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ABSTRACT 
 
The use of mobile robot simulation is widely seen in various 
purpose. The navigation of the mobile robot is important to 
make the simulation process success. Simultaneous 
Localization and Mapping (SLAM) is one of the important 
features in a mobile robot navigation to enable an autonomous 
robot to map its surrounding and localize itself in real time. 
This paper presents a simulation study that investigates the 
algorithms that could be used in localization and mapping 
processes based on Karto and GMapping SLAM algorithms. 
The algorithms were tested on Robot Operating System 
(ROS) simulation in Linux environment. Experimental 
results from the Karto SLAM algorithm showed that the map 
produced is more precise and reliable for localization 
compared to its counterpart. In addition, the notification of 
distance is provided to give information on obstacle. Our 
results showed that Karto SLAM algorithm produced a better 
position estimation and can determine the direction of where 
the mobile robot is moving autonomously without colliding in 
any collision. Further studies on other SLAM algorithms 
could be done to generate more accurate results to localize the 
autonomous vehicle. 
 
Key words : Karto, Mobile Robot, Obstacle Avoidance, 
SLAM.  
 
1. INTRODUCTION 
 
Mobile robot is a technology that would be very useful to 
undertake many tasks generally carried out by humans. 
Unlike humans, robots do not have (the five) senses like 
humans do such as eyes to see, ears to hear, nose to smell, 
tongue to taste and hands to touch objects [1]. Human beings 
use their senses to perceive their environment and acquire 
information through them. On the other hand, mobile robots 
 

/. 

depend on sensing devices to obtain information on unknown 
environment [1], [2]. There are many types of sensing devices 
that could be implemented on a mobile robot so that it can 
sense and scan a wider range of the environment. These 
sensors include odometers, Global Position System (GPS), 
cameras, Light Detection and Ranging (LiDAR), Sound 
Navigation and Ranging (Sonar), Laser range finders and 
Inertia Measurement Units (IMU) [3],[4]. 
 
In order to enable a robot moves by itself to perform its tasks, 
a map of the environment is the most basic need for the robot 
[5]. Unfortunately, knowing the map of the environment 
alone is not enough. The robot should also be able to ‘know’ 
its location in its environment. Thus, Simultaneous 
Localization and Mapping (SLAM) is used to build the map 
whilst at the same time locate the position of a mobile robot at 
an unknown position. One of operators for a mobile robot is 
known as the Robot Operating System (ROS). Mobile robot is 
used to build the map of a new environment, locate itself in 
the map built and do some navigation towards a given point. 
ROS is usually used to create robot applications. A mobile 
robot is a compatible robot to demonstrate the functionality of 
ROS. Code sharing could be used in ROS and it also supports 
an open-source robotics nature. This could help in improving 
the robotic industry as there are many codes being improved 
when other researchers extend the results of their research. To 
find the right software to integrate in a robot system is easier 
when using ROS. By using mobile robot simulation in ROS, 
lots of test could be done such as driving the robot around the 
environment, build the map and visualize it in e [5],[6]. Many 
tasks could be carried out using mobile robot for testing the 
selected algorithms so that they could be implemented in a 
new design or process. Besides that, simulation is very useful 
to simplify the process of learning algorithms particularly 
when collecting and annotating large volumes of real data are 
both impractical and expensive. The simulation domain can 
be procedurally constructed to specification, allowing tests to 
be conducted especially under the said (impractical and 
expensive) conditions.  
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In order to navigate autonomously, an autonomous vehicle 
need to know the precise location of its current state. This is 
what is meant by localization or likewise known as local state, 
which refers to the current location of an autonomous vehicle 
as it navigates to the other places. In short, to require a precise 
location, a localization process has to be within an a priori 
map [3],[4]. Wang et al. [3] explained in their article that 
metadata is embedded into an a priori map, which transforms 
the complicated perception task into localization problem 
rather than using a vehicle’s sensor to detect lane, markings 
and traffic signs clearly. In general, SLAM processes mainly 
consist of two steps. The first step is estimating the position of 
the autonomous vehicle at k- moment based on the position of 
the autonomous vehicle at k-1 moment and the motion model. 
K-moment refers to the current moment, while k-1 moment 
means to the previous moment. The second step is, at 
k-moment, by using the estimated position, the observed 
model is used to estimate the environment landmarks. Put it 
differently, this process is also known as dead reckoning, 
which refers to the process of estimating the current location 
based on the previous location [4],[5].  
 
