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 
ABSTRACT 
 
In this paper, a nitrogen deficiency level assessment device 
(NDLAD) for rice and maize is presented. The proposed 
device was based on the functionality of the 4-window panel 
Leaf Color Chart (LCC) for assessing the nitrogen content of 
rice and maize plants. The principle of spectrophotometry was 
implemented using a TCS3200 color sensor module along 
with a hardware-deployed nearest neighbor algorithm in an 
Arduino Nano microcontroller for leaf color classification. 
The objective of the NDLAD is to eliminate the subjective 
nature of using an LCC in assessing the nitrogen levels in rice 
and maize. Based on the tests performed, it was revealed that 
the proposed device can provide a faster and higher detection 
accuracy rate compared with using an LCC. The performance 
results make NDLAD a cheaper and promising alternative to 
other existing electronic crop nutrient assessment tools that 
are currently available in the market. 
 
Key words :Fertilizer management, leaf color chart, nutrient 
assessment, spectrophotometry 
 
1. INTRODUCTION 
 
Rice (Oryza sativa L.) and maize (Zea mays L.) are two of the 
most important food crops that are produced in the 
Philippines. Aside from banana, coconut, and sugarcane, the 
majority of Filipino farmers' livelihood relies on palay (rice) 
and corn (maize) farming. In the first quarter of 2019, 
approximately 4.4 million metric tons of palay and 2.4 million 
metric tons of corn were produced by Filipino farmers which 
are lower compared with the volume of harvest in the same 
period in 2018.[1] Natural calamities such as El Niño and La 
Niña, inadequate irrigation, increasing input cost and 
inefficient farming practices may have contributed to this 
decrease in crop production. In a Global Development 
Network funded study in 2013, it was revealed that nutrient 
mismanagement was the leading physical and technological 
factor affecting yield specifically in most South Asian 
countries.[2] Therefore, to reduce if not eliminate this 
problem, the inefficient fertilizer application practices among 
farmers must be addressed[3], thus the emergence of various 
intelligent farming practices.[4][5] 

 
 

 
One of the important nutrients that improve plant growth and 
yield in rice and maize is Nitrogen (N). The N fertilizer is 
applied multiple times to ensure that the crop's N need is 
adequate during its growing stage. However, its excessive 
application may also harm the crops because it becomes more 
attractive to insects and plant diseases. Also, it may cause 
overgrowth and may reduce the strength of the plant's stem.[6] 
It is therefore important to monitor the N levels in rice and 
maize to determine the right amount of fertilizers needed by 
these crops.[7] The International Rice Research Institute 
(IRRI) together with the Philippines Rice Research Institute 
(PhilRice) have jointly developed a 4-panel Leaf Color Chart 
(LCC) to determine the N level on rice plants through leaf 
color assessment.[8] Aside from rice, the LCC may also be 
used as a real-time and cost-effective tool for N management 
in Maize, and Wheat. The standardized LCC shown in Figure 
1 contains four-color panels with varying shades of green. The 
LCC however, is a non-objective indicator of plant N 
deficiency level,[9] but since it is inexpensive and easy to use, 
it becomes a cheap alternative to the expensive chlorophyll 
meters such as the SPADTM meter.  

 

