper. In a
web page that contains part of the Quran, part of or the whole
page can be verified if needed. This work tests the proposed
system with the Quran as a resource in text format, such as
HTML resources, as shown earlier in Figure 4, which is taken
from the dataset [36]. Therefore, the main task of verifying or
publishing a trusted resource is generating the hash value.
This is a challenging task since service time is critical for web
applications. Therefore, different experiments and tests show
the service time for different sizes of data. Additionally, the
experiment shows that different methodologies have different
service times for the same task. The operating system used for
the experiment is Windows 10 64 bit running on an Intel®
Core™ i7-4770 Processor with 16 GB of RAM. The
programming language used is Java, and the database is used
to store the data over PostgreSQL as the database
management system (DBMS). Then, a set of codes returns the
result of the experiment to test the service time for generating
the hash values for different resource sizes. Figure 5 shows
that the maximum time required to generate the hash for the

text of a Surah is 254.460688 ms. For the text of an Ayah, the
maximum time required to generate the hash is 27.444402
ms. Figure 6 shows that the minimum time required to
generate the hash for the text of a Surah is 0.667440 ms. For
the text of an Ayah, the maximum time required to generate
the hash is 0.119239 ms. Generating the hash value for Quran
text that has already been read by the computer is 9.182648
ms, as shown in Figure 7 and the hash value generated is
5c79fc50b16917aeb6e153f51d1c92c1abbef2f43ea5d3a96cdb
643617ee70f0. Generating the hash value for the Quran text
that requires reading first by the computer is 131.867402 ms,
as shown in Figure 7 and the hash value generated is the same
as earlier.

To hashing the doc format source file using the
MessageDigest class and DigestInputStream class in Java, the
time required to generate the hash value is 7782.190209 ms,
as shown in Figure 9. The hash value generated is the same as
that generated using the DigestUtils class. However, the time
required to generate the hash value is 56.928554 ms, as
shown in Figure 8, which is 0.7% of the time required using
the MessageDigest class and DigestInputStream class.
It is one thing to use Java security MessageDigestSpi in terms
of performance but using org.apache.commons.codec.digest
DigestUtils is quite another.

6. CONCLUSION

Resource validation on the web is one of the key challenges
for trusting data found on the web. There are different
methodologies used to trust web data; however, there is no
guarantee that the data version has been maintained. The
client can validate a resource using a trust certificate issued by
a validating entity for a specific domain with the option of an
external verification URL. Having a trusty URL, which means
that the URL has been checked, then any information on that
web page is also trusted. Other URLs on this page are also
trusty URIs, however, these contents also need to be checked.
Therefore, when using a trusty URIs, the contents of this URI
need to be checked. Once checked, all the information in this
URI also has valid URIs. However, when visiting a web site
and its content needs to be validated, there is a method to
check it, such as a trusty server that can check the URI for and
determine whether it is trusty or not for other URIs in the
page. Currently, the user accesses a page and determines
whether it trusts the URI, which is cumbersome. This
research presents a methodology for trusty data over trusty
URIs. Providing a different dynamic methodology for web
sites to validate content helps increase the trust of the
provenance of the information. Any change in the text will
change the URI.
In this work, a test was performed using regular text that
could represent regular HTML web pages. However, for the
provenance verification level of linked data represented using

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2890

RDF, the SPARQL endpoint has a web-based query, where
the page obtains the URL of the resource and validates against
its dataset. Following the same model represented in this
study, however, with a SPARQL endpoint automatic
machine-to-machine validation of the content becomes an
obvious task. Linked data makes this easier using SPARQL
endpoints for published information in RDF standards, which
include RDF in html web pages in a verifiable way by using
hash codes for every resource in RDF or HTML. The system
can be developed for distributed verification, where the
resource is validated against more than one server. As
mentioned, the resource has a unique URI generated by the
authority as the publisher of the resource. After publishing,
there is no authority. In this work, the system is tested using
the Quran, where each test represents an Ayah or Sura. In the
future, the system will be tested on images. In the future, an
associated protocol can be developed that can help in Industry
4.0 applications as well as scientific publications. In
conclusion, this work presents a method for trusted resources
over the web for sensitive information. The web does not
support trusted content in its current standards. Therefore,
different research and applications are necessary to fill this
gap and create an environment for specific content, and the
web is a place for verifiable, immutable and permanent
content.

