
Mohammad Ikmal Shamin Abdul Rahman et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 381 - 387

381

ABSTRACT

The use of mobile robot simulation is widely seen in various
purpose. The navigation of the mobile robot is important to
make the simulation process success. Simultaneous
Localization and Mapping (SLAM) is one of the important
features in a mobile robot navigation to enable an autonomous
robot to map its surrounding and localize itself in real time.
This paper presents a simulation study that investigates the
algorithms that could be used in localization and mapping
processes based on Karto and GMapping SLAM algorithms.
The algorithms were tested on Robot Operating System
(ROS) simulation in Linux environment. Experimental
results from the Karto SLAM algorithm showed that the map
produced is more precise and reliable for localization
compared to its counterpart. In addition, the notification of
distance is provided to give information on obstacle. Our
results showed that Karto SLAM algorithm produced a better
position estimation and can determine the direction of where
the mobile robot is moving autonomously without colliding in
any collision. Further studies on other SLAM algorithms
could be done to generate more accurate results to localize the
autonomous vehicle.

Key words : Karto, Mobile Robot, Obstacle Avoidance,
SLAM.

1. INTRODUCTION

Mobile robot is a technology that would be very useful to
undertake many tasks generally carried out by humans.
Unlike humans, robots do not have (the five) senses like
humans do such as eyes to see, ears to hear, nose to smell,
tongue to taste and hands to touch objects [1]. Human beings
use their senses to perceive their environment and acquire
information through them. On the other hand, mobile robots

/.

depend on sensing devices to obtain information on unknown
environment [1], [2]. There are many types of sensing devices
that could be implemented on a mobile robot so that it can
sense and scan a wider range of the environment. These
sensors include odometers, Global Position System (GPS),
cameras, Light Detection and Ranging (LiDAR), Sound
Navigation and Ranging (Sonar), Laser range finders and
Inertia Measurement Units (IMU) [3],[4].

In order to enable a robot moves by itself to perform its tasks,
a map of the environment is the most basic need for the robot
[5]. Unfortunately, knowing the map of the environment
alone is not enough. The robot should also be able to ‘know’
its location in its environment. Thus, Simultaneous
Localization and Mapping (SLAM) is used to build the map
whilst at the same time locate the position of a mobile robot at
an unknown position. One of operators for a mobile robot is
known as the Robot Operating System (ROS). Mobile robot is
used to build the map of a new environment, locate itself in
the map built and do some navigation towards a given point.
ROS is usually used to create robot applications. A mobile
robot is a compatible robot to demonstrate the functionality of
ROS. Code sharing could be used in ROS and it also supports
an open-source robotics nature. This could help in improving
the robotic industry as there are many codes being improved
when other researchers extend the results of their research. To
find the right software to integrate in a robot system is easier
when using ROS. By using mobile robot simulation in ROS,
lots of test could be done such as driving the robot around the
environment, build the map and visualize it in e [5],[6]. Many
tasks could be carried out using mobile robot for testing the
selected algorithms so that they could be implemented in a
new design or process. Besides that, simulation is very useful
to simplify the process of learning algorithms particularly
when collecting and annotating large volumes of real data are
both impractical and expensive. The simulation domain can
be procedurally constructed to specification, allowing tests to
be conducted especially under the said (impractical and
expensive) conditions.

Exploring Mapping and Avoidance Simulation for

Mobile Robot
Mohammad Ikmal Shamin Abdul Rahman1, Sofianita Mutalib2, Mohamad Amin Mohamad Zambri3,

Shuzlina Abdul-Rahman4
1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,

Malaysia, mdikmal96@gmail.com
2Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,

Malaysia, sofi@fskm.uitm.edu.my
3Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,

Malaysia
4Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,

Malaysia, shuzlina@fskm.uitm.edu.my

 ISSN 2278-3091
Volume 9, No.1.3, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse6091.32020.pdf

https://doi.org/10.30534/ijatcse/2020/6091.32020

Mohammad Ikmal Shamin Abdul Rahman et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 381 - 387

