
 Raihana Syahirah Abdullah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7267 – 7274

7267


ABSTRACT

Botnets is a community of Mirai botnets-infected computers
to perform various attacks. Hackers were using vulnerabilities
in the Mirai botnets to create bots that can execute malicious
activities. A sandbox experimentation was conducted to
identify Mirai botnets behaviors and distinguish Mirai botnets
activities. The Mirai botnets behaviours were analyzed in
order to construct the Mirai botnets attack pattern. The Mirai
attack pattern is constructing using graph theory approach.
The results reveal that the Mirai botnets can be identified by
their behaviours by examining their attack activities. The
experimental results also indicate that the graph theory
approach can be identify and differentiate benign and botnets
traffic efficiently. Therefore, this research proposes a graph
theory approach in constructing the Mirai botnets attack
pattern through its behaviors.

Key words: IoT Botnets, Mirai, Graph Theory.

1. INTRODUCTION

Computer security is now the biggest problem due to rising
security threats. Any user using the IoT devices or the IoT
environment platform must be aware the existing of Mirai
botnets attack. The Internet of Things (IoT) gadgets are
constantly multiplying, as indicated by [1]. The huge number
of risky IoT gadgets makes them low-hanging focuses to
make huge scale botnets for assailants. The expansion of IoT
Mirai botnet and particularly IoT botnets is legitimately
identified with the multiplication of IoT gadgets.

While, botnets are a standout amongst the most dominant
parts of a cutting edge digital criminal's weapons store of
assault strategies due to their boundless size and capacity [2].
[3] expressed that the first recognized by the whitewashed
security research bunch Mirai botnetMustDie, and its
numerous variations and imitators filled in as the vehicle for
the absolute most dominant DDoS assaults ever.

Nowadays, Mirai botnets is spread very rapidly within the
network and any platform. Due to this issue, sometimes it is
difficult to identify the behaviour of Mirai botnets. The
interest of cybercriminals in IoT devices continues to growth.
Based on Figure 1, the number of Mirai botnet samples
attacking smart devices is increasing three times as many as
in all of 2017. And there were ten times as many in 2018. For
the years ahead, that does not bode well.

Figure 1: Number of Mirai botnet samples for IoT devices in

Kaspersky Lab’s collection, 2016-2018

When it came to download Mirai botnets to IoT devices, one
of the Mirai family 20.9% was the preferred option for cyber
criminals. The Mirai botnets, made up of IoT gadgets and
engaged with DDoS assaults whose scale broke every single

Constructing Pattern of Mirai Botnets Attack using

Graph Theory Approach
Raihana Syahirah Abdullah1, Amirulnaim Nazri, Warusia Yasin2, Faizal M.A3 ,

Wan Nur Fatihah Wan Mohd Zaki
1Dr, Center for Advanced Computing Technology (C-ACT), Fakulti Teknologi Maklumat dan Komunikasi,

Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
 raihana.syahirah@utem.edu.my

2Dr, Center for Advanced Computing Technology (C-ACT), Fakulti Teknologi Maklumat dan Komunikasi,
Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia

 s.m.warusia@utem.edu.my

3 Associate Professor, Center for Advanced Computing Technology (C-ACT), Fakulti Teknologi Maklumat dan
Komunikasi, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia

 faizal.abdollah@utem.edu.my

(Corresponding author: Raihana Syahirah Abdullah: raihana.syahirah@utem.edu.my)

ISSN 2278-3091
Volume 9, No.5, September - October 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse55952020.pdf

https://doi.org/10.30534/ijatcse/2020/55952020

 Raihana Syahirah Abdullah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7267 – 7274

7268

imaginable record, causing disavowal of administration all
through a district, was broadly secured by the broad
communications.

Figure 2: Top 10 Mirai botnet downloaded onto infected IoT device

following a successful Telnet password crack.

In the field of botnets discovery and botnets distinguishing
proof, which is dynamic methodologies and aloof
methodologies, two sorts of strategies can be perceived. So as
to mimic in conducting a genuine bot, dynamic
methodologies include defanging bots or composing specific
bots. Detached methodologies are those that can't be
identified using any and all means, as there is no progression
of data back to the botnet administrator. Dynamic
methodologies incorporate a wide range of strategies that
illuminate the botnets administrator of the perception
straightforwardly or by implication.

The analyst arranged botnets discovery and following
strategies into three classes: honeypots, characterization of
traffic applications and examination of detached irregularities
[4]. The developed Honeypot server application is capable of
analysing data in real time as it has been combined with IDSs
to provide effective detection level capabilities (Baykara &
Das, 2018).