This paper presents a case study based on a SLAM algorithm 
in a simulated environment using Turtlebot in ROS package. 
The SLAM algorithm tested is the Karto SLAM that is a 
graph variant algorithm and GMapping. The next section will 
elaborate on the SLAM algorithms and, later in Section 3 is 
the Methodology for the simulation experiments. Section 4 
presents the Results and Discussion, and finally the 
Conclusion is found in Section 5. 
 
2. RELATED STUDIES ABOUT SLAM 
 
There are many algorithms that can be used in SLAM. Two 
main branches of SLAM algorithms are Filter-based and 
Optimization-based-SLAM. Figure 1 shows an overview of 
the SLAM algorithms. Some examples of SLAM methods 
that utilize the Filter-based approach are the Kalman Filter 
(KF), Extended Kalman Filter (EKF) and Unscented Kalman 
Filter (UKF) [7], [8]. 
 

 
 

Figure 1: Overview of SLAM Algorithms 
 

In the Filter-based category, the underlying principle is 
formed based on the Bayes’ Theorem for the filter and it 
functions in a two-step process iteratively [8]. The first step is 
to utilize an evolution model and the control inputs to 
generate estimations of the vehicle’s pose as well as the map 
states. The second step is to use the current sensor data 
measurements and compare them against the map. The 
Filter-based estimation technique can help in identifying the 
wrong prediction in the second step, if there is any, then it 
returns to the previous step. The repetition steps give update 
for each new measurement. These two steps can be considered 
as check and balance between an estimation calculation and 
determining the vehicle’s pose position acquired from the 
sensor data measurements from the map in real time [8]. 
Similar to the Filter-based category, the Optimization-based 
category also has two parts. The first part is to detect the 
constraints of the problem, in this case the vehicle’s current 
pose, from the sensor data measurements. This can be 
achieved by finding the connection between the new sensor 
data measurements and the map to achieve a unified whole of 
the estimation of the vehicle’s poses with respect to the map 
[8]. 
 
 2.1 Kalman Filter 
 
The Kalman Filter (KF) was proposed by Kalman in 1960. KF 
can be applied to orbit calculation, target tracking and 
navigation as it can work in real time, fast, efficient and has 
strong anti-interference. It uses series of data observed over 
time to estimate unknown variables with more accuracy. KF 
is a linear optimal status estimation method [7]. The current 
position is predicted based on the previous position features of 
the environment. The difference in actual and estimated 
observation is then calculated. The Kalman gain is then 
calculated and the predicted position is corrected. Finally, the 
new environmental feature is added to the map. 
 
2.2 Extended Kalman Filter 
 
Meanwhile, the Extended Kalman Filter (EKF) derived from 
KF adds a linearization step which is commonly used in 
non-linear filtering. However, EKF covariance matrices are 
quadratic in the number of landmarks, and in order to update 
them, the time quadratic in the number of landmarks is 
needed [9]. EKF assumes that the state transition and the 
measurements are Markov processes represented by 
non-linear functions [10]. EKF is unable to support 
large-scale maps that are continuously growing because it 
requires time in a quadratic way. To overcome this issue, the 
notion of submaps was created [1],[3] and every time the map 
gets too big, a new blank map will be replaced. All the 
submaps will be kept tracked by a higher-level map. 
 
2.3 Unscented Kalman Filter 
 
The Unscented Kalman Filter (UKF) was introduced to 
compensate the weaknesses of the EKF with highly 
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non-linear systems, which avoid the computation of the 
Jacobians. The idea of this approach is to sample particles 
called sigma points that are pondered around the expected 
value thanks to a likelihood function. These sigma points are 
then passed on to the non-linear function and the estimate is 
recomputed. The major drawback of this method is its 
computational time. Most of the study and research that use 
the UKF algorithm took place at the beginning of the 2000s 
[3],[12]. 
 
2.4 Karto SLAM as a Graph SLAM 
 
Three parts of the graph Optimization-based are motion 
estimation, graph optimization and loop closure detection [8]. 
Many localization problems can be modelled using graph 
representation. Matrix between the vehicle poses and the 
landmarks can be built easily and used in optimization 
framework. An example of the Graph SLAM method or 
approach is the Karto SLAM. Karto SLAM is a graph-based 
SLAM approach proposed by SRI International Karto 
Robotics, which has been plugged in to ROS by using a highly 
optimized and non-iterative Cholesky matrix decomposition 
[12].  
 