382

In order to navigate autonomously, an autonomous vehicle
need to know the precise location of its current state. This is
what is meant by localization or likewise known as local state,
which refers to the current location of an autonomous vehicle
as it navigates to the other places. In short, to require a precise
location, a localization process has to be within an a priori
map [3],[4]. Wang et al. [3] explained in their article that
metadata is embedded into an a priori map, which transforms
the complicated perception task into localization problem
rather than using a vehicle’s sensor to detect lane, markings
and traffic signs clearly. In general, SLAM processes mainly
consist of two steps. The first step is estimating the position of
the autonomous vehicle at k- moment based on the position of
the autonomous vehicle at k-1 moment and the motion model.
K-moment refers to the current moment, while k-1 moment
means to the previous moment. The second step is, at
k-moment, by using the estimated position, the observed
model is used to estimate the environment landmarks. Put it
differently, this process is also known as dead reckoning,
which refers to the process of estimating the current location
based on the previous location [4],[5].

This paper presents a case study based on a SLAM algorithm
in a simulated environment using Turtlebot in ROS package.
The SLAM algorithm tested is the Karto SLAM that is a
graph variant algorithm and GMapping. The next section will
elaborate on the SLAM algorithms and, later in Section 3 is
the Methodology for the simulation experiments. Section 4
presents the Results and Discussion, and finally the
Conclusion is found in Section 5.

2. RELATED STUDIES ABOUT SLAM

There are many algorithms that can be used in SLAM. Two
main branches of SLAM algorithms are Filter-based and
Optimization-based-SLAM. Figure 1 shows an overview of
the SLAM algorithms. Some examples of SLAM methods
that utilize the Filter-based approach are the Kalman Filter
(KF), Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF) [7], [8].

Figure 1: Overview of SLAM Algorithms

In the Filter-based category, the underlying principle is
formed based on the Bayes’ Theorem for the filter and it
functions in a two-step process iteratively [8]. The first step is
to utilize an evolution model and the control inputs to
generate estimations of the vehicle’s pose as well as the map
states. The second step is to use the current sensor data
measurements and compare them against the map. The
Filter-based estimation technique can help in identifying the
wrong prediction in the second step, if there is any, then it
returns to the previous step. The repetition steps give update
for each new measurement. These two steps can be considered
as check and balance between an estimation calculation and
determining the vehicle’s pose position acquired from the
sensor data measurements from the map in real time [8].
Similar to the Filter-based category, the Optimization-based
category also has two parts. The first part is to detect the
constraints of the problem, in this case the vehicle’s current
pose, from the sensor data measurements. This can be
achieved by finding the connection between the new sensor
data measurements and the map to achieve a unified whole of
the estimation of the vehicle’s poses with respect to the map
[8].

 2.1 Kalman Filter

The Kalman Filter (KF) was proposed by Kalman in 1960. KF
can be applied to orbit calculation, target tracking and
navigation as it can work in real time, fast, efficient and has
strong anti-interference. It uses series of data observed over
time to estimate unknown variables with more accuracy. KF
is a linear optimal status estimation method [7]. The current
position is predicted based on the previous position features of
the environment. The difference in actual and estimated
observation is then calculated. The Kalman gain is then
calculated and the predicted position is corrected. Finally, the
new environmental feature is added to the map.

2.2 Extended Kalman Filter

Meanwhile, the Extended Kalman Filter (EKF) derived from
KF adds a linearization step which is commonly used in
non-linear filtering. However, EKF covariance matrices are
quadratic in the number of landmarks, and in order to update
them, the time quadratic in the number of landmarks is
needed [9]. EKF assumes that the state transition and the
measurements are Markov processes represented by
non-linear functions [10]. EKF is unable to support
large-scale maps that are continuously growing because it
requires time in a quadratic way. To overcome this issue, the
notion of submaps was created [1],[3] and every time the map
gets too big, a new blank map will be replaced. All the
submaps will be kept tracked by a higher-level map.

