

 Brijesh Pandey et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2252- 2259

2252

Application Portability Pertaining TOSCA in Cloud Computing Environment

Brijesh Pandey1,Dr. D. K. Yadav2, Dr. S S. Soam3

1AKTU,INDIA,brijesh84academics@gmail.com
2MNNIT,INDIA,dky@mnnit.ac.in

3AKTU,INDIA,sssoam@gmail.com

ABSTRACT

Achieving Application Portability in a cloud computing
environment is most demandable in today's scenario.
The problem of vendor lock-In issue needs to be
handled. There could be two ways of achieving
application portability. The first being Intermediation
and the other standardization. We have focussed our
research on standardization with the help of TOSCA. In
this paper, we have discussed all the scenarios, facets
and challenges in achieving application portability. We
have discussed TOSCA simple profile in YAML
common terms, definitions, workflows, etc. The
evolution of WS-BPEL from XML has also been
discussed in this paper. We have also touched the
formal method language PROMELA and tool SPIN for
modeling specification and verification of application
properties. We have given our model to perform the
task of achieving portability of application from one
cloud host to another.In this paper, we have taken the
example of the online hotel reservation system and
discussed its properties.

Key words: Orchestration, Openstack, TOSCA.

1. INTRODUCTION

Cloud computing is the current scenario is the most
evolving technology due to its IaaS, PaaS and SaaS
services. It offers several benefits such as on-demand
virtualized hardware infrastructure, user self-
provisioning, pays per use facility and elastic
computing.Distributed computing affects monetary
exercises which feature its commitment to the world
GDP.The wide assortment of cloud administrations has
prompted the structures and innovations being licensed
by different cloud specialist organizations. This has
raised the concern of vendor lock-in where the customer
is bound to have the services without its contention. The
Incidences where the cloud administrations being closed
somewhere around the suppliers or the disclosure of
security sickness has emphasized the hazard. The cloud
computing like Internet has the significant power to
contribute to economic growth and commercial
activities but the lack of global standards and interfaces
for portability and interoperability has let down the
growth.
The Portability in distributed computing setting can be
characterized as the capacity of a client to move its

application and information starting with one cloud
specialist organization then onto the next. Portability in
cloud computing can be widely categorized into two
forms i.e. Cloud data portability and cloud application
portability. The former is the propensity to transfer data
easily in an electronic format from one cloud service to
another. The latter is to relocate the component or
whole application from one cloud service provider to its
equivalent another cloud service provider without any
significant changes in the application code. The third
category of cloud computing portability could be cloud
platform portability which is further alienated into two
categories i.e. platform source portability and machine
image portability.The previous being the reuse of stage
segments crosswise over cloud IaaS administrations and
non-cloud foundation.The latter being the reuse of
packs containing application and information with their
supporting stages.
Various Interfaces in the cloud computing environment
for portability and interoperability of services are
standardized.The semantic web gauges, for example,
the Resource depiction structure (RDF) and Web
philosophy language (OWL) can be utilized to
characterize information and the information models in
machine-lucid structure. The Universal data element
framework (UDEF) can be used with data models to
facilitate the integrated processing of data. There are
application interfaces whose enumeration defines the
message content, its syntax and the envelope in which it
is transported.The Cloud information the board
interface (CDMI) is a standard application interface for
information stockpiling and recovery applications.
There are two conventional principles Topology and
Orchestration for cloud application (TOSCA) and Open
distributed computing Interface (OCCI) for application
the executives interface and stage the board
interface.The same standards can be used to define
Infrastructure management Interface which exposes the
management qualities of Infrastructure services. The
Publication Interface covers three areas: functionality,
quality of service and condition of the contract. The
open data center Alliance (ODCA) is expanding a
systematic perspective to standardize the quality of
service parameters and conditions of the contract.
Acquisition Interface defines a product or cloud service
description. OVF or even TOSCA is used for
standardizing the acquisition interface. There are
interfaces between applications and platforms. The
operating system, Programming language, and standard
libraries form the standard which will be discussed in
the subsequent section. There are Platform interfaces