 
Figure 1: A standardized 4-Panel Leaf Color Chart developed 

jointly by IRRI and PhilRice 
 

For many years, researchers explored the use of image 
processing to assess and detect plant N-levels.[10]–[12] On 
top of image processing, supervised classification algorithms 
such as artificial neural network[13] and support vector 
machine[14] have also been used to eliminate the subjectivity 
in the analysis of the N-level in rice plant[15] and estimating 
leaf chlorophyll content in maize[16] as in the case of using an 
LCC. In some cases where image processing is used to 
retrieve leaf chlorophyll content using smartphones[17], 
additional hardware is usually utilized to neutralize the effect 
of ambient light and to prevent the noise from affecting the 
image.[14][18] One of the most important advantages of using 
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image processing is that its application is not only limited to 
assessing plant nutrients but it may also be used to detect 
diseases[19][20] in plants through leaf image features 
classification. However, the high cost and complexity have 
remained to be among its most notable disadvantages. An 
alternative to image processing that does not require complex 
computing and may be done at a lower cost is the use of the 
embedded-system-basedapproach. Through the 
embedded-system-based approach, non-destructive 
measurement of N level in plants through light intensity 
reflection or light absorption of leaves has been achieved by 
using microcontrollers and optical sensors such as 
photodiodes and the TCS3200 color sensor module.[21]–[23] 
These researches were able to successfully demonstrate in 
detecting the N levels on rice and maize plants by using their 
system first to acquire ground truth (reference) values from 
each panel of the LCC. The acquired reference values were 
then used to classify through thresholding method what LCC 
panel the plant leaves belong to using the newly acquired 
RGB values. However, a disadvantage of using thresholding 
to classify RGB values in embedded systems is its low 
accuracy performance especially in classifying plant leaves 
that fall under panels 3 to 5 of the LCC. This may be 
associated with the fact that some values for the Red, Green, 
and Blue tend to overlap due to the closeness of the intensity 
of the greenness of some rice and maize leaves that belongs to 
panels 3 to 5. Therefore, a different approach must be 
explored to classify the plant leaf colors to achieve a higher 
accuracy while reducing if not eliminating the effect of 
overlapping RGB values between each LCC panels.  
 
The present study aims to develop a fast and reliable 
non-destructive electronic device equivalent to the 4-panel 
LCC developed by IRRI and PhilRice to assess the N 
deficiency levels in rice and maize plants. Also, the proposed 
device adapted the principle of spectrophotometry and 
utilized a hardware-deployed nearest neighbor algorithm 
implemented in an Arduino microcontroller.  
 
This study will be deemed beneficial to small-scale rice and 
maize farmers by providing them the means to assess their 
crops of its N fertilizer needs before fertilizer application. 
Doing so would guide the farmers on the correct amount of 
fertilizer that needs to be applied to their crops thereby 
preventing inadequate or excessive N fertilizer application 
which may also translate to input saving costs. 
 
2. MATERIALS AND METHODS 
 
2.1 Hardware Design and Fabrication of NDLAD for Rice 
and Maize 
The hardware block diagram is shown in Figure 2. The system 
is comprised of two (2) sections, the power supply unit (PSU) 
and the system unit. The PSU is composed of a battery charger 
module, mini-solar panel, Li-ion battery, and a buck 
converter. The 3.7V 18650 Li-ion battery in the device can be 
charged through the mini-USB port of the TP4056-based 
battery charging module. However, in case of a power outage, 
a 5V 70mA mini-solar panel installed on top of the handheld 

device serves as a secondary energy source to charge the 
battery. Regardless of the energy source, the TP4056 charging 
module shall ensure that a constant output of 4.2V to charge 
the battery is produced. Meanwhile, the charger also has a 
built-in low-voltage detection that prevents the battery from 
being drained and over-charging and over-voltage detection 
features to protect the battery. These would allow the battery 
to operate optimally and under normal operating conditions. 
 
 

 
Figure 2: The Block Diagram of the Electronic Nitrogen Deficiency 

Level Assessment Device for Rice and Maize 
 
The Li-ion battery was chosen to be the main power storage of 
the prototype because of its leading features not found in other 
batteries. These include being eco-friendly, high charge 
cycles, maintenance-free, high density and low self-discharge 
rate. The output of the Li-ion battery is connected to a buck 
converter which produces a stable 5V supply to the entire 
system unit. To ensure that the battery is not being charged 
while being used, a selector switch is placed which gives the 
user the option of whether to charge or to activate the 
NDLAD. 
 