The Mirai botnets can be detected early in the field of IoT by
knowing their taxonomy and behaviours. So, this research
will focuses on sandbox as a method of analyze for Mirai
botnets behaviour. While, to detect Mirai botnets, it is
necessary to analyze the Mirai botnets attack pattern by
knowing its behaviors. It is possible to specify the attack
pattern by using of graph theory approach.

This section started with the briefly explanation of Internet of
Things (IoT). The remainder of this paper is presented as
follows: Section II discusses related studies and Section III
explain the methodology used for this paper. Section IV
presents some analyses of the results. Section V concludes the
paper and suggests future work directions.

2. RELATED WORK

The Mirai botnet caught worldwide attention in 2016,
consisting of streak-breaking DDoS attacks on Krebs, OVH,
and Dyn. The botnet, which in the closed-circuit targeted TV

cameras, routers and DVRs, generated volumes of traffic
above 1Tbps. This botnet has taken down service providers
and cloud scrubbers infrastructure with ten predefined attack
vectors. Some of the vectors are GRE flooding and water
torture attacks. Based on what the author mentions, Mirai IoT
botnet is a worm-like Mirai botnet family that infected and
corralled IoT devices into a DDoS botnet at the end of 2016.
This botnet starts flooding with HTTP and uses IoT device
network level attacks as a target. When the botnet infects a
device and wipes it out and claims the gadget as its own, Mirai
searches for other malware on that device [3].

To detect malware, there are many types of detection. They
are a system for firewall, honeypot and detection of intrusion
[5]. Every detection can secure host or network, or both, from
any intrusion. There is many type of anomaly detection which
is Flow-based methods, Graph-based methods, Clustering
and Classification [6]. There are group that can be
categorized, static graphs and dynamic graphs for detecting
anomalies [7].

An undirected graph element, sometimes referred to as a
connected element, is a subgraph in which any two vertices
are connected by paths to each other and no additional
vertices in the super graph are connected to each other. For
example, there are three components in the graph shown in
the illustration. An incident-free vertex is itself a component.
A graph connected by itself has exactly one component,
which consists of the entire graph.

A dynamic malware analyser proposed by [8] against virtual
machine-conscious Mirai botnet is capable of bypassing
anti-VM detection techniques to detect malware by
monitoring its behaviour in a virtual environment. The
method proposed may bypass detection techniques and
identify the technique used by malware as well. It is capable of
monitoring system resources like connections, files,
processes, and services. It also generates information about
changes in the registry of Windows to the analyst. The
detection ratio tested using the malware set of Pahadus is
successful and 92% accuracy of malware samples is detected.

In addition, by using behavioural sequential patterns as a
method of malware detection [9], a dynamic malware
detection system based on mining the API sequences and
iterative patterns extracted from an executable trace of API
calls was proposed. The framework can examine and detect
malicious behaviour as well as introduce in this field the
concept of iterative pattern mining.

In AccessMiner, which uses system-centered models for
malware protection, a large-scale collection is carried out to
study the diversity of system calls [10]. Data analysis
demonstrates that straightforward identifier of malware by

 Raihana Syahirah Abdullah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7267 – 7274

7269

utilizing an elective location model that describes the general
collaborations between benevolent projects and the OS.
Considerate projects that entrance OS assets, for example,
records and library passages are investigated by framework
driven methodology models and result in not very many or
even zero false positive Mirai botnet discovery.

The method discussed by [7] in malware investigation and
identification instruments examinations understood malware
and favorable projects and looks at the outcomes got. In the
investigation, 100 examples of malware and 100 favorable
projects were gathered from different sources and dissected
under different variants of Windows machines. The test
outcomes demonstrated that malware can barely be
distinguished by utilizing just one instrument. By
consolidating static and dynamic investigation apparatuses,
precision and identification rate can be expanded.

HOLMES as figured out by Jha, [11], similar to the
Behaviour-based Detection Model, also analyses files and
registry using another model. It exhibits a programmed
system for ideally removing discriminative determinations
that decide a program class particularly. Because of
probabilistic testing of determination space, the proposed
method depends on chart mining and idea examination,
scales to enormous classes of projects. The proposed
HOLMES can blend biased details that unequivocally
recognize programs, keeping up a recognition rate of 86% on
new, obscure malware with zero false positive rates.