2.3 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) was introduced to
compensate the weaknesses of the EKF with highly

Mohammad Ikmal Shamin Abdul Rahman et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 381 - 387

383

non-linear systems, which avoid the computation of the
Jacobians. The idea of this approach is to sample particles
called sigma points that are pondered around the expected
value thanks to a likelihood function. These sigma points are
then passed on to the non-linear function and the estimate is
recomputed. The major drawback of this method is its
computational time. Most of the study and research that use
the UKF algorithm took place at the beginning of the 2000s
[3],[12].

2.4 Karto SLAM as a Graph SLAM

Three parts of the graph Optimization-based are motion
estimation, graph optimization and loop closure detection [8].
Many localization problems can be modelled using graph
representation. Matrix between the vehicle poses and the
landmarks can be built easily and used in optimization
framework. An example of the Graph SLAM method or
approach is the Karto SLAM. Karto SLAM is a graph-based
SLAM approach proposed by SRI International Karto
Robotics, which has been plugged in to ROS by using a highly
optimized and non-iterative Cholesky matrix decomposition
[12].

A graph-based SLAM algorithm represents the map with
each node is a pose of the robot along its trajectory and a set of
sensor measurements. These nodes are connected by arcs for
the motion between successive poses. For each new node, the
computation of the map is done by finding the spatial
configuration of the nodes that are consistent with constraints
from the arcs [13]. In the Karto SLAM in ROS, the Sparse
Pose Adjustment (SPA) is responsible for both scan-
matching and loop-closure procedures [12]. More amount of
memory is required when the number of landmarks become
higher. However, graph-based SLAM algorithms are usually
more efficient in maintaining a map of large-scale
environments. Meanwhile, Karto SLAM is extremely
efficient since it only maintains a pose graph.

Obstacle avoidance in navigations of a mobile robot played an
important role [12],[14] and the robot should be able to collect
the data from attached sensors and process information to
make the right decisions based on the surrounding
environment of the robot that are dynamic. Obstacle
avoidance algorithm may have advantages and disadvantages
depending on the environment that the robot located, outdoor
or indoor, the shape of the obstacle and the performance of the
mobile robot [14], [16]. Obstacle avoidance in known
environment is less complicated than in unknown
environment. The information of the environment including
the obstacles’ position is provided to the robot rather than the
robot needs to map the unknown environment itself when the
robot is positioned into the known environment [17],[18].

3. METHODOLOGY

This case study is done through the Ubuntu 16.0.4 platform in
Intel Core i7 machine with 8GB RAM and ROS Kinetic with
Turtlebot package for robot simulation. ROS software
provides two visualization platforms. The first platform is
called Gazebo, which provides the robot simulation. This
platform is used in creating the environment where the
simulation robot can be tested. The second visualization
platform is the RViz where it can visualize the robot’s laser
scan and other features such as the visualization of the
possible path of the robot. The main difference that could be
seen between these two platforms, aside from the different
functions, is that the Gazebo visualize in 3D while the RViz
visualize in 2D. Other than that, RViz functions as the
mapping of environment.

After the ROS Kinetic is installed, the next step was to setup
the working environment in it. In other words, is to setup a
catkin workspace to be the main workspace that allows
multiple projects to be built in it as well as the built-in
packages from ROS through Turtlebot simulation. The
following table 1 shows the commands and steps to install
Turtlebot in ROS environment with localization model which
is the Karto SLAM algorithm.

Table 1: Steps of setting the environment in ROS
 Steps
1 Open environment model
2 Run Karlo SLAM algorithm
3 Visualize the map trhough RViz
4 Control simulation robot through keyboard
5 Drive the simulation robot
6 Mapping the environment
7 Save the map

The project makes use of the robot simulation to move the
model and the localization algorithm used is the Karto
Localization. The process flow of is shown in Figure 2, which
starts with the given initialized map, where the robot moves
around and data from its sensors is captured and a new map is
produced. At the same time, the robot with sensor scans any
barriers and move again by avoiding the obstacles.

