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 
ABSTRACT 
 
Botnets is a community of Mirai botnets-infected computers 
to perform various attacks. Hackers were using vulnerabilities 
in the Mirai botnets to create bots that can execute malicious 
activities.  A sandbox experimentation was conducted to 
identify Mirai botnets behaviors and distinguish Mirai botnets 
activities.  The Mirai botnets behaviours were analyzed in 
order to construct the Mirai botnets attack pattern. The Mirai 
attack pattern is constructing using graph theory approach.  
The results reveal that the Mirai botnets can be identified by 
their behaviours by examining their attack activities.  The 
experimental results also indicate that the graph theory 
approach can be identify and differentiate benign and botnets 
traffic efficiently.  Therefore, this research proposes a graph 
theory approach in constructing the Mirai botnets attack 
pattern through its behaviors.  
 
Key words: IoT Botnets, Mirai, Graph Theory.  
 
1. INTRODUCTION 
 

Computer security is now the biggest problem due to rising 
security threats. Any user using the IoT devices or the IoT 
environment platform must be aware the existing of Mirai 
botnets attack. The Internet of Things (IoT) gadgets are 
constantly multiplying, as indicated by [1]. The huge number 
of risky IoT gadgets makes them low-hanging focuses to 
make huge scale botnets for assailants.  The expansion of IoT 
Mirai botnet and particularly IoT botnets is legitimately 
identified with the multiplication of IoT gadgets.  

 

 
 

While, botnets are a standout amongst the most dominant 
parts of a cutting edge digital criminal's weapons store of 
assault strategies due to their boundless size and capacity [2]. 
[3] expressed that the first recognized by the whitewashed 
security research bunch Mirai botnetMustDie, and its 
numerous variations and imitators filled in as the vehicle for 
the absolute most dominant DDoS assaults ever.  
 
Nowadays, Mirai botnets is spread very rapidly within the 
network and any platform. Due to this issue, sometimes it is 
difficult to identify the behaviour of Mirai botnets. The 
interest of cybercriminals in IoT devices continues to growth. 
Based on Figure 1, the number of Mirai botnet samples 
attacking smart devices is increasing three times as many as 
in all of 2017. And there were ten times as many in 2018. For 
the years ahead, that does not bode well. 
 

 
Figure 1: Number of Mirai botnet samples for IoT devices in 

Kaspersky Lab’s collection, 2016-2018 
 
When it came to download Mirai botnets to IoT devices, one 
of the Mirai family 20.9% was the preferred option for cyber 
criminals. The Mirai botnets, made up of IoT gadgets and 
engaged with DDoS assaults whose scale broke every single 
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imaginable record, causing disavowal of administration all 
through a district, was broadly secured by the broad 
communications. 
 

 
Figure 2: Top 10 Mirai botnet downloaded onto infected IoT device 

following a successful Telnet password crack. 
 

In the field of botnets discovery and botnets distinguishing 
proof, which is dynamic methodologies and aloof 
methodologies, two sorts of strategies can be perceived. So as 
to mimic in conducting a genuine bot, dynamic 
methodologies include defanging bots or composing specific 
bots. Detached methodologies are those that can't be 
identified using any and all means, as there is no progression 
of data back to the botnet administrator. Dynamic 
methodologies incorporate a wide range of strategies that 
illuminate the botnets administrator of the perception 
straightforwardly or by implication.  

 
The analyst arranged botnets discovery and following 
strategies into three classes: honeypots, characterization of 
traffic applications and examination of detached irregularities 
[4]. The developed Honeypot server application is capable of 
analysing data in real time as it has been combined with IDSs 
to provide effective detection level capabilities (Baykara & 
Das, 2018).  
 
The Mirai botnets can be detected early in the field of IoT by 
knowing their taxonomy and behaviours.  So, this research 
will focuses on sandbox as a method of analyze for Mirai 
botnets behaviour. While, to detect Mirai botnets, it is 
necessary to analyze the Mirai botnets attack pattern by 
knowing its behaviors. It is possible to specify the attack 
pattern by using of graph theory approach. 
 
This section started with the briefly explanation of Internet of 
Things (IoT).  The remainder of this paper is presented as 
follows: Section II discusses related studies and Section III 
explain the methodology used for this paper. Section IV 
presents some analyses of the results. Section V concludes the 
paper and suggests future work directions. 
 