The comparison of related works on Windows Registry under
detection malware illustrated in Appendix A: Detection of
Malware on Windows Registry illustrates that dissimilar
detection designs are used in the same location of malware.

Then, the comparison of related works on detection of
malware using graph theory are illustrated in Appendix B:
Detection of Malware using Graph Theory. According to
[12], a researcher use graph-based detection method that
focus on dependency behaviour graph. Dependency graph
used to identify a node that uses the name of API call for each
node. Dynamic taint analysis technique has been used in this
research to find the relations between system calls. A
researcher also proposed an algorithm to extract the common
behaviour graph by using graph matching algorithm. The
result from this approach is different for each malware family.
For overall, the result is high true positive which is more than
80% true positive rate and less than 20% false positive rate.

Based on the research by [13], dependency graphs
(ScD-graphs) has been used to determine whether a program
is malicious or benign a researcher also propose the similarity
metric for detection process. In this research, 2631 malware
samples pre-classified into 48 families of malware have been

tested. An experiment also testing on unknown sample file. A
result from this method, it achieved 94.7% true positive and
13.1% false positive.

A graph-based malware activity detection are proposed by
[14] by achieving robustness against evasion techniques. This
method used to detect infected clients and malicious domain
names in DNS traffic. Four sets of DNS traffic that captured
from ISP networks have been used to do an experiment for
this method. As a result, the method achieved high true
positive which is more than 84% of TPR and less than 0.26%
FPR.

According to [15], the proposed method is classification
method based on the maximal common subgraph detection. A
graph is consulted by capturing system call in sandbox
environment. The method has been tested on 300 malware
samples that consist of 6 families of malware. A result from
this method shows that TPR is high and FPR is low.

The method that proposed by [16] is using function-call graph
to compute similarity between two binaries. Next, a
researcher proposed a graph matching method also to
compute similarity between two binaries. For this research, it
used malware samples that provide by VX Heavens. The
result shows that high TPR and low FPR.

3. METHODOLOGY

This research is utilizing the methodology demonstrated to be
a cascade model for this venture. The Figure 3 shows all of
this research's methodology that have four phases. First, the
phase of data collection and information gathering. Next, the
phase of data extraction and analysis. The final phase is to
construct the graph theory. In this chapter, the description of
each phase will be discussed further.

Figure 3: Research Methodology.

 Raihana Syahirah Abdullah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7267 – 7274

7270

Figure 4 showed the Cuckoo sandbox's architecture design.
Cuckoo sandbox is act as centralized access that handles the
analysis and samples Mirai botnets samples execution for
initialize the Phase 1 and Phase 2. Each one of the analysis is
started neither in a physical or virtual machine that is fresh
and isolated. Cuckoo’s main components can be categorized
in two which are the host machine and the number of guest
machines. The host play as an important role in running the
core sandbox’s components that handles the entire process of
analysis, where the guests in another hand are the isolated
environments where the samples of Mirai botnets are
executed and analyzed in a safe manner.

In the sample collection stages, at first, open the web
browser's VirusShare to select samples of Mirai botnet.
Reading the description provided will select the appropriate
IoT Botnet. In ensuring that Mirai botnets is not outdated and
can be analyzed, the latest Mirai botnet must be considered.
Then, insert the Mirai botnet sample MD5 or SHA value into
VirusTotal to check the variant validation.

Figure 4: Architecture Design (“Cuckoo Sandbox,” 2018).

In the information gathering stages, the phase of data
extraction is applied. For this part, this research use the
sandbox to detect each Mirai botnet's activity and behavior.
Cuckoo Sandbox is used for this project to analyze the Mirai
botnet. After download the Mirai botnet samples, upload the
chosen samples into Cuckoo Sandbox. It will display the
report after submitting the samples. The Cuckoo report
provides a summary of Mirai botnet execution information.
We can extract the information on the basis of the
summarized report.

During the analyse information phase, the report produce
from sandbox will be analysed. We will analyse each of the
features yield such as registry. In each of the features, we will
look up the several files which are read, modified and deleted.
The last stages is graph theory application. After analysing
the Mirai botnet sample, the graph is constructing. The graph
is construct according to the API call of the Mirai botnet
produced in the report. Then, the graph created is compared

to another graph of each Mirai botnets. After comparing the
graph, we will extract the pattern of the graph and find the
similarities of each Mirai botnets sample.