Figure 2: The flow of processes in the experiment

 Robot Environment

Map

Robot Movement

Obstacle Avoidance

Mohammad Ikmal Shamin Abdul Rahman et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 381 - 387

384

After the setting of the environment is completed, the robot
model was tested and evaluated in two different simulation
environments to ensure it was working and that the output
given was accurate and not contrary to the actual results. The
result testing was visualized by ROS simulation. The testing
and evaluation were repeated until the localization model
gave satisfactory results without any significant error(s). The
performance of the simulation model was recorded after the
testing and validation processes were completed and the
accuracy of the robot model were analysed to show how well
the model worked. Next, the environment was equipped by
distance measures in the obstacle avoidance algorithm.
Therefore, the improvement that have been made is
notification of distance through popup warning.

3. RESULTS AND DISCUSSION

In simulating the localization of the Turtlebot robot, two
environments were created to test the accuracy of the
simulation robot. From the created environments, the map of
each environment was built based on Karto SLAM and
Gmapping. Gmapping is one of the default mapping methods
that was provided by ROS. Two environments were provided,
which are house and maze. House contains houses and a few
objects such as mailbox, dumpster, pine tree and lamp post.
The second environment that was created consisted of walls
that were arranged to produce a maze. The maze was
constructed to test the localization of the simulation robot to
navigate itself towards its goal which is to escape from the
maze.

3.1 Comparison of Map Produced between Karto and
GMapping SLAM

In this project, the maps generated using GMapping and Karto
algorithm were visualized and compared. Figures 3 and 4
show the map produced using Karto SLAM and GMapping for
house and maze. Maps produced were displayed in RViz, a 3D
visualization tool that comes together with a full ROS desktop
installation.

a) House environment

b) House environment map using Karto SLAM

c) House environment map using GMapping

Figure 3: House Environment a) for original view b) Map using

Karto SLAM and c) Map using GMapping

a) Maze environment

b) Maze environment map using Karto SLAM

Mohammad Ikmal Shamin Abdul Rahman et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 381 - 387

385

c) Maze environment map using GMapping

Figure 4: Maze Environment a) for original view b) Map using
Karto SLAM and c) Map using GMapping

The comparison of the map could be seen clearly from Figures
3 and 4. From this experiment, Karto SLAM provided a better
map compared to GMapping. This is because maps provided
by using Karto SLAM are similar to the real environment
especially for the house environment. On the other hand, the
map that was produced by using Gmapping algorithm shows
some anomalies in which the map is slightly slanted as
compared to the real environment for the house environment.
Therefore, it can be summarized that Karto SLAM can map
large-scale and complex environment well compared to
GMapping.

Figures 5 and 6 show the CPU and memory usage when using
Karto SLAM and GMapping. Based on these figures,
GMapping tends to use more CPU and memory resources
compared with Karto SLAM. This is because five (5) out of
eight (8) show that CPU usages are higher when running
GMapping algorithms. In addition , GMapping also tends to
use higher ram consumption at 2.2 GB out of 7.7 GB RAM,
with Karto SLAM using a ram consumption of 2.1 GB out of
7.7 GB RAM when running the simulation.

Figure 5: CPU and Memory Usage for Karto SLAM

Figure 6: CPU and Memory Usage for GMapping

3.2 Application of Obstacle Avoidance Notification
The robot is equipped with Hokuyo 2D Sensor module. The
sensor has 180° field-of-view blue coloured rays. The sensor
module is located on the robot that are red coloured
box-shaped. The sensor is capable of reaching 10 meters in
range of the 180° field-of-view. The improvement made to the
simulation was done by calculating the distance of the robot to
the obstacle when the obstacle is aligned in a straight line
from the robot. This means that the robot will avoid any
obstacle that are in its path. Next, the popup warning that will
alert the robot on the nearby obstacle with certain threshold.
Each experiment was run for 3 times each for the original and
the improved simulation. The tested environments were as
below:
 Several objects are placed in certain region in the

environment. Two cylinders and two dumpsters are placed
near the corner of the environment.