Meanwhile, the system unit is composed of four (4) 
components. An Arduino Nano microcontroller, the TCS3200 
color sensor module, an OLED display, and a rotary encoder 
switch. The Arduino Nano serves as the brain of the system. It 
holds the entire program that runs the assessment procedure. 
The microcontroller holds the program for the nitrogen level 
assessment and other peripheral programs used by the user. It 
reads signals from the TCS3200 sensor and rotary encoder 
switch and displays data into the OLED. The TCS3200 color 
sensor is composed of an array of photodiodes with red, green, 
blue filters. The way that TCS3200 was used in this study 
implements the principle of spectrophotometry which 
measures the light reflection of the leaf as a function of 
wavelength.[24] The light that is received by these 
photodiodes are converted into current and are converted 
again to frequency. The frequency corresponds to the color it 
receives and is represented by a set of integers. The device can 
be operated using a single dial selector made of a rotary 
encoder switch. By turning the dial, the user will be able to 
navigate the menu and operation of the device. Meanwhile, 
pressing the dial will execute any command displayed on the 
OLED. The command may include selecting between rice and 
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maize plant up to assessing which panel on an LCC a rice or 
maize leaf belongs. 
 
Figure 3 shows the initial prototype of the NDLAD. The most 
important feature of the prototype is the leaf chamber. The 
leaf chamber is designed in such a way that the opening is 
sufficient enough for a rice or maize leaf to be inserted 
non-destructively but narrow enough to prevent ambient light 
from entering the chamber. This feature ensures that the only 
light source available in the chamber is the light source from 
the TCS3200 color sensor module. Meanwhile, Figure 4 
shows the final 3D Model of the NDLAD from which the 
mass production will be based on. 
 

 
Figure 3: The First Prototype of the NDLAD 

 

 
 

 
Figure 4: The Final 3D Model of NDLAD Prototype 

 

2.2 Acquisition of Training Data 
For the training data acquisition, five (5) Leaf Color Charts 
(LCC) were used to ensure the validity of the training 
datasets. 
 
Using the color sensor, ten (10) datasets for each of the 5 
LCCs were collected. The dataset includes spectral response 
for red, green, and blue from each of the four (4) window 
panels. A total of 200 training datasets were collected making 
up a 200x3 array of data. Figure 4 shows an illustration of the 
3D (RGB) scatter plot of the training dataset. 
 

 
Figure 5: 3D Scatter Plot of the datasets taken by the TCS3200 

Color Sensor 
 
A box and whisker plot in Figure 6 further validates the 
training dataset in terms of consistency. The absence of box 
shapes in the plot shows that the RGB values for each panel 
are close to one another and that little deviation is present.  

 

 
Figure 6: Box and Whiskers Plot of the Datasets taken by the 
TCS3200 Color Sensor 
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2.3 Implementation of the Leaf Color Classification 
Algorithm 
 
To reduce the computing requirement for the classification 
algorithm in the microcontroller, the author decided to reduce 
the original 200 training dataset to forty (40). The new dataset 
was chosen by removing redundant entries and by selecting 
the dataset with the lowest and highest values for each class or 
category (window panels). The 40training dataset represents 
10 samples for each of the 4 window panels of an LCC. Each 
of the 40 training datasets is composed of three (3) integers 
which represent red, green and blue values making a total of 
120 integers. These integers were stored as a 40x3 dimension 
array into the microcontroller and were used as reference data 
for the classification algorithm. To determine the closeness of 
new data readings from each category or class, the Euclidean 
distance formula was used. In general, for an n-dimensional 
Euclidean space௡ , the Euclidean distance between two 
points (࢏࢞࡮,࢏࢞ࡳ,࢏࢞ࡾ)࢞ࡼ and (࢐࡮,࢐ࡳ,࢐ࡾ)࢔ࡼ  is given by the 
formula: 
 

