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ABSTRACT 
 
Recently, research on snoring sound had gained interest 
especially in the area of classification in Obstructive Sleep 
Apnea (OSA) and distinction from non-snoring sounds. 
Classifiers such as Support Vector Machine (SVM), 
Recurrent Neural Network (RNN) and Convolutional Neural 
Network (CNN) had been used to meet this interest. These 
approaches relies on several underlying techniques such as 
Mel Frequency Cepstral Coefficients (MFCC), Short-Time 
Fourier transform (STFT) and several others to extract 
features from snore/apnea Spectrogram images before 
classification process. However, achieving desirable 
classification accuracy depends on choice of classifier, feature 
extraction techniques and, available dataset. In the paper, we 
presented a brief survey on existing methods and snore data 
acquisition processes to quickly expose and ease new 
researches in this domain to make appropriate choice from 
available methods.  
 
Key words: Snoring, Classification methods, Signal 
processing, Sleep, Survey.  
 
1. INTRODUCTION 
 

Sleep is a natural phenomenon in human that the body, 
mind and, nervous system are in a relaxed or inactive state. 
Occasionally, human does experience sleep disorder which 
may be classified as primary snoring (PS) that is has no 
medical co-morbidity [1], and snoring phenomenon 
associated with Obstructive Sleep Apnea (OSA) that implies 
health risk [2]. According to authors in [3-6], 44% of adult 
women above the age of 40 and more than 60% of adult men 
do snore. Snoring sound has been recorded to have 
approximately 90 to 100dB, and this has the potential to 
induce hearing loss to persons sleeping beside the snorer 
[7,8]. Aside this, the snorer can suffer from OSA: a severe 
health status that affect more than 10% of men and 6 % of 
women living in US [9]. Janott et. al. (2018) described OSA as 
a repeated episodes of reduced or completely halted airflow 
despite an ongoing effort to breathe. OSA symptoms include: 
morning headache, feels of sleepiness at daytime, and severe 
fatigue [10], all of which can lead to hypertension and 
myocardinal infarcture (also known as heart attack) [11]. 

 
 

Aside polysomnography which has high financial cost 
implication [12], other several approaches [3, 7], [13-22] has 
been proposed in literatures to detect, diagnose and remedy 
early snoring stage before getting to an unhealthy phase. 
Lately, methods in the field of signal processing and AI seems 
to be the promising area to detect snoring and apnea event. 
These approaches majorly include: support vector machine 
(SVM) [10, 16], recurrent neural network (RNN) [3, 22], 
convolutional neural network (CNN) [17], electromechanical 
film transducer (Emfit) signal [18], pulse transition time 
(PTT) [19], acoustic signal processing with KNN [20], deep 
neural network [13], and hybrid methods [12, 20, 22]. Several 
of these methods made use of publicly available snoring data 
or personally aggregated snoring dataset. Moreover, Mel 
Frequency Cepstral Coefficients (MFCC) techniques and 
several others are used to extract features from snore/apnea 
spectrogram images along with the aforementioned methods 
for classification process. 
In the paper, we presented a brief survey on existing methods 
and snore data acquisition processes to quickly expose and 
ease new researches in this domain to make appropriate 
choice from available methods. The rest of the paper is 
organized as follows: Section 2 surveys popular techniques 
used in snoring classification phases and related works, while 
section 3 highlight classification result obtained from several 
researches, thereafter we conclude the paper in section 4.  
 
2.  POPULAR TECHNIQUES USED IN SNORING 

CLASSIFICATION PHASES 
 
In this section an overview of snoring data acquisition, related 
works, frequently used methods and their underlying 
techniques are presented.  
 
2.1 Snoring Data Acquisition 
 
Based on our findings, we categorize snoring data sources into 
four namely: online available snore sound corpus, snore data 
provided by medical organizations, snore data created through 
subjects, and crowdsourced snore data.  
 
2.1.1 Publicly Available Snore Sound Corpus 
 
A typical example of this dataset is the Munich-Passau Snore 
Corpus which consist of 828 snore audio samples grouped 
into four classes. Each classes is based on the source of 
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obstruction that resulted into snoring and they include: Velum 
(V), Oropharyngeal (O), Tongue (T), and Epiglottis (E) [17]. 
The dataset was made available through the INTERSPEECH 
2017 ComParE Snoring Challenge [23]. Authors in [17, 21] 
stressed the challenge of unbalance class samples as the 
velum class dominated the distribution. They were able to 
bypass this by simply replicating other class sample to 
balance the classes. However, authors of [16] were able split 
the snore audio samples into 282 for training; 283 for 
development; and 263 for testing. 
 