 In the second environment, the robot is expected to walk
around and avoid the wall that are placed in irregular
pattern.

 The third environment is based on maze environment with
walls. The robot should be able to start from the beginning
point, green coloured arrow, following the white line and
finish at the end point, red coloured arrow.

In robot obstacle avoidance algorithm, the maximum gap is
assigned 40 meters which is the minimum distance that robot
maintains with obstacle not to avoid a collision. Range angles
refer to list of range angles the robot can rotate which can vary
from - 0.5(anticlockwise) to threshold value 1.5. A threshold
value is a maximum limit of range angle set for robot to move
through the map.

a) Without notification

b) With notification

Figure 7: Environment 1

Mohammad Ikmal Shamin Abdul Rahman et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 381 - 387

386

a) Without notification

b) With notification

Figure 8: Environment 2

a) With notification

b) With notification

Figure 9: Environment 3

Figure 7, 8 and 9 are the environments which equipped
without and with the notification. As can be seen from each of
the environment testings, the module could produce popup
warning to the user without fails. The results can be
concluded that the improved module is successful and can be
applied to other researches and projects.

4. CONCLUSION

In simulating the localization of the Turtlebot robot, two
environments were created to test the accuracy of the
simulation robot. From the created environments, the map of
each environment was built based on Karto SLAM and
Gmapping. Gmapping resulted in a simulated world was
promising since it could correct itself when the robot arrived
back at the known environment. Overall, Karto SLAM gave
better mapping results and the use of computer resources is
comparatively better. The popup warning is also provided
when the distance of the robot is near to the obstacle. This
project shows a promising future that can be applied to
improve the performance of the autonomous mobile robot and
the autonomous vehicle. For further research, the use of real
Turtlebot to test the accuracy in a real world can be undertaken
and can be compared with other algorithms [19, 20] to test
which one among them is better.

REFERENCES
1. A. D. M. Africa and C. F. C. Uy, Development of a

Cost-Efficient Waste bin Management System with
Mobile Monitoring and Tracking, International
Journal of Advanced Trends in Computer Science and
Engineering, Volume 8 (2), pp. 319-327, 2019.
https://doi.org/10.30534/ijatcse/2019/35822019

2. G. G. Kalach and G. P. Kalach, Navigation System
Based on the Fuzzy Logic Expert System,
International Journal of Advanced Trends in Computer
Science and Engineering, Volume 8 (6), pp. 2693 –
2698, 2019.
https://doi.org/10.30534/ijatcse/2019/02862019

3. L. Wang, Y. Zhang and J. Wang. Map-Based
Localization Method for Autonomous Vehicles Using
3D-LIDAR. IFAC-PapersOnLine, Vol. 50(1), pp.
276–281, 2017.

4. S. Abdul-Rahman, M. S. Abd Razak, A. H. Mohd
Mushin, R. Hamzah, N. Abu Bakar, Z. Abd Aziz,
Simulation of simultaneous localization and mapping
using 3D point cloud data, Indonesian Journal of
Electrical Engineering and Computer Science, Vol.
14(2), pp. 1–9, 2018.

5. A. Pajaziti and P. Avdullahu, SLAM – Map Building
and Navigation via ROS, International Journal of
Intelligent Systems and Applications in Engineering
(IJISAE), Vol. 2 (4), pp 71-75, 2014.
https://doi.org/10.18201/ijisae.08103

6. A. Mohd Azri, S. Abdul-Rahman, R. Hamzah, Z. Abd
Aziz, N. Abu Bakar, Visual analytics of 3D LiDAR
point clouds in robotics operating systems, Indonesian
Journal of Electrical Engineering and Computer
Science, Vol. 9, No. 2, pp 492–499, 2020.