݀௫ = ට൫ܴ௫௜ − ௝ܴ൯
ଶ

+ ൫ܩ௫௜ − ௝൯ܩ
ଶ

+ ൫ܤ௫௜ − ௝൯ܤ
ଶ
(1) 

 
where ࢞ࡼ(ܴ௫௜ ௫௜ܩ, (௫௜ܤ,  represents the stored ݅௧௛  training 
dataset for every Panel (࢞) and the ࢔ࡼ൫ ௝ܴ ௝ܩ,  ௝൯representsܤ,
the new data acquired from the TCS3200 color sensor. To 
understand how the Nearest Neighbor Algorithm was applied 
in this study, the pseudocode of the algorithm is presented in 
Table 1. 
 

Table 1: Pseudocode of the Nearest Neighbor Algorithm 
 

 
 
 
Meanwhile, Figure 7 shows an illustration of how the nearest 
neighbor works in this study. In the illustration, the new data 
represented by the red dot shows its proximity to both Panel 3 

and Panel 4 training data. However, upon closer look at its 
actual computed distances from the data in both categories, 
Panel 3 contains more data that has the closest distance with 
respect to the new data. 
 
Moreover, using equation (1) will further prove that the 
outermost data of the Panel 3 is also closer to the new data 
with a distance of 13.04 compared to Panel 4 with a distance 
of 18.89, proving further that the new data indeed belongs to 
the Panel 3 class or category. 
 

 
Figure 7: Nearest Neighbor Algorithm Graphical Illustration 

 

2.4 Testing and Performance Evaluation 
 
To test and compare the performance between the LCC and 
NDLAD in assessing the nitrogen deficiency level of rice and 
maize through leaf color classification, fifty (50) samples of 
rice and maize leaves which represent each of the 4 window 
panels of an LCC, were measured using the LCC and the 
NDLAD. The 50 samples were previously categorized by 4 
volunteers using their individual LCC Panelboards. To ensure 
the reliability of the categorization process, each sample 
passed through each of the volunteers. The volunteers then 
decide unanimously whether to discard the sample or place it 
on Panel 2, Panel 3, Panel 4 or Panel 5 category. 
 
For the testing, a total of 200 samples for rice and 100 for 
maize were marked according to their categories. The marks 
were unknown and were not visible to the new set of 
volunteers who were tasked to evaluate each sample. The new 
group of volunteers was composed of 4 members. Each 
volunteer member was randomly given 50 leaf samples for 
rice and 25 leaf samples for maize to evaluate using the LCC. 
The rice leaf samples were first evaluated before the maize. 
Using a digital stopwatch, each volunteer was asked to 
classify all the assigned samples as fast as possible while their 
speed was being recorded. Meanwhile, both the rice and 
maize leaf test samples were evaluated using a single unit of 
the NDLAD. The total time it took to classify all the test 
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samples were also recorded. The results from the 
re-categorization were then evaluated using the confusion 
matrix to determine the performance of the LCC and the 
proposed device in terms of accuracy, precision and recall 
(sensitivity). Tables 2 and 3 shows the confusion matrix and 
parameters for rice plant which involve multi-class categories 
unlike the confusion matrix needed for the binary maize plant.  
 

Table 2: The Confusion Matrix for Rice Plant 
 

 
Observed Result 

Panel 2 Panel 3 Panel 4 Panel 5 

Pr
ed

ic
te

d 
R

es
ul

t Panel 2 ww xw yw zw 

Panel 3 wx xx yx zx 

Panel 4 wy xy xx zy 

Panel 5 wz xz yz zz 

 
Table 3: Formulas for the Confusion Matrix Parameters for Rice 

Plant 
 

 TP TN FP FN 
Panel 2 ww xx + yy + zz wx + wy + wz xw + yw + zw 

Panel 3 xx ww + yy + zz xw + xy + xz wx + yx + zx 

Panel 4 yy ww+ xx + zz yw + yx + yz yw + yx + yz 

Panel 5 zz ww + xx + yy zw +zx + zy zw + zx + zy 

 
Using the parameters from Tables 2 and 3, the Accuracy, 
Precision, and Recall performance of the LCC and NDLAD in 
classifying rice leaves can be computed using Equations 2 to 
4. Moreover, the same equations will be used for the 
classification of maize leaves, except that the parameters 
involved will just be for a 2-class confusion matrix. 
 