2. RELATED WORK 
 

The Mirai botnet caught worldwide attention in 2016, 
consisting of streak-breaking DDoS attacks on Krebs, OVH, 
and Dyn. The botnet, which in the closed-circuit targeted TV 

cameras, routers and DVRs, generated volumes of traffic 
above 1Tbps. This botnet has taken down service providers 
and cloud scrubbers infrastructure with ten predefined attack 
vectors. Some of the vectors are GRE flooding and water 
torture attacks. Based on what the author mentions, Mirai IoT 
botnet is a worm-like Mirai botnet family that infected and 
corralled IoT devices into a DDoS botnet at the end of 2016. 
This botnet starts flooding with HTTP and uses IoT device 
network level attacks as a target. When the botnet infects a 
device and wipes it out and claims the gadget as its own, Mirai 
searches for other malware on that device [3]. 

 
To detect malware, there are many types of detection. They 
are a system for firewall, honeypot and detection of intrusion 
[5]. Every detection can secure host or network, or both, from 
any intrusion. There is many type of anomaly detection which 
is Flow-based methods, Graph-based methods, Clustering 
and Classification [6].  There are group that can be 
categorized, static graphs and dynamic graphs for detecting 
anomalies [7]. 
 
An undirected graph element, sometimes referred to as a 
connected element, is a subgraph in which any two vertices 
are connected by paths to each other and no additional 
vertices in the super graph are connected to each other. For 
example, there are three components in the graph shown in 
the illustration. An incident-free vertex is itself a component. 
A graph connected by itself has exactly one component, 
which consists of the entire graph. 

 
A dynamic malware analyser proposed by [8] against virtual 
machine-conscious Mirai botnet is capable of bypassing 
anti-VM detection techniques to detect malware by 
monitoring its behaviour in a virtual environment. The 
method proposed may bypass detection techniques and 
identify the technique used by malware as well. It is capable of 
monitoring system resources like connections, files, 
processes, and services. It also generates information about 
changes in the registry of Windows to the analyst. The 
detection ratio tested using the malware set of Pahadus is 
successful and 92% accuracy of malware samples is detected.  

 
In addition, by using behavioural sequential patterns as a 
method of malware detection [9], a dynamic malware 
detection system based on mining the API sequences and 
iterative patterns extracted from an executable trace of API 
calls was proposed. The framework can examine and detect 
malicious behaviour as well as introduce in this field the 
concept of iterative pattern mining.  

 
In AccessMiner, which uses system-centered models for 
malware protection, a large-scale collection is carried out to 
study the diversity of system calls [10]. Data analysis 
demonstrates that straightforward identifier of malware by 
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utilizing an elective location model that describes the general 
collaborations between benevolent projects and the OS. 
Considerate projects that entrance OS assets, for example, 
records and library passages are investigated by framework 
driven methodology models and result in not very many or 
even zero false positive Mirai botnet discovery.  

 
The method discussed by [7] in malware investigation and 
identification instruments examinations understood malware 
and favorable projects and looks at the outcomes got. In the 
investigation, 100 examples of malware and 100 favorable 
projects were gathered from different sources and dissected 
under different variants of Windows machines. The test 
outcomes demonstrated that malware can barely be 
distinguished by utilizing just one instrument. By 
consolidating static and dynamic investigation apparatuses, 
precision and identification rate can be expanded.  

 
HOLMES as figured out by Jha, [11], similar to the 
Behaviour-based Detection Model, also analyses files and 
registry using another model. It exhibits a programmed 
system for ideally removing discriminative determinations 
that decide a program class particularly. Because of 
probabilistic testing of determination space, the proposed 
method depends on chart mining and idea examination, 
scales to enormous classes of projects. The proposed 
HOLMES can blend biased details that unequivocally 
recognize programs, keeping up a recognition rate of 86% on 
new, obscure malware with zero false positive rates. 

 
The comparison of related works on Windows Registry under 
detection malware illustrated in Appendix A: Detection of 
Malware on Windows Registry illustrates that dissimilar 
detection designs are used in the same location of malware. 

 
Then, the comparison of related works on detection of 
malware using graph theory are illustrated in Appendix B: 
Detection of Malware using Graph Theory.  According to 
[12], a researcher use graph-based detection method that 
focus on dependency behaviour graph. Dependency graph 
used to identify a node that uses the name of API call for each 
node. Dynamic taint analysis technique has been used in this 
research to find the relations between system calls. A 
researcher also proposed an algorithm to extract the common 
behaviour graph by using graph matching algorithm. The 
result from this approach is different for each malware family. 
For overall, the result is high true positive which is more than 
80% true positive rate and less than 20% false positive rate. 
  