7. Q. Li, R. Li, K. Ji and W. Dai, Kalman Filter and Its
Application, 2015 8th International Conference on
Intelligent Networks and Intelligent Systems (ICINIS),
Tianjin, 2015, pp. 74-77.

Mohammad Ikmal Shamin Abdul Rahman et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 381 - 387

387

8. T. T., Takleh Omar, N. Bakar, S. Abdul-Rahman, R.
Hamzah and Z. Abdul Aziz. A Brief Survey on SLAM
Methods in Autonomous Vehicle, International
Journal of Engineering &Technology, Vol. 7 No 4.27,
pp. 38–43, 2018.
https://doi.org/10.14419/ijet.v7i4.27.22477

9. S. Kamijo, Y. Gu and L. Hsu. Autonomous Vehicle
Technologies : Localization and Mapping, IEICE ESS
Fundamentals Review, Vol. 9, issue 2, pp. 131–141,
2015.

10. L. Zhang, R. Zapata and P. Lépinay, Self-adaptive
Monte Carlo localization for mobile robots using
range sensors, 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, St. Louis,
MO, 2009, pp. 1541-1546.

11. D. Fox, S. Thrun, W. Burgard and F. Dellaert, Particle
Filters for Mobile Robot Localization. In: Doucet A.,
de Freitas N., Gordon N. (eds) Sequential Monte Carlo
Methods in Practice. Statistics for Engineering and
Information Science. Springer, New York, NY, pp.
401-428, 2001.
https://doi.org/10.1007/978-1-4757-3437-9_19

12. S. J. Julier and J.K. Uhlmann Julier, Unscented
Filtering and Nonlinear Estimation, Proceedings of
the IEEE (Volume: 92 , Issue: 3 , March 2004), pp. 401
– 422, 2004.

13. J. M. Santos, D. Portugal and R. P. Rocha, An evaluation
of 2D SLAM techniques available in Robot Operating
System, 2013 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), Linkoping, pp. 1-
6, 2013.

14. C. Giannelli, D. Mugnaini and A. Sestini. Path planning
with obstacle avoidance by G1 PH quintic splines.
Computer-Aided Design, Vol. 75–76, pp. 47–60, 2016.

15. N. Kumar, and Z. Vámossy. Obstacle recognition and
avoidance during robot navigation in unknown
environment. International Journal of Engineering &
Technology, Vol. 7(3), pp. 1400, 2018.
https://doi.org/10.14419/ijet.v7i3.13926

16. P. D. I. Torino. Obstacle Avoidance Algorithms for
Autonomous Navigation system in Unstructured
Indoor areas. M. S thesis, Politecnico Di Torino, 2018.

17. Y. Chen and J. Sun. Distributed optimal control for
multi-agent systems with obstacle avoidance.
Neurocomputing, Vol. 173, pp. 2014–2021, 2016.

18. E. A. Wan and R. Van Der Merwe, The unscented
Kalman filter for nonlinear estimation, Proceedings of
the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium (Cat.
No.00EX373), Lake Louise, Alberta, Canada, 2000, pp.
153-158.

19. Z. Zakaria, N. Nordin, A. Md Ab Malik, S. J. Elias,
Ahmad Z. Shahuddin, Fuzzy expert systems (FES) for
halal food additive. Indonesian Journal of Electrical
Engineering and Computer Science, Vol. 13 (3), March
2019.

20. A. N. Fadzal, M. Puteh and N. Abd Rahman, Ant
colony algorithm for text classification in
multicore-multithread environment, Indonesian Journal
of Electrical Engineering and Computer Science, Vol 18,
No 3: June 2020, pp1359-1366.
https://doi.org/10.11591/ijeecs.v18.i3.pp1359-1366