2.1.2 Snore data provided by medical organization 
 
This includes data recorded from patients with apnea in a 
hospital or medical research centers. In [20], an overnight 
audio recording of Obstructive Sleep Apneas/Hypopnea 
Syndrome patients were provided by the department of 
Otolaryngology, Beijing Hospital. The audio were captured 
through a single channel low-noise microphone placed at 
30cm above the patient’s head. Moreover in [19], patient data 
with obstructive sleep apnea syndrome were collected from 
Firat University Research Hospital Sleep Room 
polysomnography recording. The Total sample size was 100 
(including 50 female and 50 male). Janott et al. (2018), 
gathered a total of 2174 sample data (snore and non-snore) 
from three hospitals in Germany. The samples are from 
patients already diagnosed for OSA through 
polysomnography. They later down-sample the size to 219 
with four class (as in Munich-Passau Snore Corpus) after 
further diagnosis using DISE (drug induced sleep endoscopy) 
examination. The dataset also suffer from unbalance class 
samples but were solved by adding more samples which 
subsequently increased the total size to 223 [10]. 
 
2.1.3 Snore data created through subjects 
 
These are snoring audios captured from people who consented 
to be subjected to sleep or other form of sleep induced 
substance to record snoring activity. According to authors in 
[3], 8 subjects were recorded overnight (approximately 8hrs) 
for 3 days by placing their smart phones 1 meter away from 
their head. The audio samples recorded were classified into 
snore and non-snore sounds. [22] used a field recorder and 
non-contact microphone placed 70cm away from the bed top 
to record 20 subjects. The samples also were annotated into 
snore & non-snore events, and were divided into training (11), 
validation (3), and test (6) sets. Authors in [12] used Olympus 
Noise canceling Microphone (ME52) hung at a height within 
20-30cm above 24 volunteer’s head to record throughout the 
night. The samples consist of three events: snore, apnea, and 
silence. Perez-Macias et al. (2018) however used 30 subjects 
who has undergone polysomnography for one full night to 
captured 30 samples of snoring events [18]. 
 
2.1.4   Crowdsourced Snore Data 
This is a process of collecting/aggregate snoring and 
related-snore data from different online sources. Khan (2018) 

did this successfully as he was able to source 1000 sound 
samples from different online sources. The dataset consist of 
500 snoring and non-snoring sound each [13]. 

 

2.2 Frequently Used Methods and their Underlying 
Techniques 

 
From existing literatures, we survey frequently used method 
and their underlying techniques as follows: 
 
2.2.1 Spectrogram  
 
A Spectrogram is used to transform a snore audio sample into 
image that enables feature extraction (see figure 1). A 
Spectrogram is formed by converting sounds into image via a 
time-frequency imaging techniques based on short-time 
fourier transform (STFT) [16]. Snoring spectrogram images 
are represented using color maps such as viridis (blue, green, 
and yellow), jet (blue, green, and red), and gray (black, gray, 
white) [17]. The color maps exist in the matplotlib: a library in 
python package. 
 

 
Figure 1: A sample spectrogram image of a snore signal 
 
2.2.2 Mel Frequency Cepstral Coefficients (MFCC) 
 
The MFCC is used as a feature extraction technique and had 
been found to be efficient in automatic speech recognition 
[24]. MFCC analyzes frame of particular length in an input 
signal based on Mel-frequency scale [3].  According to 
authors in [3] and [25-27], steps for estimating MFCC 
includes: 
 
(a) Pre-emphasis: Generally, high frequency components 
especially in speech signals has low energy, and this hinders 
the extraction of useful features. Therefore, pre-emphasis is 
used to boost the energy from low to high. A signal that is 
pre-emphasized 푥(푛) is denoted as: 

   
   
    푥(푛) = 푥(푛)− 	훼푥(푛 − 1)         (1) 

  푥(푛) is the input signal, n is the sample number, and α has a 
value ranges from 0.9 to 1.0.  



Tosin A. Adesuyi  et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February  2020, 426 – 432 

428 
 

 

(b) Framing: Framing is used to divide 푥(푛) into N time of 
frame with adjacent frames separated by P frame shift. It is 
assumed that there exist a constant signal properties within 
each frame, however, abrupt division of signal (at both ends) 
by framing do lead to information or feature loss [27]. Based 
on time measurement N ranges from 10 to 30ms and 푃	 ≤ 0.5. 
Each frame 푓  is estimates as: 
 

       η = [ ]                (2) 

       푓 (푛) = 	 푥(푃푗 + 푛),         (3) 

0 ≤ 푛 ≤ 푁 − 1	, 	0 ≤ 푗 ≤ 		η.  η is the numbers of frame in 
the signal and τ is the total samples in the signal. 
 