Based on the research by [13], dependency graphs 
(ScD-graphs) has been used to determine whether a program 
is malicious or benign a researcher also propose the similarity 
metric for detection process. In this research, 2631 malware 
samples pre-classified into 48 families of malware have been 

tested. An experiment also testing on unknown sample file. A 
result from this method, it achieved 94.7% true positive and 
13.1% false positive.  
 
A graph-based malware activity detection are proposed by 
[14] by achieving robustness against evasion techniques. This 
method used to detect infected clients and malicious domain 
names in DNS traffic. Four sets of DNS traffic that captured 
from ISP networks have been used to do an experiment for 
this method. As a result, the method achieved high true 
positive which is more than 84% of TPR and less than 0.26% 
FPR.  
 
According to [15], the proposed method is classification 
method based on the maximal common subgraph detection. A 
graph is consulted by capturing system call in sandbox 
environment. The method has been tested on 300 malware 
samples that consist of 6 families of malware. A result from 
this method shows that TPR is high and FPR is low.  
 
The method that proposed by [16] is using function-call graph 
to compute similarity between two binaries. Next, a 
researcher proposed a graph matching method also to 
compute similarity between two binaries. For this research, it 
used malware samples that provide by VX Heavens. The 
result shows that high TPR and low FPR.   
  
3.  METHODOLOGY 
 
This research is utilizing the methodology demonstrated to be 
a cascade model for this venture. The Figure 3 shows all of 
this research's methodology that have four phases. First, the 
phase of data collection and information gathering. Next, the 
phase of data extraction and analysis. The final phase is to 
construct the graph theory. In this chapter, the description of 
each phase will be discussed further. 
 

 
Figure 3: Research Methodology. 
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Figure 4 showed the Cuckoo sandbox's architecture design. 
Cuckoo sandbox is act as centralized access that handles the 
analysis and samples Mirai botnets samples execution for 
initialize the Phase 1 and Phase 2.  Each one of the analysis is 
started neither in a physical or virtual machine that is fresh 
and isolated. Cuckoo’s main components can be categorized 
in two which are the host machine and the number of guest 
machines.  The host play as an important role in running the 
core sandbox’s components that handles the entire process of 
analysis, where the guests in another hand are the isolated 
environments where the samples of Mirai botnets are 
executed and analyzed in a safe manner. 

 
In the sample collection stages, at first, open the web 
browser's VirusShare to select samples of Mirai botnet. 
Reading the description provided will select the appropriate 
IoT Botnet. In ensuring that Mirai botnets is not outdated and 
can be analyzed, the latest Mirai botnet must be considered.  
Then, insert the Mirai botnet sample MD5 or SHA value into 
VirusTotal to check the variant validation. 
 

 
Figure 4: Architecture Design (“Cuckoo Sandbox,” 2018). 

 
 

In the information gathering stages, the phase of data 
extraction is applied. For this part, this research use the 
sandbox to detect each Mirai botnet's activity and behavior. 
Cuckoo Sandbox is used for this project to analyze the Mirai 
botnet. After download the Mirai botnet samples, upload the 
chosen samples into Cuckoo Sandbox.  It will display the 
report after submitting the samples. The Cuckoo report 
provides a summary of Mirai botnet execution information. 
We can extract the information on the basis of the 
summarized report. 

 
During the analyse information phase, the report produce 
from sandbox will be analysed. We will analyse each of the 
features yield such as registry. In each of the features, we will 
look up the several files which are read, modified and deleted.  
The last stages is graph theory application. After analysing 
the Mirai botnet sample, the graph is constructing. The graph 
is construct according to the API call of the Mirai botnet 
produced in the report. Then, the graph created is compared 

to another graph of each Mirai botnets. After comparing the 
graph, we will extract the pattern of the graph and find the 
similarities of each Mirai botnets sample. 

 

4. RESULTS AND DISCUSSION 
This section defines the results and analyses for Mirai 

botnets evaluation from the experiment. Analysis is essential 
to understand the Mirai botnet sconduct to detect Mirai 
botnets using a graph theory approach.  The md5 sample of 
Mirai botnets are validate using VirusTotal in order to 
validate the sample. To run the study, the complete sample is 
20 sample, which must be in the same Mirai botnet variant.  
In this graph theory approach, the research uses the directed 
graph method. A directed graph or digraph is a set of vertices 
and a collection of directed edges that connect a pair of 
vertices ordered by each. It's a pointing edge from the pair's 
first vertex and points to the pair's second vertex.  

  
Mirai botnets attackers use several techniques of 

obfuscation such as domain generation, domain fluxing and 
more. To create it even more difficult for anti-virus products 
to detect their infrastructure. Some Mirai botnets leverages 
existing innocent server’s safety vulnerabilities to distribute 
the real malicious code. This usually makes Mirai botnets 
detection difficult for anti-virus products when they are 
hosted on legitimate servers.  