A graph-based SLAM algorithm represents the map with 
each node is a pose of the robot along its trajectory and a set of 
sensor measurements. These nodes are connected by arcs for 
the motion between successive poses. For each new node, the 
computation of the map is done by finding the spatial 
configuration of the nodes that are consistent with constraints 
from the arcs [13]. In the Karto SLAM in ROS, the Sparse 
Pose Adjustment (SPA) is responsible for both scan- 
matching and loop-closure procedures [12]. More amount of 
memory is required when the number of landmarks become 
higher. However, graph-based SLAM algorithms are usually 
more efficient in maintaining a map of large-scale 
environments. Meanwhile, Karto SLAM is extremely 
efficient since it only maintains a pose graph. 
 
Obstacle avoidance in navigations of a mobile robot played an 
important role [12],[14] and the robot should be able to collect 
the data from attached sensors and process information to 
make the right decisions based on the surrounding 
environment of the robot that are dynamic. Obstacle 
avoidance algorithm may have advantages and disadvantages 
depending on the environment that the robot located, outdoor 
or indoor, the shape of the obstacle and the performance of the 
mobile robot [14], [16]. Obstacle avoidance in known 
environment is less complicated than in unknown 
environment. The information of the environment including 
the obstacles’ position is provided to the robot rather than the 
robot needs to map the unknown environment itself when the 
robot is positioned into the known environment [17],[18]. 
 
 
 

3.  METHODOLOGY 
 
This case study is done through the Ubuntu 16.0.4 platform in 
Intel Core i7 machine with 8GB RAM and ROS Kinetic with 
Turtlebot package for robot simulation. ROS software 
provides two visualization platforms. The first platform is 
called Gazebo, which provides the robot simulation. This 
platform is used in creating the environment where the 
simulation robot can be tested. The second visualization 
platform is the RViz where it can visualize the robot’s laser 
scan and other features such as the visualization of the 
possible path of the robot. The main difference that could be 
seen between these two platforms, aside from the different 
functions, is that the Gazebo visualize in 3D while the RViz 
visualize in 2D. Other than that, RViz functions as the 
mapping of environment.  
 
After the ROS Kinetic is installed, the next step was to setup 
the working environment in it. In other words, is to setup a 
catkin workspace to be the main workspace that allows 
multiple projects to be built in it as well as the built-in 
packages from ROS through Turtlebot simulation. The 
following table 1 shows the commands and steps to install 
Turtlebot in ROS environment with localization model which 
is the Karto SLAM algorithm.  
   

Table 1: Steps of setting the environment in ROS 
 Steps 
1 Open environment model 
2 Run Karlo SLAM algorithm 
3 Visualize the map trhough RViz 
4 Control simulation robot through keyboard 
5 Drive the simulation robot 
6 Mapping the environment 
7 Save the map 

 
The project makes use of the robot simulation to move the 
model and the localization algorithm used is the Karto 
Localization. The process flow of is shown in Figure 2, which 
starts with the given initialized map, where the robot moves 
around and data from its sensors is captured and a new map is 
produced.  At the same time, the robot with sensor scans any 
barriers and move again by avoiding the obstacles.       
            
 
 
 
 
 
 
 
 
 
 

Figure 2: The flow of processes in the experiment 

 Robot Environment 

Map 

Robot Movement 

Obstacle Avoidance 
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After the setting of the environment is completed, the robot 
model was tested and evaluated in two different simulation 
environments to ensure it was working and that the output 
given was accurate and not contrary to the actual results. The 
result testing was visualized by ROS simulation. The testing 
and evaluation were repeated until the localization model 
gave satisfactory results without any significant error(s). The 
performance of the simulation model was recorded after the 
testing and validation processes were completed and the 
accuracy of the robot model were analysed to show how well 
the model worked. Next, the environment was equipped by 
distance measures in the obstacle avoidance algorithm. 
Therefore, the improvement that have been made is 
notification of distance through popup warning. 
 
3.  RESULTS AND DISCUSSION 
 
In simulating the localization of the Turtlebot robot, two 
environments were created to test the accuracy of the 
simulation robot. From the created environments, the map of 
each environment was built based on Karto SLAM and 
Gmapping. Gmapping is one of the default mapping methods 
that was provided by ROS. Two environments were provided, 
which are house and maze. House contains houses and a few 
objects such as mailbox, dumpster, pine tree and lamp post. 
The second environment that was created consisted of walls 
that were arranged to produce a maze. The maze was 
constructed to test the localization of the simulation robot to 
navigate itself towards its goal which is to escape from the 
maze.  
 
3.1 Comparison of Map Produced between Karto and 
GMapping SLAM 
 
In this project, the maps generated using GMapping and Karto 
algorithm were visualized and compared. Figures 3 and 4 
show the map produced using Karto SLAM and GMapping for 
house and maze. Maps produced were displayed in RViz, a 3D 
visualization tool that comes together with a full ROS desktop 
installation. 