Figure 5: Maximum time for generating the hash file

Figure 6: Minimum time for generating the hash file

Figure 7: Text

Fig. 8 File using checksumSHA256

Figure 8: File Using checksumSHA256

Fig. 8 File using checksumSHA256

Figure 9: File Using hashfilechecksum

REFERENCES

1. Cole, C.A., et al., Appending a uniform resource identifier

(URI) fragment identifier to a uniform resource locator
(URL). 2016, Google Patents.

2. Thomas, M. and V. Chooralil, Security and Privacy via
Optimised Blockchain. International Journal of Advanced

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2891

Trends in Computer Science and Engineering, 2019. 8(3):
p. 415-418.
https://doi.org/10.30534/ijatcse/2019/14832019

3. Hakkoum, A. and S. Raghay, Semantic Q&A System on
the Qur’an. Arabian Journal for Science and Engineering,
2016. 41(12): p. 5205-5214.
https://doi.org/10.1007/s13369-016-2251-y

4. Al-Janabi, A.A., K.M. Alhendawi, and A.A. Alsewari, An
Intelligent Neural Model for Assessing Web Systems
Performance. International Journal of Advanced Trends
in Computer Science and Engineering, 2020. 9(2): p.
1854-1860.
https://doi.org/10.30534/ijatcse/2020/145922020

5. Della Valle, E. and S. Ceri, Querying the semantic web:
SPARQL, in Handbook of Semantic Web Technologies.
2011.
https://doi.org/10.1007/978-3-540-92913-0_8

6. Knuth, D.E., Literate programming. The Computer
Journal, 1984. 27(2): p. 97-111.

7. Priatna, T., et al., Developing Management of Quran
Memorization Institutions through the Web System.
International Journal of Advanced Trends in Computer
Science and Engineering, 2020. 9(1): p. 465-468.
https://doi.org/10.30534/ijatcse/2020/63912020

8. SharafEldin, A. and S.S. Abbas, Knowledge
Representation of Quran Text: A Literature Review.
Egyptian Computer Science Journal, 2018. 42(4): p.
28-51.

9. Harrag, A. and T. Mohamadi, QSDAS: New quranic
speech database for Arabic speaker recognition. Arabian
Journal for Science and Engineering, 2010. 35(2 C): p.
7-19.

10. Yusof, R.J.R., et al., Qur'anic words stemming. Arabian
Journal for Science and Engineering, 2010. 35(2): p.
37-49.

11. Meftouh, K., M.T. Laskri, and K. Smaïli, Modeling
Arabic Language using statistical methods. 2010.

12. Fraj, F.B., C.B.O. Zribi, and M.B. Ahmed, Parsing
Arabic Texts Using Real Patterns of Syntactic Trees. The
Arabian Journal for Science and Engineering, 2010.
35(2C).

13. Al-Khalifa, H.S. and A.A. Al-Ajlan, Automatic
readability measurements of the Arabic text: An
exploratory study. Arabian Journal for Science and
Engineering, 2010. 35(2 C): p. 103-124.

14. Alghamdi, M., Z. Muzaffar, and H. Alhakami, Automatic
restoration of arabic diacritics: a simple, purely
statistical approach. Arabian Journal for Science and
Engineering, 2010. 35(2): p. 125.

15. Alghamdi, M.M. and Y. Ajami Alotaibi, HMM automatic
speech recognition system of Arabic alphadigits. Arabian
Journal for Science and Engineering, 2010. 35(2): p. 137.

16. Selouani, S.A. and M. Boudraa, Algerian Arabic speech
database (ALGASD): corpus design and automatic speech
recognition application. Arabian Journal for Science and
Engineering, 2010. 35(2): p. 157-166.

17. Khan, O., W.G. Al-Khatib, and L. Cheded, A Preliminary
Study of Prosody Based Detection of Questions in Arabic
Speech Monologues. Arabian Journal for Science and
Engineering, 2010. 35(2): p. 167.

18. Harrag, F., A. Hamdi-Cherif, and A. Salman Al-Salman,
Comparative study of topic segmentation Algorithms
based on lexical cohesion: Experimental results on
Arabic language. Arabian Journal for Science and
Engineering, 2010. 35(2): p. 183.

19. Al-Yahya, M., et al., An ontological model for
representing semantic lexicons: an application on time
nouns in the holy Quran. Arabian Journal for Science and
Engineering, 2010. 35(2): p. 21.