4. RESULTS AND DISCUSSION
This section defines the results and analyses for Mirai

botnets evaluation from the experiment. Analysis is essential
to understand the Mirai botnet sconduct to detect Mirai
botnets using a graph theory approach. The md5 sample of
Mirai botnets are validate using VirusTotal in order to
validate the sample. To run the study, the complete sample is
20 sample, which must be in the same Mirai botnet variant.
In this graph theory approach, the research uses the directed
graph method. A directed graph or digraph is a set of vertices
and a collection of directed edges that connect a pair of
vertices ordered by each. It's a pointing edge from the pair's
first vertex and points to the pair's second vertex.

Mirai botnets attackers use several techniques of

obfuscation such as domain generation, domain fluxing and
more. To create it even more difficult for anti-virus products
to detect their infrastructure. Some Mirai botnets leverages
existing innocent server’s safety vulnerabilities to distribute
the real malicious code. This usually makes Mirai botnets
detection difficult for anti-virus products when they are
hosted on legitimate servers.

After run the sample, the report produced by cuckoo has

several analytical reports. The report to be analysed in this
research is the behaviour analysis. Then, there was plenty of
process and detection sources that were born with the Mirai
botnets in the behaviour analysis report. So, cmd.exe and
svchost.exe (WBEM) are the process to take their registry as
sources of detection. It is the deleted registry done by the
process based on Table 1.

The Windows API informally WinAPI is the key set of
application programming interfaces (APIs) accessible in the
operating systems of Microsoft Windows. Collectively, the
name Windows API relates to several distinct platform
applications often referred to by their own names (e.g. Win32
API); see the section on variants. Nearly all Windows
programs communicate with the Windows API. A tiny
amount such as programs launched early in the Windows
startup process use the Native API on the Windows NT
operating system line. The API called in process cmd.exe and
svchost.exe listed in Table 2, and the number indicates as
their id that will be used in the representation of graphs.

 Raihana Syahirah Abdullah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7267 – 7274

7271

Table 1: Deleted Registry.

Process Deleted Registry
cmd.exe HKEY_CURRENT_USER\Software\Mic

rosoft\Windows\CurrentVersion\Internet
Setting\ZoneMap\ProxyBypass
HKEY_LOCAL_MACHINE\SOFTWARE
\Wow643Node\Microsoft\Windows\Curr
entVersion\Internet
Setting\ZoneMap\ProxyBypass
HKEY_CURRENT_USER\Software\Mic
rosoft\Windows\CurrentVersion\Internet
Setting\ZoneMap\IntranetName
HKEY_LOCAL_MACHINE\SOFTWARE
\Wow643Node\Microsoft\Windows\Curr
entVersion\Internet
Setting\ZoneMap\IntranetName

svchost.ex
e

HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\WBEM\CIMOM\LastServices
Start

Table 2: List of API.

API Function
NtOpenKey Opens an existing registry

key.
NtQueryValueKeyEx Returns a value entry for a

registry key.
RegCloseKey Closes a handle to the

specified registry key.
RegDeleteValue Removes a named value

from the specified registry
key

RegEnumKeyEx retrieves information about
one subkey each time it is
called.

RegEnumKey Retrieves the name of one
subkey each time it is called.

RegOpenKeyEx Opens the specified registry
key.

RegQueryInfoKey Retrieves information about
the specified registry key.

RegQueryValueEx Retrieves the data
associated with the default or
unnamed value of a specified
registry key.

RegSetValue Sets the data for the default
or unnamed value of a
specified registry key.

NtQueryKey Provides information about
the class of a registry key,
and the number and sizes of
its subkeys(user mode).

NtQueryMultipleValueKey Retrieves values for the
specified multiple-value key.

RegCreateKeyEx Creates the specified registry

API Function
key. If the key already exists,
the function opens it.

RegNotifyChangeKeyValue Notifies the caller about
changes to the attributes or
contents of a specified
registry key.

NtDeletekey Deletes an open key from the
registry (user mode).

NtEnumeratekey Returns information about a
subkey of an open registry
key(user mode).

RegDeleteKey Deletes a subkey and its
values.

The graph displays the full cycle of the method that is
cmd.exe and svchost.exe referring to the behaviours analysis
report (registry) from the start of the API to the end. Figure 5
is the full cycle for cmd.exe.

Figure 5: Full cycle for cmd.exe

The deleted registry cycle is extracted from full cycle of the
process which is cmd.exe and svchost.exe. The cycle of
deleted registry is depending on handle’s value as Figure 6.

Figure 6: Handle from behavior analysis report (Registry).