 

 
a) House environment 

 

 
b) House environment map using Karto SLAM 

 

 
c) House environment map using GMapping 

 
Figure 3: House Environment a) for original view b) Map using 

Karto SLAM and c) Map using GMapping 
 
 

 
a) Maze environment 

 
b) Maze environment map using Karto SLAM 
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c) Maze environment map using GMapping 

Figure 4: Maze Environment a) for original view b) Map using 
Karto SLAM and c) Map using GMapping 

 
The comparison of the map could be seen clearly from Figures 
3 and 4. From this experiment, Karto SLAM provided a better 
map compared to GMapping. This is because maps provided 
by using Karto SLAM are similar to the real environment 
especially for the house environment. On the other hand, the 
map that was produced by using Gmapping algorithm shows 
some anomalies in which the map is slightly slanted as 
compared to the real environment for the house environment. 
Therefore, it can be summarized that Karto SLAM can map   
large-scale and complex environment well compared to 
GMapping. 
 
Figures 5 and 6 show the CPU and memory usage when using 
Karto SLAM and GMapping. Based on these figures, 
GMapping tends to use more CPU and memory resources 
compared with Karto SLAM. This is because five (5) out of 
eight (8) show that CPU usages are higher when running  
GMapping algorithms. In addition , GMapping also tends to 
use higher ram consumption at 2.2 GB out of 7.7 GB RAM, 
with Karto SLAM using a ram consumption of 2.1 GB out of 
7.7 GB RAM when running the simulation. 

 
Figure 5: CPU and Memory Usage for Karto SLAM 

 

 
Figure 6: CPU and Memory Usage for GMapping 

3.2 Application of Obstacle Avoidance Notification 
The robot is equipped with Hokuyo 2D Sensor module. The 
sensor has 180° field-of-view blue coloured rays. The sensor 
module is located on the robot that are red coloured 
box-shaped. The sensor is capable of reaching 10 meters in 
range of the 180° field-of-view. The improvement made to the 
simulation was done by calculating the distance of the robot to 
the obstacle when the obstacle is aligned in a straight line 
from the robot. This means that the robot will avoid any 
obstacle that are in its path. Next, the popup warning that will 
alert the robot on the nearby obstacle with certain threshold. 
Each experiment was run for 3 times each for the original and 
the improved simulation. The tested environments were as 
below: 
 Several objects are placed in certain region in the 

environment. Two cylinders and two dumpsters are placed 
near the corner of the environment. 

 In the second environment, the robot is expected to walk 
around and avoid the wall that are placed in irregular 
pattern. 

 The third environment is based on maze environment with 
walls. The robot should be able to start from the beginning 
point, green coloured arrow, following the white line and 
finish at the end point, red coloured arrow. 

 
In robot obstacle avoidance algorithm, the maximum gap is 
assigned 40 meters which is the minimum distance that robot 
maintains with obstacle not to avoid a collision. Range angles 
refer to list of range angles the robot can rotate which can vary 
from - 0.5(anticlockwise) to threshold value 1.5. A threshold 
value is a maximum limit of range angle set for robot to move 
through the map.  

 

 
a) Without notification 

 
b) With notification 

Figure 7: Environment 1 
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a) Without notification 

 
b) With notification 

Figure 8: Environment 2 
 

 
a) With notification 

 
b) With notification 

Figure 9: Environment 3 
 
Figure 7, 8 and 9 are the environments which equipped 
without and with the notification. As can be seen from each of 
the environment testings, the module could produce popup 
warning to the user without fails. The results can be 
concluded that the improved module is successful and can be 
applied to other researches and projects. 

4.  CONCLUSION 
 
In simulating the localization of the Turtlebot robot, two 
environments were created to test the accuracy of the 
simulation robot. From the created environments, the map of 
each environment was built based on Karto SLAM and 
Gmapping. Gmapping resulted in a simulated world was 
promising since it could correct itself when the robot arrived 
back at the known environment. Overall, Karto SLAM gave 
better mapping results and the use of computer resources is 
comparatively better. The popup warning is also provided 
when the distance of the robot is near to the obstacle. This 
project shows a promising future that can be applied to 
improve the performance of the autonomous mobile robot and 
the autonomous vehicle. For further research, the use of real 
Turtlebot to test the accuracy in a real world can be undertaken 
and can be compared with other algorithms [19, 20] to test 
which one among them is better. 
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