ݕܿܽݎݑܿܿܣ

= 	
∑(ܶܲ	݅݊	ܾ݈ܶܽ݁	3)

(2	݈ܾ݁ܽܶ	݊݅	ݏ݁݅ݎݐ݊ܧ	݈݈ܣ)∑  (2)%100ݔ

݊݋݅ݏ݅ܿ݁ݎܲ

= 	
ܶܲ

ܶܲ +  (3)																																										%100ݔܲܨ

(ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ)	݈݈ܴܽܿ݁ = 	
ܶܲ

ܶܲ + ܰܨ  (4)																					%100ݔ

3. RESULTS AND DISCUSSION 
The results of the classification performance evaluation on 
nitrogen deficiency level detection for rice and maize plants 
according to the greenness of their leaves are shown in Tables 
4 and 5 for LCC and 6 and 7 for NDLAD. In the results, it is 
noticeable that the LCC and NDLAD’s performance for 
Panels 3 and 4 are lower compared to Panels 2 and 5. This 

may be linked to the closeness in terms of color intensity 
values of the adjacent Panels, Panel 3’s color intensity values 
being adjacent to Panels 2 and 4 while Panel 4 is adjacent to 
Panels 3 and 5. 
 
In Tables 4 to 7, each cell with bold entries refers to the 
correct classifications from among the 50 samples observed 
while the non-zero entries for each row refer to the incorrect 
classifications for that particular category. For the Predicted 
Panel 2 for example in Table 4, there are 48 correct 
classifications and 2 samples were categorized as Panel 3 
samples. 

 
Table 4: Confusion Matrix for the LCC’s Classification 

Performance on Rice Plant 
 

 
Observed Result 

Panel 2 Panel 3 Panel 4 Panel 5 

Pr
ed

ic
te

d 
R

es
ul

t Panel 2 48 1 0 0 

Panel 3 2 46 3 0 

Panel 4 0 3 45 2 

Panel 5 0 0 2 48 

 
 

Table 5: Confusion Matrix for the LCC’s Classification 
Performance on Maize Plant 

 

 
Observed Result 

Panel 2-4 Panel 5 

Pr
ed

ic
te

d 
R

es
ul

t Panel 2-4 48 4 

Panel 5 2 46 

 
 

Table 6: Confusion Matrix for NDLAD’s Classification 
Performance on Rice Plant 

 

 
Observed Result 

Panel 2 Panel 3 Panel 4 Panel 5 

Pr
ed

ic
te

d 
R

es
ul

t Panel 2 49 1 0 0 

Panel 3 1 46 2 0 

Panel 4 0 3 46 2 

Panel 5 0 0 2 48 

 
 

Table 7: Confusion Matrix for NDLAD’s Classification 
Performance on Maize Plant 

 

 
Observed Result 

Panel 2- 4 Panel 5 

Pr
ed

ic
te

d 
R

es
ul

t Panel 2-4 49 1 

Panel 5 1 49 
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The Precision and Recall performance between the LCC and 
NDLAD are shown in Figures 8 for Rice Plant. The graph 
shows that the LCC and NDLAD have the same precision in 
detecting Panel 5 category samples and with almost the same 
precision for Panels 2 and 4 categories. 
 
NDLAD, however, performed better in detecting Panel 3 
samples with 93.88% compared with LCC's 90.20%. For the 
Recall (Sensitivity), NDLAD and the LCC performed equally 
in detecting Panel 3 and 5 samples. NDLAD, however, 
performed better on Panels 2 and 4 categories compared with 
the LCC. 
 