 ISSN 2278-3091
Volume 8, No.5, September - October 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse61852019.pdf

https://doi.org/10.30534/ijatcse/2019/61852019

 Brijesh Pandey et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2252- 2259

2253

and Infrastructure interfaces also that hold significant
importance which is of utmost importance.
Various elements are involved in the portability and
interoperability of cloud services. To
contemplateapplication portability the model for
application is considered which consists of artifacts
having instruction sets, metadata and data sets. There
are certain dependencies like run time, data services,
access management, identity, and encryption. It also
includes operating system function, virtualization
capabilities, and networking.The objective condition
needs to help both the application relics and conditions.
The container and its related infrastructure technologies
have been holding the importance of application
portability. The Dockers containerization platform [1]
and Open container Initiative [2] offer a standard
approach for the organization of utilization code and
related programming stacks. To deploy and manage the
set of containers for any given application can be
realized through Open source Kubernetes container
orchestration tooling [3].
In the subsequent section, we will discuss the various
scenarios in which the application portability may
occur. The issues need to be tackled in those different
scenarios. The various facets of application portability
are discussed along with other standardization issues.
We will be discussing some technologies, models, and
approaches needed for achieving the portability of
application in a cloud computing environment.

2. SCENARIOS FOR APPLICATION
PORTABILITY IN CLOUD COMPUTINGSSS
SS
2.1 Client changes starting with one specialist
 organization then onto the next
The Application Portability holds the significance of
IaaS and PaaS cloud benefits as the application has a
place with the client. To move the suit from one cloud
service provider to another the various facets of
application such as syntactic, instruction, dependencies
need to be answered. Ideally, there should not be any
changes in the application artifacts but practically some
changes are bound to occur. It is the amount and nature
of the changes that matter. For PaaS, the application
may have dependencies via API and that needs to be
matched. For SaaS, well defined and standardized
protocols and data formats need to be demanded.

2.2 Multiple Providers providing cloud service to the
 Customer
Developers often use the same cognizance, tools or
technologies to escalate both applications that are used
from different service providers.In any case, it might
wind up troublesome if the capacities offered by cloud
administration very generously. Virtual Machine image
formats like OVF and container formats are important
components of applicationportability.

2.3 Linkage of one cloud amenity into another cloud
 amenity by the Customer
The Application Portability does not apply to this
scenario because in this there is no movement of data or
application from one system to another.

2.4 Customer binding its capabilities with cloud
 services
The Application portability does not belong to this
scenario as well because there is no movement of
application from one service provider to another.

2.5 The departure of in premises application code of
 Customerto cloud services
The Application portability in this scenario suggests
that the application code which keeps running on-
premises to keep running on PaaS administration with
no changes.If the app territory will change, the
application code needs to be modified to reckon for the
differences.The Chance of switching the on-premises
application to an IaaS service is almost negligible. It
involves migrating the entire software stack maybe
along with the OS.To accomplish this, it should be
conceivable to bundle the whole programming stack as
a VM picture which shall be imported to cloud
administration for execution.

3. FACETS OF THE CLOUD APPLICATION
PORTABILITY MODEL

3.1 Instruction
The Target cloud service provider must be able to
understand and execute the instructioncontained in the
executable antiquities of the application. Programming
Languages like C++, Java, and BPEL are universally
accepted and hence can be used for the purpose.

3.2Syntactic
The Target cloud service provider must understand and
use the format of all application artifacts. If it does not
happen then the formats need to be changed. Zip, Tar or
Zar can be applied.

3.3 Metadata
The Target cloud service provider mustcomprehend and
utilize the metadata that determines the natural
conditions for executing the application. The metadata
may wish to adapt the capability of the target system.
Like YAML, JSON, XML can do the needful.

3.4 Behavior
This facet aims to verify theNon-functional and
functional behavior of the solicitation through the test
suites. The Application code or the metadata needs to be
modified if the ported application bombs components of
the test suite.

3.5 Policy
This facet is concerned with the applicable laws,
regulations, and policies under which the application is
ported.