(c) Hamming window: Windowing is used to avoid the 
process of information loss that may occur during framing. 
Furthermore, it is used to prevent truncation in frame 
continuity at both ends of the signal (snore sound). To 
perform windowing on a signal, frames	푓 are multiplied by 
the hamming window ω(n) as [3]: 
 
      푓 = ω(푛) × 푓 (푛),			0 ≤ 푛 ≤ 푁 − 1    (4)    

  																	ω(푛) = −훽 푐표푠 − (훽 − 1) ,   (5) 

     		0 ≤ 푛 ≤ 푁 − 1 

Parameter 훽 is set to 0.46 [27]. 
 
(d) Fast Fourier Transform: FFT uses continuous and 
periodic signal in a frame and convert each signal in time 
domain to frequency domain. 
 
(e) Mel filter bank and DCT: The mel filter bank quantifies 
the level of energy at low frequency while the Discrete Cosine 
Transform (DCT) logs the energy from the filter bank and 
convert it from frequency scale to time scale [3]. A Mel 
frequency Mel (f) can be defined as [27]: 
 

     푀푒푙(푓) = 2595푙표푔 + 1       (6) 

f is the linear scale frequency. 

     	DCT = 	∑ cos	 ( . 	)× . × 퐸    (7) 

c = 1,2,3, … ,푚, where 퐸  is the log value of ith mel filter 
coefficient m and N are numbers of Mel-scale cepstral 
coefficients, and number of Mel filter respectively. A sample 
representation of MFCC is using snoring signal is given in 
figure 2. 
 

 
Figure 2: A sample representation of MFCC from a snore 
signal. 
 
2.2.3 Short-Time Fourier transform (STFT) 
 
The STFT is an improvement on the Fourier transform 
technique to create time-frequency representation of 
sounds/signals by windowing according to time [3]. It has the 
capacity to extract features in frequency and time through 
unvaried time length L and time function for windowing ω 
[3]. STFT for a discrete-time signal 푋(푛) is represented as: 

   
  푋 (푛퐿, 휇) = ∑ 푥(푐) × 휔(푛퐿 − 푐)푒   (8) 

2.2.4 Histogram of Oriented Gradient (HOG) 
 
HOG is a good texture descriptor [16] that divides an image 
into a dense grid and compute the gradient and also the 
histogram of each region of interest based on the voted weight 
of each pixel in the image [28]. According to authors in [16] 
each regions is grouped into blocks and their histograms are 
normalized. They applied this technique to extract features 
from snore spectrogram image by varying the feature 
dimension and color channels. 
 
2.2.5 Zero-Crossing Rate (ZCR) 
 
The zero-crossing rate is used to analyze voiced and unvoiced 
signals. It is regarded as the rate at which positive signal 
changes to negative signal and vice versa. It does this by 
measuring the number of times a waveform crosses the zero 
amplitude [29]. ZCR divides audio signal into 퐾 frames such 
that {푓 (푛): 1 ≤ 푗 ≤ 퐾} and each frame zcr  is computed as 
[30]: 
     	zcr = ∑ 푠푔푛 푓 (푛) × 푓 (푛 − 1)     (9) 
푟 is the number of samples in each frame and 

    푠푔푛(푓 (푛)) = 1,					푖푓	푓 (푛) > 0
0, 표푡ℎ푒푟푤푖푠푒          (10) 

 
 
2.2.6 Classification Methods 
 
Commonly used classification methods include: SVM, KNN, 
CNN, RNN and hybrid of these methods. 
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(a) SVM: The SVM was originally developed to classify data 
with two classes. According to authors in [31], it is regarded 
as a technique used for classification of linear and non-linear 
dataset. It is also referred to as a classifier that maps binary 
input unto a high-dimensionality within a feature space and 
repeatedly finds an hyperplane that maximize the distance 
between the origin and training inputs [32]. For an example, 
let 푥 represent data in the input space 푆 such that it is mapped 
(Φ is the mapping function) into a high dimension space 퐷 as: 
푥 ∈ ℝ ↦ Φ(푥) ∈ ℝ  along with a kernel function ϕ(푥) to 
locate the separating hyperplane [27]. SVM testing phase is 
represent in Eq. 11 such that from class	푥, label class y can be 
determined by: 

         y = 푛, 푖푓	훿 (푥) + ℎ > 0
0, 푖푓		훿 (푥) + ℎ ≤ 0          (11) 

      훿 (푥) = max	{푑 (푥)}          (12) 
 
where ℎ is the classification threshold and 푑 (푥) denotes the 
distance between 푥 and the hyperplane corresponding to class 
i [32]. 
 