 

 
Figure 8: Precision (top) and Recall (bottom) Performance 
Comparison between LCC and NDLAD for N Deficiency  
Level Assessment through Rice Leaf Color Classification 

 
 

 
Figure 9: Precision (left) and Recall (right) Performance 

Comparison between LCC and NDLAD for N Deficiency Level 
Assessment through Maize Leaf Color Classification 

 
The Precision and Recall performance between the LCC and 
NDLAD are shown in Figures 9 for Maize Plant. The graph 
shows that the NDLAD performed better in terms of precision 
and recall (sensitivity) compared with the LCC in detecting 
Panel 2-4 from Panel 5 category data and vice-versa. 
 

The accuracy performance as shown in Figure 10 further 
established that overall, NDLAD outperforms LCC in 
classifying Panel 2, Panel 3, Panel 4 and Panel 5 samples for 
Rice and Maize plants with NDLAD having an average 
accuracy of 96.25% compared to LCC's 93.75%.  
 

 
Figure 10:Performance Comparison in terms of Accuracy between 

LCC and NDLAD for N Deficiency Level Assessment through 
Maize Leaf Color Classification 

 
 

Table 8: Time Performance Test for LCC 
 

Panel No. 
Time (sec)/Leaf 

Rice Maize AVERAGE 

1 3.85 4.09 3.97 

2 4.12 4.26 4.19 

3 4.04 4.03 4.04 

4 3.69 3.88 3.79 

AVERAGE 3.93 4.07 4.00 

 
 

Table 9: Time Performance Test for NDLAD 
 

NDLAD Time (sec)/Leaf 
Rice Maize AVERAGE 

AVERAGE 1.48 1.37 1.43 

 
Moreover, aside from the classification performance, one 
important advantage of NDLAD compared with LCC is its 
speed in classifying rice and maize leaves as shown in Tables 
8 and 9. 

4. CONCLUSION 
 
A proposed electronic nitrogen deficiency level assessment 
device (NDLAD) for rice and maize is presented in this paper. 
The proposed device was developed based on the 
functionality of the 4-window panel Leaf Color Chart (LCC) 
for assessing the nitrogen deficiency level of rice and maize 
plants. The principle of spectrophotometry was implemented 
using a TCS3200 color sensor module along with a 
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hardware-deployed nearest neighbor algorithm in an Arduino 
Nano microcontroller for leaf color classification. The RGB 
spectral response of the four shades of green colors 
corresponding to the  4-window panels of an LCC was used as 
training datasets for the nearest neighbor algorithm which was 
deployed into the microcontroller to classify new leaf samples 
according to their perceived nitrogen levels based on the LCC 
panel. The electronic implementation of the functionality of 
the LCC eliminated the latter’s limitation of being subjective 
in nature. Moreover, the proposed device through its approach 
in non-destructively assessing the crops’ N deficiency level 
via leaf color classification is deemed immune to varying 
lighting conditions through its innovative leaf chamber 
design. 
 
Furthermore, based on the performance tests using NDLAD 
and the LCC, it was revealed that the proposed device was 
found to be better in classification accuracy, precision, recall 
(sensitivity) and time response compared with that of an LCC. 
Thus, it is safe to conclude that NDLAD is a better substitute 
to an LCC and may also be a cheaper alternative to other 
existing electronic crop nutrient assessment tools in providing 
an objective and efficient way of assessing the N deficiency 
level of rice and maize plant. Lastly, the goal of reducing the 
wasted N fertilizers due to its excessive application may also 
be achieved through the use of NDLAD such as the case from 
consistent utilization of LCC in N fertilizer management. 
 
For the next phase of this study, the researcher will pilot test 
the said device on selected farmlands in the locality, 
specifically, the Rinconada area in Camarines Sur, Philippines 
and will simultaneously conduct a study on its acceptability 
among small-scale farmers and its economic viability. 
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