 Brijesh Pandey et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2252- 2259

2254

4. CHALLENGES IN APPLICATION
PORTABILITY

The Portability of application in the cloud environment
has some major concerns. Some of them can be the
programming language, data store, frameworkor
platform discrete configuration files and services [4].
All the cloud platforms have some specific
programming languages and features that are used to
build an application. Like Google App Engine has
sustenance to Java but not to Java class libraries braced
by Open shift [4]. Some specific APIs are used to
provide platform services. A service is defined to be a
high-level functionality without going through the
details at a lowlevel [5].
Developers can append itsfunctionalities from stage
administrations by just fastening to corresponding API
[6].The Database and file store arethe twoclasses of data
stores that exist on the cloud platform.The database
storeaccumulates the organized data whereas the file
store stores the data like a secondary disk on the cloud.
 Further, thetwo classes of database store SQL and
NoSQL exist. SQL, as we know, is the conventional one
and is accessible on all the cloud providers' platforms.
NoSQL, on the other hand, is a database store which
comprises all database system that does not cling to the
SQL relational database. NoSQL holds the capability to
distribute data among many services [7]. Therefore,
standardization or Intermediation can only be the
solution for application portability and that remains its
biggest challenge.

5. RELATED WORK

Standardization and Intermediation are the only two
approaches to improve the application portability of
cloud services. Standardization aims to reduce or even
eliminate the differences between cloud providers
thereby removing the lock-in issues [5] [8] [9].
Intermediation, on the other hand, is to provide a
middleware layer that is attuned with multiple cloud
providers which can be accessed by the cloud API.
Intermediation can further be categorized as an Abstract
layer-based approach and a Model-based approach.
In the former approach, the developers divide the
application into multiple layers. The lower layer hid the
implementation detail exposing the upper layer to
access the services. In a scenario where the application
desires to be ported is exposed to a diverse
implementation with the same interface. The approach
is generic but introduces lots of complexity in the
application architecture [10]. [10], [11], [12] have
employed this technique to achieve application
portability according to reference [8]. In the latter
approach, model-driven engineering is used to reduce
vendor lock-in issues. An application is described at an
even higher level of abstraction that is bare by the cloud
provider using domain-specific language. The generic
transformers are then used to generate code from the
model targeting the specific cloud provider. Mod clouds
[13] are an example of this approach.

Since our area for interest is standardization, we will
explore the approaches and technologies related to it.
OASIS holds the priority in this list by introducing
TOSCA as an open cloud standardupheld by countless
global industry pioneers. Itexplicates the application
along with its components,dependencies, relationship,
capabilities, and requirements. It sanctions portability
and automated management across different multiple
providers.In [14] BPMN4TOSCA was anticipated as an
area explicit BPMN [15]. It facilitates the demonstrating
of the board tact by giving direct access and
incorporation to TOSCA topology. Since the
functionalities stretched out to the BPMN4TOSCA are
not upheld by work process motors along these lines
non-standard BPMN is changed into plain BPMN. [16]
Presents the evidence of idea for the real compactness
highlight of TOSCA on Openstack and Opscode Chef.
TOSCA2Chef an execution domain was flourished to
robotize the sending of TOSCA based cloud application
topologies using Chef and BPEL forms. [17] Presents a
brought together conjuring transport and interface to be
worn by TOSCA the executive's plans. The
administration transport dependent on OpenTOSCA
engineering was actualized to bear the cost of a bound
together summon interface for TOSCA plans to conjure
the activity. A coordinated demonstrating and runtime
system was acquainted in [18] with accomplishing a
consistent and interoperable arrangement of subjective
antiquities. [19] Introduced the procedure displaying
idea empowering the combination of provisioning
models. The Models depended on expanding basic work
process dialects, for example, BPMN and BPEL by
method for Declarative Provisioning Activities which
encourage demonstrating revelatory provisioning
legitimately in the control stream of a work process
model. Many research undertakings, for example, [20],
[21], [22], [23] and [24] have additionally tended to
application compactness in distributed computing in
their points of view. A large number of these tasks have
not fabricated the TOSCA motor rather changed the
TOSCA based application detail into a solitary
organization content, for example, YAML and executed
it by comparing the board apparatus, for example,
CAMP.