20. Azmi, A.M. and N. bin Badia, e-Narrator-An application
for creating an ontology of Hadiths narration tree
semantically and graphically. Arabian Journal for
Science and Engineering, 2010. 35(2 C): p. 51-68.

21. Mostafa, M.G. and I.M. Ibrahim. Securing the digital
script of the Holy Quran on the Internet. in 2013 Taibah
University International Conference on Advances in
Information Technology for the Holy Quran and Its
Sciences. 2013. IEEE.
https://doi.org/10.1109/NOORIC.2013.23

22. Abubakar, H. and S. Hassan, A Framework for Enhancing
Digital Trust of Quranic Text Using Blockchain
Technology. Journal of Telecommunication, Electronic
and Computer Engineering (JTEC), 2018. 10(2-4): p.
7-17.

23. Boukabou, A. and M.A. Khelifa. Secure Data
Transmission of Holy Quran Using Controlled Chaotic
Dynamics. in 2013 Taibah University International
Conference on Advances in Information Technology for
the Holy Quran and Its Sciences. 2013. IEEE.

24. Khan, M.K., Z. Siddiqui, and O. Tayan. A secure
framework for digital Quran certification. in 2017 IEEE
International Conference on Consumer Electronics
(ICCE). 2017. IEEE.
https://doi.org/10.1109/ICCE.2017.7889229

25. Zakariah, M., et al., Digital Quran Computing: Review,
Classification, and Trend Analysis. Arabian Journal for
Science and Engineering, 2017. 42(8): p. 3077-3102.

26. Nada, E.-S., A.A. Ahmed, and M. Abd-Allah. MOQEU:
A Moodle-based Quran e-university. in 2013 Taibah
University international conference on advances in
information technology for the Holy Quran and its
sciences. 2013. IEEE.

27. Kurniawan, F., et al. Authentication and tamper detection
of digital Holy Quran images. in 2013 International
Symposium on Biometrics and Security Technologies.
2013. IEEE.

28. Alginahi, Y.M., M.N. Kabir, and O. Tayan. An enhanced
Kashida-based watermarking approach for Arabic
text-documents. in 2013 International Conference on
Electronics, Computer and Computation (ICECCO).
2013. IEEE.
https://doi.org/10.1109/ICECCO.2013.6718288

 Khalid S. Aloufi et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(3), May – June 2020, 2883 – 2892

2892

29. Saad, S., N. Salim, and H. Zainal. Islamic knowledge
ontology creation. in 2009 International Conference For
Internet Technology And Secured Transactions,(Icitst).
2009. IEEE.

30. Abuhaija, B., et al. A Model for Securing Islamic
Websites: Formal Specification Paradigm: IT Research
Center for the Holy Quran and Its Sciences (NOOR),
Taibah University, Madinah, Saudi Arabia. in 2014 4th
International Conference on Artificial Intelligence with
Applications in Engineering and Technology. 2014.
IEEE.
https://doi.org/10.1109/ICAIET.2014.23

31. Majdalawieh, M., F. Marir, and I. Tiemsani. Developing
adaptive Islamic law business processes models for
Islamic finance and banking by text mining the Holy
Qur'an and hadith. in 2017 IEEE 15th Intl Conf on
Dependable, Autonomic and Secure Computing, 15th Intl
Conf on Pervasive Intelligence and Computing, 3rd Intl
Conf on Big Data Intelligence and Computing and Cyber
Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech). 2017. IEEE.

32. Kuhn, T. and M. Dumontier. Trusty URIs: Verifiable,
immutable, and permanent digital artifacts for linked
data. in European semantic web conference. 2014.
Springer.

33. Kuhn, T., nanopub-java: A Java Library for
Nanopublications. arXiv preprint arXiv:1508.04977,
2015.

34. Kuhn, T. and M. Dumontier, Making digital artifacts on
the web verifiable and reliable. IEEE Transactions on
Knowledge and Data Engineering, 2015. 27(9): p.
2390-2400.

35. Queralt-Rosinach, N., et al., Publishing DisGeNET as
nanopublications. Semantic Web, 2016. 7(5): p. 519-528.
https://doi.org/10.3233/SW-150189

36. Aloufi, K.S., Quran dataset, in Mendeley Data. 2019.