(b) KNN (K Nearest Neighbor): KNN searches for an 
n-dimensional pattern space using the training data and 
thereafter looks for the k training samples in close proximity 
to the sample to be sorted by a pre-defined distance measures, 
and finally classified them to k number based on nearest 
neighbors [33]. Sequel to basic KNN principle of finding the 
shortest distance between training data, Euclidean distance 
equation can be substituted for this process as [34]: 
 

    훿(푥, 푦) = ‖푥 − 푦‖ = ∑ (푥 − 푦 )     (13) 

where m is the data dimension, 훿 is the distance function, x 
and y are sample and test data respectively.  

(c) CNN: It is a type of deep neural networks that works best 
with image recognition. CNN networks has been used in 
video and image applications such as objects/image detection 
[35]. It is based on the convolution of images and extraction of 
salient features based on filters that are learned by the network 
during training phase [36]. Aside the input layer, the stacked 
layers of Convolutional neural network include: convolution 
layer, activation layer, pooling layer, and fully-connected 
layer. Mathematically we can represent computation at layer 푙 
with filter size 푠 × 푠  and convolution depth 푑  such that 
neuron 푥 , ,  is computed with activation function 푓(. ) as: 
 
   푎 , , = 	∑ ∑ ∑ 푏 +푤 , ,

, 푥 , ,    (14) 
 
   푥 , , = max 0,푎 , , 	 = 푓 푎 , ,         (15) 
 
where 푏 is the bias applied at each filter. We can also denote 
the max pooling function task as 푚푝표표푙(. ), hence we have: 
 

  푧 , , = 푚푝표표푙 푥 , , ∀(푚, 푛) ∈ ℛ  

ℛ  is a local neighborhood around location (i, j) [37]. During 
backpropagation difference between estimated value 푦  and 
target value 푦  (label) is computed as error via the cross 
entropy loss function 퐿  as: 
 
   푦 = 푠표푓푡푚푎푥(푧 ) 

   퐿 = 	−∑ 푦| | log 푦 + (1 − 푦 ) log(1 − 푦 )     (16) 
 
(d) RNN (Recurrent Neural Network): Basically, RNN is 
fashioned to learn from sequential information. The 
terminology “recurrent” depict that current computation is 
correlated with previous task [38]. Usually, at any time step of 
sequence, RNN compute its prior memory and the current 
input. The computed memory is used to predict the current 
time step and it is forwarded to the next step as input [34]. The 
memory or hidden stated vector ℎ  is computed as: 
 

    ℎ = 푓(푊 ℎ +푊 	푥 	)            (17) 

    푧 = 푊 	ℎ + 푏                   (18) 
 
Where 푥  is the input, 푊  is the weight matrix connecting 
the input to the memory state, 푊  is the weight matrix 
connecting the memory states to the output, 푏  is the bias, and 
푓  represents activation function [36]. For multi-class 
classification, RNN make use of the SoftMax activation 
function on the output 푧 hence, we have: 
 
      푧 = 푆표푓푡푀푎푥(푧)                (19) 
 
2.3 A Brief Survey of Existing Related Works 
 
Figure 3 is a generic architecture for snoring sound 
classification process. In existing researches, snoring/apnea 
sounds are converted into spectrogram images and thereafter, 
feature extraction techniques are applied. The extracted 
features are finally passed into a classifier for classification. 
Few works had been found to bypass the feature extraction 
technique and applied a classifier directly while some extract 
the features directly from the snore audio without using 
spectrogram image and subsequently forward the extracted 
features to a classifier. Example of such works are given in the 
following review (also see table 1). Authors of [19] 
transformed polysomnography (PSG) data of snoring and 
sleep apnea to pulse transition time (PTT) signal. The signal 
was later converted to a spectrogram image and feed as input 
into AlexNet and VGG16 convolutional networks. These 
processes were used as pre-training phase to extract features 
from the PPT signal. The feature vectors obtained were fed 
into a combination of SVM and KNN classifier. The 
classification accuracy was higher than 90%. [20] also used 
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Figure 3:. A generic architecture for snore/apnea sound 
classification. 
 