6. TOSCA SIMPLE PROFILE IN YAML [25]

The TOSCA simple profile in YAML provides an
accessible and concise syntax to enhance the adoption
of TOSCA for application portability.This
determination guarantees that TOSCA semantics are
saved and can be contorted from XML to YAML or the
other way around. The TOSCA metamodel initiates the
idea of administration formats to investigate cloud
outstanding tasks at hand as a topology layout. The
topology format is a diagram comprising of hub layouts
for demonstrating the parts and relationship format for
displaying the connection between those segments.
TOSCA serves a sort arrangement of hub types for
portraying methods for building up an administration
layout and relationship type to depict the conceivable
sort of connection. The hub type and relationship type
portray the lifecycle activity of an arrangement motor
which can refer to the instantiating administration
format. These lifecycles activity is sponsored by
execution ancient rarities that actualize the genuine

 Brijesh Pandey et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2252- 2259

2255

conduct. A coordination motor uses these lifecycle tasks
to instantiate a solitary segment at run time and uses the
relationship format to create the request for segment
instantiation. The TOSCA straightforward profile
utilizes the number of base kinds, for example, its hub
types and relationship types to be bolstered by the
individual part. The template author will not have to
define in many cases the type themselves but can use
the existing types.
The Individual blends that qualify as implementers of
the TOSCA simple profile are as follows:
 TOSCA YAML administration layout is a YAML

archive antiquity having administration formats to
speak to the cloud application.

 TOSCA processor is a tool to parse Tosca service
template.

 TOSCA orchestrator is a processor that interprets
TOSCA CSAR to actualize and deploy the narrated
application.

 TOSCA generator is a tool to generate TOSCA
service template.

 TOSCA Cloud administration file or CSAR is a
bundled ancient rarity that contains TOSCA
administration layout and different relics usable by
TOSCA orchestrator to send an application.

The Commonly used terms in TOSCA simple profile
along with their definition are as follows:
 Instance Model:A sent administration is a running

example of an administration layout.
 Node Template: A Node template refers to the node

semantics such as its properties, attributes,
requirements, capabilities and interfaces.

 Relationship Template: It determines the event of
the connection between hubs in a layout.

 Service Template (Figure 1): It is utilized to
distinguish the topology and organization of IT
administration so they can be made to do regarding
the executives and arrangements.

 Topology Model: An abstract representation of
service and template.

 Topology Template: It includes a lot of hub layout
and relationship format together that characterize
the topology model of administration.

 Figure 1: Service Template

7. WS-BPEL

The OASIS developed WS-BPEL for specifying the
order of web services invocation. The web service
invocation would be either sequential or parallel is
determined by the WS-BPEL. A web service business
process execution language definition is used to
determine the internal business process written in XML.
A BPEL represents the behavioral properties of
composite web service and dispenses a web service
definition language. WS-BPEL is focussed on the
business and transforms process to new levels by
integration, visualization, monitoring, and optimization.
WS-BPEL is rather a concept that technology to
automate the business solution.
The Basic concept of WS-BPEL can be exhibited in
either Abstracted or Executable form. An Abstract
process must be explicitly declared as abstract as it is
not intended to execute.However, the executable
process is fully specified and is ready to execute. The
Abstract process uses two techniques to hide the
operational details and they are explicit opaque tokens
and Omissions. WS-BPEL permits the evolution of
tools, techniques, etc. to enhance the degree of
automation thus decreasing the expense of building up
cross endeavor computerized business forms.
The Activities of WS-BPEL could be receive, reply,
invoke, assign, throw,exit, wait, etc.

8. PROMELA & SPIN REFERRED FROM [26]

Process Meta Language (PROMELA) is a language that
describes the concurrent system. SimplePromela
Interpreter (SPIN) is a tool for analyzing Promela
programs leading to the detection of errors in the
system. It detects and validates deadlock, liveness
properties, safety properties, etc.
PROMELA is just a specification language rather than a
whole programming language. It specifies the
abstraction of the system not the whole of the system
itself. It emphasizes process synchronization and
coordination rather than computation. It uses Non-
determinism as an abstraction technique. It is suitable
for only software modeling and not for hardware
modeling.
The SPIN tool is a simulator for Promela language and
verifier for the properties of its Programs.It produces a
C program to construct an implementation of a linear
temporal logic model checking algorithm for the given
model.