 Raihana Syahirah Abdullah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7267 – 7274

7272

For example, with several APIs, RegOpenKeyEx,
RegCreateKeyEx and NtOpenKey, the deleted registry cycle
can start and end with RegCloseKey. Based on Figure 7 form
part of the cmd.exe cycle which is the particular cycle of the
deleted registry Mirai botnets behaviours.

Figure 7: Deleted file in cmd.exe.

In addition, svchost.exe's full cycle is based on Figure 8.
While Figure 9 form part of the svchost.exe cycle, which is
also the specific cycle of the deleted registry Mirai botnets
behaviours. The number at the edges is represented as the
cycle sequence.

Figure 8: Full cycle of srvhost.exe

Figure 9: Deleted file in srvhost.exe

The deleted registry cycle always begins with either
RegOpenKeyEx or RegCreateKeyEx and ends with
RegCloseKey. As shown in Table 3, all possible connection of
APIs in the cycle of deleted registry. The edges are depicted as
the next activity or API to be called by the Mirai botnets.

Table 3: Relation between API.

API Explanation
RegOpenKeyEx →
RegQueryValueEx

Open the specified registry
key then it will retrieve the
data associated with the
default or unnamed value of
a specified registry key

RegOpenKeyEx →
RegDeleteValue

Open the specified registry
key then it will remove a
named valued from the
specified registry key

RegCreateKeyEx →
RegSetValueEx

Create the specified registry
key, but if the key already
exists, the function opens it
then it will set the data for the
default or unnamed value of
the specified registry key.

RegDeleteValue
→RegDeleteValue

Remove a named valued
from the specified registry
key but if fail, it will try
another named value to be
remove.

RegDeleteSet →
RegSetValueEx

Remove a named valued
from the specified registry
key then it will set the data
for the default or unnamed
value of the specified registry
key.

RegSetValueEx → Set the data for the default or

 Raihana Syahirah Abdullah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7267 – 7274

7273

API Explanation
RegSetValueEx unnamed value of the

specified registry key then it
will set another data.

RegSetValueEx →
RegCloseKey

Set the data for the default or
unnamed value of the
specified registry key then it
will close a handle to the
specified registry key

RegCloseKey →
RegCloseKey

Closes a handle to the
designated registry key, it
also closes another handle if
there is a handle present that
needs to be closed.

As the goal of this studies to achieve the pattern of Mirai
botnets behaviours and also to achieve the resemblance of
each Mirai botnets sample. Based on the study conducted, the
sample of Mirai botnet shas its own behaviours but also has
similarity. The cycle of cmd.exe from start to finish is the
same with another sample. In other words, the behaviours of
Mirai botnets on the cycle of cmd.exe will be the same for API
call (refer to Table 2) and registry path as Figure 10.

Figure 10: Mirai botnet behaviors pattern in cmd.exe

On the other hand, svchost.exe has a distinctive sequence
from sample to sample, but svchost.exe has its pattern for the
deleted registry cycle. The API consist in the cycle is
RegCreateKeyEx, RegSetKeyEx, RegDeleteKeyEx and
RegCloseKey. The pattern of sequence Mirai botnets
behaviours as shown in Figure 11.

Figure 11: Pattern of deleted registry behavior cycle in svchost.exe

The result of this research shows the pattern of Mirai
botnets behaviour pattern using a graph theory approach. In
this research, the analysis uses the subject of graph-modeling
to identify patterns of Mirai botnets behaviors based on
samples from virusshare. The research creates a graph that
identifies the behaviors of the Mirai botnets. The outcome of
the research shows that the Mirai botnets has its unique
behavior, the resemblance still appears somehow. The Mirai
botnets tend to delete the registry using the same technique or
process. The solution is also instrumental in studying the
infrastructure of some Mirai botnets and revealing
widespread patterns among Mirai botnets. Thus, these results
show the accuracy and efficiency of the technique with data
about real-world Mirai botnets classification.

Therefore, the significant output of this study is the
development of a clustering model to evaluate and detect
Mirai botnets by using graph theory approach strategy to
identify Mirai botnets behaviour based on behaviour analysis
report produced by cuckoo sandbox. The research's
contributions is extract the similarity of Mirai botnets
behaviour by formulating registry information. Then, the
Mirai botnets behaviour pattern is visualized using graph
theory approach.

5. CONCLUSION
This paper presented results of Mirai botnets attack pattern
using graph theory approach. These findings enhance our
understanding of Mirai botnets behaviors and their attack
activities. This research has found that generally it provides
excellent advantage to the society by offering security
awareness regarding malware detection. Future research
should therefore concentrate on the investigation of different
Mirai botnets types. More research is required on determine
the characteristics for better evaluation of Mirai botnets.
Further research also might explore to use powerful software
and hardware efficiency to optimize Mirai botnets analysis.