 
After run the sample, the report produced by cuckoo has 

several analytical reports. The report to be analysed in this 
research is the behaviour analysis. Then, there was plenty of 
process and detection sources that were born with the Mirai 
botnets in the behaviour analysis report. So, cmd.exe and 
svchost.exe (WBEM) are the process to take their registry as 
sources of detection. It is the deleted registry done by the 
process based on Table 1. 

 
The Windows API informally WinAPI is the key set of 
application programming interfaces (APIs) accessible in the 
operating systems of Microsoft Windows. Collectively, the 
name Windows API relates to several distinct platform 
applications often referred to by their own names (e.g. Win32 
API); see the section on variants. Nearly all Windows 
programs communicate with the Windows API. A tiny 
amount such as programs launched early in the Windows 
startup process use the Native API on the Windows NT 
operating system line.  The API called in process cmd.exe and 
svchost.exe listed in Table 2, and the number indicates as 
their id that will be used in the representation of graphs. 
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Table 1: Deleted Registry. 
 

Process Deleted Registry 
cmd.exe HKEY_CURRENT_USER\Software\Mic

rosoft\Windows\CurrentVersion\Internet 
Setting\ZoneMap\ProxyBypass  
HKEY_LOCAL_MACHINE\SOFTWARE
\Wow643Node\Microsoft\Windows\Curr
entVersion\Internet 
Setting\ZoneMap\ProxyBypass  
HKEY_CURRENT_USER\Software\Mic
rosoft\Windows\CurrentVersion\Internet 
Setting\ZoneMap\IntranetName  
HKEY_LOCAL_MACHINE\SOFTWARE
\Wow643Node\Microsoft\Windows\Curr
entVersion\Internet 
Setting\ZoneMap\IntranetName  

svchost.ex
e 

HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\WBEM\CIMOM\LastServices
Start  

 
Table 2: List of API. 

 
API Function 
NtOpenKey  Opens an existing registry 

key.  
NtQueryValueKeyEx  Returns a value entry for a 

registry key.  
RegCloseKey  Closes a handle to the 

specified registry key.  
RegDeleteValue Removes a named value 

from the specified registry 
key  

RegEnumKeyEx retrieves information about 
one subkey each time it is 
called. 

RegEnumKey Retrieves the name of one 
subkey each time it is called.  

RegOpenKeyEx Opens the specified registry 
key.  

RegQueryInfoKey  Retrieves information about 
the specified registry key.  

RegQueryValueEx  Retrieves the data 
associated with the default or 
unnamed value of a specified 
registry key.  

RegSetValue  Sets the data for the default 
or unnamed value of a 
specified registry key.  

NtQueryKey  Provides information about 
the class of a registry key, 
and the number and sizes of 
its subkeys(user mode).  

NtQueryMultipleValueKey  Retrieves values for the 
specified multiple-value key.  

RegCreateKeyEx  Creates the specified registry 

API Function 
key. If the key already exists, 
the function opens it.  

RegNotifyChangeKeyValue  Notifies the caller about 
changes to the attributes or 
contents of a specified 
registry key.  

NtDeletekey  Deletes an open key from the 
registry (user mode).  

NtEnumeratekey  Returns information about a 
subkey of an open registry 
key(user mode).  

RegDeleteKey  Deletes a subkey and its 
values.  

 
The graph displays the full cycle of the method that is 
cmd.exe and svchost.exe referring to the behaviours analysis 
report (registry) from the start of the API to the end. Figure 5 
is the full cycle for cmd.exe. 
 

 
Figure 5: Full cycle for cmd.exe 

 
The deleted registry cycle is extracted from full cycle of the 
process which is cmd.exe and svchost.exe. The cycle of 
deleted registry is depending on handle’s value as Figure 6. 
 

 
Figure 6: Handle from behavior analysis report (Registry). 
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For example, with several APIs, RegOpenKeyEx, 
RegCreateKeyEx and NtOpenKey, the deleted registry cycle 
can start and end with RegCloseKey. Based on Figure 7 form 
part of the cmd.exe cycle which is the particular cycle of the 
deleted registry Mirai botnets behaviours. 
 

 
Figure 7: Deleted file in cmd.exe. 

 
In addition, svchost.exe's full cycle is based on Figure 8. 
While Figure 9 form part of the svchost.exe cycle, which is 
also the specific cycle of the deleted registry Mirai botnets 
behaviours. The number at the edges is represented as the 
cycle sequence. 
 