9. OUR PROPOSED APPROACH FOR CASE
STUDY (ONLINE HOTEL RESERVATION
SYSTEM)

We propose our framework for the first scenario
described in section II where the customer switches the
provider be due to the violation of service level
agreement between him and the service provider. We
use in our framework the standardization method of
achieving application portability and in a manner
discarding the problem of vendor lock-in issues. We use
TOSCA Simple Profile in YAML which provides a
simple, concise, accessible and unambiguous syntax to

 Brijesh Pandey et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2252- 2259

2256

enhance the adoption of TOSCA for application
portability. To determine the internal behavior of the
web service written in XML we use WS-BPEL for its
invocation. The files of TOSCA Simple Profile in
YAML and WS-BPEL are composed together into an
architectural design to produce a cloud service archive
i.e. CSAR files. We then propose to formally model this
CSAR file using the Promela code and develop some
basic safety properties using linear temporal logic. The
SPIN Model checker is utilized for verifying the model
and its safety properties. Figure 2 shows the architecture
for Application Portability.

Figure 2: Architecture for Application Portability

We exhibit the case study of an online hotel reservation
system. The TOSCA topology consists of six nodes
namely Customer, Admin, Reception, Room, Room
type and Payment type. To exhibit this we will
contemplate the relationship arc called "check Room"
between admin and reception. The BPEL of the admin
node would invoke the check room operation furnished
by the BPEL of the reception node. For each partner
link invocation and receive found in BPEL indicated by
<invoke> and <receive> commands we generate
TOSCA Requirement Type definition and Capability
Type definition respectively.

A. Example of BPEL Invocation Command
<"bpel: Import location"="CheckRoomArtifacts.wsdl"
namespace="http://www.example.com/bpel/examples"

importType="http://schemas.xmlsoap.org/wsdl/" />
...

<bpel: invokeinputVariable="reqCheckRoomVar"
"Name"="A2R_CheckRoom"

"Operation"="checkroom"
"OutputVariable"="reqCheckRoomVar"

"PartnerLink"="Reception"
"PortType"="re: Receptioninterface"/>

For all BPEL invocation command the definition of
Requirement type, Relationship type and Capability
type is generated. We generate the Requirement type
name "CheckRoomRequirement" and it's associated
Capability type "CheckRoomCapability". Then the
Relationship type named "CheckRoomType" is
triggered to recognize the source and target relationship
and is made ready for being referred to in TOSCA
Simple profile template for the admin node.

B. Example of TOSCA Simple Profile Relationship
Type, Requirement Type, and Capability Type

<"RequirementType name"="CheckRoomRequirement"
"Requiredcapabilitytype"="tns:

CheckRoomCapability">
<documentation>CheckRoomRequirement</document>

<DerivedFrom typeRef="tns: BPEL
RequirementType"/>

</RequirementType>
...
<"Capabilitytype name"="CheckRoomCapability">
<Documentation>CheckRoomCapability</document>
<DerivedFrom typeRef="tns: BPEL CapabilityType"/>
</CapabilityType>
...
<"Relationshiptype name"="CheckRoomType">

<Documentation>Connected to
BPEL</documentation>

<DerivedFromtypeRef="tns: BPELRelationshipType"/>
<ValidSourcetypeRef="tns:
CheckRoomRequirement"/>

<ValidTargettypeRef="tns: CheckRoomCapability"/>
</RelationshipType>

C. Example of TOSCA Simple Profile Node Type
for BPEL Node

Here, we offer a generic NodeType called
"BPELContainer” for any node in the TOSCA Simple
profile topology template which is hooked up with
BPEL.

<"Definitions id"="NodeDefinitions" name="Node
Definitions"
"TargetNamespace"="http://example/tosca/bpel/hotelres
ervation">
<"NodeType name"="BPELContainer">
<Documentation>BPEL Container</documentation>
<DerivedFromtypeRef="ns1: SwitchYardContainer"/>
...
</NodeType>
...
</Definitions>

D. Example of Service Template for Admin Node
and its Partner Links

Next, we generate the service template for the Admin
Node and its Partner links.
<Definitions id="HotelReservationDefinitions"
Name="HotelReservationDefinitions"
"TargetNamespace"="http://example/tosca/bpel/hotelres
ervation"
... >
<"ServiceTemplate
id"="HotelReservation""name"="HotelReservationTem
plate">
<TopologyTemplate>