 Raihana Syahirah Abdullah et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(5), September - October 2020, 7267 – 7274

7274

ACKNOWLEDGEMENT

This work has been supported by research grant
GLUAR/APNIC/2018/FTMK-CACT/A00018. Thank you to
research group of Information Security Forensics and
Computer Networking (INFORSNET), Center for Advanced
Computing Technology (C-ACT), Fakulti Teknologi
Maklumat dan Komunikasi (FTMK), Universiti Teknikal
Malaysia Melaka (UTeM).

REFERENCES

1. Oliveri, A., & Lauria, F. (2019). Sagishi: an undercover

software agent for infiltrating IoT botnets. Network
Security, 2019(1), 9–14.
https://doi.org/10.1016/S1353-4858(19)30009-1

2. Singh, K., Guntuku, S. C., Thakur, A., & Hota, C.
(2014). Big Data Analytics framework for Peer-to-Peer
Botnet detection using Random Forests. Information
Sciences, 278, 488–497.
https://doi.org/10.1016/j.ins.2014.03.066

3. Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Arbor, A., Bursztein, E., … Zhou, Y. (2017).
Understanding the Mirai Botnet This paper is included in
the Proceedings of the Understanding the Mirai Botnet.

4. Chen, C. M., & Lin, H. C. (2015). Detecting botnet by
anomalous traffic. Journal of Information Security and
Applications, 21, 42–51.
https://doi.org/10.1016/j.jisa.2014.05.002

5. Kaur, Tejvir Malhotra, Vimmi Singh, D. (2014).
Comparison of network security tools-Firewall, Intrusion
Detection System and Honeypot. International Journal of
Enhanced Research in Science Technology &
Engineering, 3(2), 200–204.

6. Chowdhury, S., Khanzadeh, M., Akula, R., Zhang, F.,
Zhang, S., Medal, H., … Bian, L. (2017). Botnet
detection using graph-based feature clustering. Journal of
Big Data. https://doi.org/10.1186/s40537-017-0074-7

7. Amin, M. S., Chiam, Y. K., & Varathan, K. D. (2019).
Identification of significant features and data mining
techniques in predicting heart disease. Telematics and
Informatics, 36(November 2018), 82–93.
https://doi.org/10.1016/j.tele.2018.11.007

8. Pektaş & Tankut, (2019). Internet of Things: A survey on
machine learning-based intrusion detection approaches.
Computer Networks, 151, 147–157.

9. Ahmadi, Sami, Rahimi, & Yadegari, (2018).
Classification and interaction in random forests.
Proceedings of the National Academy of Sciences.
https://doi.org/10.1073/pnas.1800256115

10. Lanzi, Balzarotti, Kruegel, Christodorescu, & Kirda,
(2018). New Iot Botnet Torii Uses Six Methods for
Persistence, Has No Clear Purpose. Proceedings - 10th
International Conference on Frontiers of Information
Technology, FIT 2012.
https://doi.org/10.1109/FIT.2012.53

11. Fredrikson, Christodoresu, Sailer, & Yan (2017). A
K-nearest neighbor classifier for ship route prediction.
OCEANS 2017 - Aberdeen.

12. Ding, Xia, Chen, & Li (2016). A Survey of Data Mining
and Machine Learning Methods for Cyber Security
Intrusion Detection. IEEE Communications Surveys &
Tutorials, 18(2), 1153–1176.
https://doi.org/10.1109/COMST.2015.2494502

13. Nikolopoulos & Polenakis, (2017). Machine Learning
and Images for Mirai botnet Detection and
Classification.
https://doi.org/10.1145/3139367.3139400

14. Lee & Lee (2017). A comparative study of static,
dynamic and hybrid analysis techniques for android
Mirai botnet detection. International Journal of
Engineering Development and Research.

15. Park, Reeves, Mulukutla, & Sundaravel (2017). Internet
of Things: Architectures, Protocols, and Applications.
Journal of Electrical and Computer Engineering.
https://doi.org/10.1155/2017/9324035

16. Shang, Zheng, Xu, Xu, & Zhang (2010) Research on the
architecture of Internet of Things. ICACTE 2010 - 2010
3rd International Conference on Advanced Computer
Theory and Engineering, Proceedings.
https://doi.org/10.1109/ICACTE.2010.