KNN classifier combined with MFCC to detect, segment, and 
classify snore related sound. The approach was very effective 
and yielded an excellent result. Approach in [12] applied a 
linear prediction coding (LPC), MFCC and sub-band for 
feature extraction along with hybrids of deep neural networks 
(DNN + LSTM; CNN + LSTM) to classify snoring, apnea 
and, silence event. However, the classification accuracy for 
both hybrids were less than 90%.  
Moreover, [16] made a comparative analysis between Local 
Binary Pattern (LBP) and HOG for features extraction from 
snoring sub-challenge dataset. The extracted features were 
classified using SVM and the combination of both 
(LBP+HOG) seem to achieve a better result than each feature 
extraction techniques. Authors in [22] focused on RNN and 
MFCC technique to detect snoring and non-snoring sound and 
were able to achieved accuracy higher than 90%. 
Furthermore, [3] also used RNN classifier to classify snoring 
and non-snoring sound but leverage on multi-feature 
extraction techniques that include; Zero-crossing rate (ZCR), 
STFT, and MFCC. Though their dataset was developed from 
relative very small number of subjects (8) however, the result 
was close to 99%. A hybrid of dual convolutional neural 
network (CNN) and gated recurrent unit (GRU) was proposed 
in [21]. Features from their spectrogram image were fed into 
two parallel convolutional layers. Their average were merged 
together as a single channel slide before going into the GRU. 
The result was not as good as the aforementioned approaches. 
Khan (2019) applied MFCC technique to extract features 
from 1000 sound samples in order to detect snoring and notify 
vibration using a smart wearable gadget. . In the work, a CNN 
model was developed that produced a classification accuracy 
of 96% [13]. In contrast, the work in [17] leverage on existing 
learning models of AlexNet and VGG19 to pre-trained and 
extract features from a deep spectrum snore image. The output 

features were sent into SVM classifier. However, the 
pre-trained features from AlexNet had a better development 
and test result when used with viridis color maps. Authors of 
[10] likewise used SVM classifier to classify snore dataset 
into four classes. They applied multi-level feature extraction 
techniques that include: MFCC, harmonic-to-noise ratio 
(NHR), pitch, spectral harmonicity, voicing, and 
microprosodic features. An unweighted average recall of 
55.8% was recorded. 
 
3.  RESULTS FROM EXISTING APPROACHES 
 
In this section, we presented a cross section of result obtained 
in the classification of snore/apnea dataset from existing 
works based on the classifier used and the features extraction 
techniques. From table 1, it is evident that a multi-feature 
extraction techniques (ZCR+STFT+MFCC) along with RNN 
classifier gave the best result (98.8%) having used one of the 
largest data size. On the contrary, absence of feature 
extraction technique may seriously affect the result of a 
classifier and thus decline classification accuracy as cited in 
Ref. [21]. The result form table 1 also indicate that RNN 
classifier when used with MFCC as a feature extractor does 
yield a consistent accuracy above 90%. CNN in like manner, 
can achieve such result but only with a large enough snoring 
dataset. However,  the combination of SVM and KNN may be 
suitable to produce high classification accuracy when the 
snoring/apnea data size is small. Overall, good choice of 
feature extractor is very germane but combination of two deep 
neural networks classifier may not give desirable result. 
 
Table 1: Classification results in existing researches 
Ref. FET. CL. S/TDS T. Acc % 
[16] LBP+HOG SVM -/828 72.0 
[3] ZCR+STFT+ 

MFCC 
RNN 8/5600 98.8 

[12] MFCC CNN+ 
LSTM 

24/24 88.28 

[12] LPC CNN+ 
LSTM 

24/24 88.12 

[22] MFCC RNN 20/5670 95 
[13] MFCC CNN -/1000 96 
[21]   - Dual CNN+ 

GRU 
-/828 63.8 

[19] PPT signal 
+ AlexNet+ 
VGG16 

SVM+KNN 100/100 92.78 

[17] Deep  
Spectrum 

AlexNet -/828 67.0 

[28] SCAT+GMM 
+MAP 

MLP 224/282 67.71 

Ref.: authors reference, FET.: feature extraction techniques, CL.: classifier, 
S/TDS: subject/training data size, T. Acc: test accuracy, SCAT: Deep 
Scattering Spectrum; GMM: Gaussian Mixture Model; MAP: Maximum a 
Posteriori; Multi-Layer Perceptron. 
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4. CONCLUSION 
This paper presented a brief on snoring data and classification 
methods. It further expatiate on the snoring/apnea data 
aggregation processing by category. Also, it reviews 
underlying techniques for feature extraction that foster good 
classification accuracy with classifiers. In summary, the paper 
gave a brief exposition on research activities undertaken in the 
quest for snoring/apnea data classification such that it enables 
quick and easy guide for interested researcher in the research 
area.  
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