<Partition A >
<"NodeTemplate id"="AdminContainer"
"Name"="Container-Admin" type="ns1:
BPELContainer">
<Properties>
...
</Properties>
<Requirements>
<"Requirement id"="Admin _CheckRoom"

 Brijesh Pandey et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2252- 2259

2257

"Name"="portType"
"Type"="ns1: CheckRoomRequirement"/>
</Requirements>"
<Capabilities>
...
</Capabilities>
</NodeTemplate>
<"NodeTemplate id"="ReceptionContainer"
"Name"="Container-Reception"
"Type"="ns1: BPELContainer">"
<Properties>
...
</Properties>
<Requirements>
...
</Requirements>
<Capabilities>
<"Capability id"="Reception_CheckRoom"
Name="portType"
Type="ns2: CheckRoomCapability"/>
</Capabilities>
</NodeTemplate>
<! -- Partition B -->
<"RelationshipTemplate id"="A2R_CheckRoom"
"Name"="CheckRoom"
 "type"="ns3: CheckRoomType">
<"SourceElement ref"="Admin_CheckRoom"/>
<"TargetElement ref"="Application_CheckRoom"/>
</RelationshipTemplate>
</TopologyTemplate>
</ServiceTemplate>
</Definitions>

Now the Business Process Execution Language along
with the standards of TOSCA Simple Profile in YAML
are merged to produce the CSAR files. The ANTLR
tool can be used to read the CSAR files and convert
them into Promela code. The Properties of the Promela
code written in linear temporal logic are verified by the
SPIN tool. The Model Checker checks for the safety
properties in an exhaustive manner.

 Let us consider the nodes of admin and reception for
checking the mutually exclusive property between the
two. The code for the mutually exclusive property can
be stated as follows.

E. Code for verifying Mutual Exclusive Property
between Admin and Recep

define true 1
define false 0
define Adminturn false
define Recepturn true
bool x, y,t;
proctype Admin ()
{
x=true;
t=Recepturn;
(y==false || t== Adminturn);
/* critical section */

x=false
}
proctype Recep()
{
y=true;
t= Adminturn;
(x==false || t==Recepturn);
/* critical section */
y=false
}
init
{
run Admin (); run Recep ()
}

10. CONCLUSION

In this paper, we focussed on application portability in
the cloud computing environment to get rid of the
vendor lock-in issues. We discussed the scenario, facets,
and challenges in achieving application portability in
the cloud computing environment. The standardization
and intermediation were found to be the two possible
solutions in achieving application portability in which
we studied for standardization. We discussed the
TOSCA Simple Profile in YAML written for
standardizing the application in cloud computing. We
studied WS-BPEL evolution from XML. Then we
realized how the Promela and SPIN can be used for
formal modeling and verification of the application
properties. We proposed the model for the online hotel
reservation system and specified the node for Admin
and Reception. We provided the sample of BPEL
invocation command along with node relationship type,
requirement type, and capability type. We also provided
the sample of service template for the Admin node and
its partner links. Then we write the code for verifying
mutual exclusive property between two nodes.In the
future, we will try to model different applications using
these languages and tools verifying the properties of it
from a different perspective.

REFERENCES

1. Docker: Containerization Platform Available
onhttps://www.docker.com.

 2. Linux Foundation: Open Container Initiative
Available on https://www.opencontainer.org.

3. Kubernetes: Container Orchestration
 Available On https://Kubernetes.io.

 4. Yup, Max, Cao J, LuJ, and Application
Mobility in pervasive computing: A Survey.
Pervasive and Mobile Computing 2012,
2013; 9; 2-17.

 https://doi.org/10.1016/j.pmcj.2012.07.009
 5. GonodisF, Paraskakis I, and Simons AJH

Kourtesis D. Cloud application
portability: An Initial view BCI'13;
 September 19-21, 2013. ACM.978-1-4503-
1851-8/13/09.

 Brijesh Pandey et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2252- 2259

2258

 6. Peteu D, Macariu G, Panica S, Craciun C.
Portable Cloud application from theory to
practice. Future Computer Generation
System 2012; 29(2013): 1417-1430

 https://doi.org/10.1016/j.future.2012.01.009.
 7. Binz T, Breiter G, LeymanF, Spatzier T.