 
Figure 8: Full cycle of srvhost.exe 

 

 
Figure 9: Deleted file in srvhost.exe 

 
The deleted registry cycle always begins with either 
RegOpenKeyEx or RegCreateKeyEx and ends with 
RegCloseKey. As shown in Table 3, all possible connection of 
APIs in the cycle of deleted registry. The edges are depicted as 
the next activity or API to be called by the Mirai botnets. 
 

Table 3: Relation between API. 
 

API Explanation 
RegOpenKeyEx → 
RegQueryValueEx  

Open the specified registry 
key then it will retrieve the 
data associated with the 
default or unnamed value of 
a specified registry key  

RegOpenKeyEx → 
RegDeleteValue  

Open the specified registry 
key then it will remove a 
named valued from the 
specified registry key  

RegCreateKeyEx → 
RegSetValueEx 

Create the specified registry 
key, but if the key already 
exists, the function opens it 
then it will set the data for the 
default or unnamed value of 
the specified registry key.  

RegDeleteValue 
→RegDeleteValue  

Remove a named valued 
from the specified registry 
key but if fail, it will try 
another named value to be 
remove.  

RegDeleteSet → 
RegSetValueEx  

Remove a named valued 
from the specified registry 
key then it will set the data 
for the default or unnamed 
value of the specified registry 
key.  

RegSetValueEx → Set the data for the default or 
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API Explanation 
RegSetValueEx  unnamed value of the 

specified registry key then it 
will set another data.  

RegSetValueEx → 
RegCloseKey  

Set the data for the default or 
unnamed value of the 
specified registry key then it 
will close a handle to the 
specified registry key  

RegCloseKey → 
RegCloseKey  

Closes a handle to the 
designated registry key, it 
also closes another handle if 
there is a handle present that 
needs to be closed.  

 
As the goal of this studies to achieve the pattern of Mirai 
botnets behaviours and also to achieve the resemblance of 
each Mirai botnets sample. Based on the study conducted, the 
sample of Mirai botnet shas its own behaviours but also has 
similarity. The cycle of cmd.exe from start to finish is the 
same with another sample. In other words, the behaviours of 
Mirai botnets on the cycle of cmd.exe will be the same for API 
call (refer to Table 2) and registry path as Figure 10. 
 

 
 

Figure 10: Mirai botnet behaviors pattern in cmd.exe 
 
On the other hand, svchost.exe has a distinctive sequence 
from sample to sample, but svchost.exe has its pattern for the 
deleted registry cycle. The API consist in the cycle is 
RegCreateKeyEx, RegSetKeyEx, RegDeleteKeyEx and 
RegCloseKey. The pattern of sequence Mirai botnets 
behaviours as shown in Figure 11. 
 

 
 
Figure 11: Pattern of deleted registry behavior cycle in svchost.exe 
 

The result of this research shows the pattern of Mirai 
botnets behaviour pattern using a graph theory approach. In 
this research, the analysis uses the subject of graph-modeling 
to identify patterns of Mirai botnets behaviors based on 
samples from virusshare. The research creates a graph that 
identifies the behaviors of the Mirai botnets. The outcome of 
the research shows that the Mirai botnets has its unique 
behavior, the resemblance still appears somehow. The Mirai 
botnets tend to delete the registry using the same technique or 
process. The solution is also instrumental in studying the 
infrastructure of some Mirai botnets and revealing 
widespread patterns among Mirai botnets. Thus, these results 
show the accuracy and efficiency of the technique with data 
about real-world Mirai botnets classification. 

 
Therefore, the significant output of this study is the 
development of a clustering model to evaluate and detect 
Mirai botnets by using graph theory approach strategy to 
identify Mirai botnets behaviour based on behaviour analysis 
report produced by cuckoo sandbox.  The research's 
contributions is extract the similarity of Mirai botnets 
behaviour by formulating registry information. Then, the 
Mirai botnets behaviour pattern is visualized using graph 
theory approach. 
 

5. CONCLUSION 
This paper presented results of Mirai botnets attack pattern 
using graph theory approach.  These findings enhance our 
understanding of Mirai botnets behaviors and their attack 
activities.  This research has found that generally it provides 
excellent advantage to the society by offering security 
awareness regarding malware detection. Future research 
should therefore concentrate on the investigation of different 
Mirai botnets types.  More research is required on determine 
the characteristics for better evaluation of Mirai botnets.  
Further research also might explore to use powerful software 
and hardware efficiency to optimize Mirai botnets analysis.  
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