Portable cloud services using
TOSCA.IEEE Internet computing vol.16
 no.3 pp 80-85. May-June 2012.
DOI:10.1109/MIC.2012.43
 http://doi.ieeecomputersociety.org/10.1109/MI
C 2012.43.

 8. D. Peteu, Portability, and Interoperability
between clouds: challenges and case study
springer 2011.

 https://doi.org/10.1007/978-3-642-24755-2_6
 9. N. Levitt'scloud computing really ready for

primetime?" computer, vol 42 pp 15-20,
2009.

 https://doi.org/10.1109/MC.2009.20
 10. Z. Hill and M. Humprey," CSAL: A Cloud

storage Abstraction layer to enable
portable cloud application." IEEE 2010.

 11. Apache Foundation "Jclouds." 2011.
Jclouds.apache.org.

 12."Libcloud”, 2009.libcloud.apache.org.
 13. E.A.N. da silva, V.G. dasilva, D. Lucrdio and

R.P. de MattoS Fortes" Towards a
model-driven approach for promoting
cloud PaaS Portability”, IEEE 2013.

 https://doi.org/10.1109/CLEI.2013.6670667
 14. Kopp, O; Binj, T, T; Breitenbucher, U; and

Laymann, F (2012) BPMN4TOSCA: A
Domain-specific language model
management plans for composite
application, pages 38-52. Springer
Berlin Heidelberg.

 15. OMG (2011) Business Process Model and
Notation (BPMN 2.0)
http://www.omg.org/spec/BPMN/2.0/. As
 Accessed on 15-2-17.

 16. Katsaros, G; Menzel M Lenk A. Revelant JR;
Skip R and EberhardtJ. (2014). Cloud
Application Portability with TOSCA,
Chef, and OpenStack. In Proceedings of the
2014 IEEE International Conference on
Cloud, Engineering I2CE'14 pages 295-302,
Washington DC USA IEEE Computer Society.

 https://doi.org/10.1109/IC2E.2014.27
 17. Wettinger J, Binz T, Breitenbucher U; Kopp O;

Leymann F and Zimmermann, M (2014).
Unified invocation of scripts and services
for provisioning, deployment, and
 management of cloud applications based on
TOSCA. In Proceedings of the 4th
International conference on cloud computing
and services pages 559-568.

 18. Wettinger, J; Breitenbucher, Kopp O and
LeymannF (2016). Streamlining DeVos
automation for cloud application using
TOSCA as a standardized metamodel.
 Future generation computer system 56: 317-
332.

 https://doi.org/10.1016/j.future.2015.07.017

 19. Breitenbucher U, BinzT, Kopp O; Leymann F
and Wettinger, J (2015). A Model concept
to integrate declarative and imperative
cloud application provisioning
 technologies. In Proceedings of the 5th
International conference on cloud
computing and services pages 487- 496.

20. Menychats A, Kenstanteli K, Alonso
J,OrneEchevarria L, Gorronogoitia J,
Kousiouris G, Santzaridon C, Bruneliere H,
Pellens B, Stuer P Stran B O, Senakova T, and
 Varvarizon.TA (2014). Software
modernization and cloudification using
the artist migration methodology and
 framework scalable Computing: Practice
and Experience, 15(2).

 https://doi.org/10.12694/scpe.v15i2.980
 21. Brogi, A; Carrasco, J; Cubo J; Nitto, E; Duran

F; Fazzolari, M; Ibrahim. A;Rossini, A
(2016) Cloud application Modeling and
Execution Language (CAMEL) and the
 PaaSageworkflow, pages 437-439. Springer
International publishing cham.

 22. Ferry, N; Almeida, M, and Solberg, A (2017).
The MODA Clouds Model-Driven
Development pages 23-33. Springer
 International Publishing, cham.

 https://doi.org/10.1007/978-3-319-46031-4_3
 23. Bassiliades, N; Symeonidis, M; Meditskos, G;

 Koutopoulos, E, Gouvas P, and Vlahavas, I
(2017). A Semantic recommendation
algorithm for the passport platform as a
service marketplace. Expert systems with
the application, 67:203-227.

 https://doi.org/10.1016/j.eswa.2016.09.032
 24. OASIS TOSCA Profile in YAML Version

1.2.
 25. http://www.Spinroot.com.
 26. M Armbrust, A. Fox, R. Griffith, A.D. Joseph,

R.H. Katz, A. Konwinski, G. Lee, D.A.
Patterson, A. Rabkin I. Stoica, and Matei
Zaharia, Above the Clouds: A Berkeley View
of Cloud Computing‖, UC Berkeley
Reliable Adaptive Distributed Systems
Laboratory, 2009

 27. P. Mell and T. Grance, The NIST definition of
cloud computing‖, National Institute of
Standards and Technology, Gaithersburg,
2011.

 https://doi.org/10.6028/NIST.SP.800-145
 28. Fang Liu, Jin Tong, Jian Mao, Robert Bohn,

John Messina, Lee Badger, and Dawn Leaf,
NIST Cloud Computing Reference
Architecture‖, National Institute of Standards
 and Technology, Gaithersburg, 2011.

 29. O. T. TC. (2016) Topology and orchestration
specification for cloud applications
version 1.0. [Online]. Available:
 http://docs.oasisopen.org/tosca/TOSCA/v1.0/cs
prd01/TOS CA-v1.0-csprd01.pdf.

 30. G. Juve and E. Deelman, Automating
application deployment in infrastructure
clouds, in Cloud Computing Technology

 Brijesh Pandey et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2252- 2259

2259

and Science (Cloud-Com), 2011 IEEE Third
 International Conference on, 2011, pp. 658665.

 31. O. C. T. Members (2016) Cloud application
management for platforms, version 1.0.
[Online]. Available:
 https://www.oasisopen.org/committees/downlo
ad.php/472 78/CAMP-v1.0.pdf.

 32. OpenTOSCA. (2016) Opentosca initiative.
[Online]. Available: Http: //www.iaas.uni-
stuttgart.de/OpenTOSCA/

 33. OpenTOSCA. (2016) Opentosca ecosystem.
[Online]. Available:
http://les.opentosca.de/v1/

 34. Openstack. (2016) Heat - OpenStack
Orchestration. [Online]. Available:
https://wiki.openstack.org/wiki/Heat

 35. AparnaVijaya, Pritam Dash, and
Neelanarayanan V., Migration of
Enterprise Software Applications to
Multiple Clouds: A Feature-Based
Approach, Lecture Notes on Software
Engineering, Vol. 3, No. 2, 2015

 https://doi.org/10.7763/LNSE.2015.V3.174
 36. D. Petcu, Portability, and interoperability

between clouds: challenges and case study‖,
in Proceedings of the 4th European
conference on towards a service-based
internet, Poznan, 2011, pp. 62–74.

 37. S Dowell, A. Barreto III, J.B Michel, and M.T.
Shing, ―Cloud to Cloud Interoperability‖,
in Proceedings of the 2011 6th International
Conference on Systems Engineering,
2011, Albuquerque, New Mexico, pp. 258-
 263

 38. S. Charrington, "Don't Pass on PaaS in
2010," (ebizo), [online]2010,
 http://www.ebizq.net/topics/cloud_computing/f
eatures/122 79.html? page=2.

 39. N. Loutas, E. Kamateri, and K. Tarabanis, A
Semantic Interoperability Framework for
Cloud Platform as a Service‖, in 2011 IEEE
Third International Conference on Cloud
Computing Technology and Science
(CloudCom), Athens, 2011, pp. 280–287.

 https://doi.org/10.1109/CloudCom.2011.45
 40. N. Loutas, E. Kamateri, and K. Tarabanis,

―Cloud Semantic Interoperability
Framework‖, Cloud4SOA, D1.2, 2011.

 41. O. T. TC. (2016, Nov.) Topology and
orchestration specification for cloud
applications version 1.0. [Online].
 Available:
 http://docs.oasisopen.org/tosca/TOSCA/v1.0/cs
prd01/TOS CA-v1.0-csprd01.pdf

 42. Daniel Oliveira and Eduardo Ogasawara.
Article: Is Cloud Computing the Solution for
Brazilian Researchers? International
Journal of Computer Applications 6(8):19–
 23, September 2010.

 https://doi.org/10.5120/1096-1432
 43. ISO/IEC 19941 Cloud computing -

Interoperability and Portability
https://www.iso.org/standard/66639.html

